Operating Systems and Networks Pending Issues

* Project 1is out
. * Exercise sessions starting next week
Network Lecture 3: Link Layer (1) &

— Tuesday and Friday only for next week

. . — Project 1 and homework will be discussed
Adrian Perrig

Network Security Group
ETH Zirich

Where we are in the Course Scope of the Link Layer

* Concerns how to transfer messages over one or more
connected links

* Movingon to the Link Layer!

Application — Messages are frames, of limited size
Transport — Builds on the physical layer

Network

v

ey
Physical ==

In terms of layers ... In terms of layers (2)

Sending machine

Receiving machine Sending machine Receiving machine
Network Packet Packet Network Packet Packet
I n
7T l /Frame |
Link

Link

IHeader

Payload field | Trailer

Header

Payload field

Virtual data path
|

______ > 1

Physical l Actualdata path J

Trailer

Physical L Actualdata path J

Typical Implementation of Layers

Application
Network Interface

Hnk ——— " cara (NIO)

Computer

14— Operating System

Driver

Topics

Framing

— Delimitingstart/end of rames
Error detection and correction
— Handling errors

Retransmissions

— Handling loss

Multiple Access

— 802.11, classic Ethernet |-Later

PHY 5. Switching
. — Modern Ethemet
Cable (medium)
Framing (§3.1.2) Framing Methods
* We'lllook at:

* The Physical layer gives us a stream of bits. How do we
interpret it as a sequence of frames?

),

.;.mo ,l\

— Byte count (motivation)
— Byte stuffing
— Bit stuffing

* |n practice, the physical layer often helps to identify
frame boundaries
— E.g., Ethernet, 802.11

Byte Count

* First try:
— Let’s start each frame with a length field!
—It’s simple, and hopefully good enough ...

Byte Count (2)

Byte count One byte

[s[12[3[¢[5]e[7[8 e e[1[2[3]4[5]es 7 8]0 0] 1]2]3]

Frame 3 Frame 4
8 bytes 8 bytes

* How well do you think it works?

Byte Count (3)

* Difficult to re-synchronize after framing error
— Want a way to scan for a start of frame

Error

[s[[2[3]4]7]e]7 6o e o 1]2[3] 4[5 e e[7]eo 0 1]2]3]

Frame 1 Frame 2 Now a byte
(Wrong) count

Byte Stuffing

* Better idea:
— Have a special flag byte value that means start/end of frame
— Replace (“stuff’) the flag inside the frame withan escape code
— Complication: have toescape the escape code too!

’FLAG Header FLAG

Payload field ‘ Trailer

Byte Stuffing (2)
* Rules:

— Replace each FLAG in data with escFLAG
— Replace each escin data with Escesc

Original bytes

Byte Stuffing (3)

* Now any unescaped FLAG is the start/end of a frame

Original bytes After stuffing

M
sC SC

sc || esc||rLag
4’

Bit Stuffing

* Can stuff at the bit level too
— Call a flag six consecutive 1s
— On transmit, after five 1s in the data, insert a0
— On receive, a 0 after five 1s is deleted

Bit Stuffing (2)

* Example:

1 1 1 | 1

Databits 01101111011 11111111110010
| | 1 |

Transmitted bits

with stuffing

Bit Stuffing (3)

* Sohow does it compare with byte stuffing?

Data bits 011011111111111111110010

Transmitted bits 011011111011111011111010010
with stuffing

Stuffed bits

Link Example: PPP over SONET

* PPP is Point-to-Point Protocol
* Widely used for link framing

—E.g., it is used to frame IP packets that are sent over
SONET optical links

Link Example: PPP over SONET (2)

* Think of SONET as a bit stream, and PPP as the
framing that carries an IP packet over the link

Router\ P P
PPP PPP PPP frame

SONET Optical | soNET SONET payload |[SONET payioad
/ iber

PPP frames may be split over
Protocol stacks SONET payloads

Link Example: PPP over SONET (3)

* Framing uses byte stuffing
— FLAG is OX7E and ESCis Ox7D

Bytes 1 1 1 1or2 Variable 2or4 1
{(

Address
11111111

Flag
01111110

Control
00000011

Flag

Protocol 01111110

Payload
{f

Checksum

Link Example: PPP over SONET (4)

* Byte stuffing method:

—To stuff (unstuff) a byte, add (remove) ESC (0x7D),
and XOR byte with 0x20

— Removes FLAG from the contents of the frame

Error Coding Overview (§3.2)

* Some bits will be received in error due to noise. What can

we do?
— Detect errors with codes
— Correct errors with codes

— Retransmit | fram
etrans ost frames Later

* Reliability is a concern that cuts across the layers —we’'ll

see it again

Problem— Noise may flip received bits

1 ' [
) 1 1,1 o 1
Signal — T 0707070
L0 1 0 0,0,
. I I I I I I I I
Slightly 1101 1 1 1 11
Nois T 1 T Tl lolnld
Y40, 4 40,0,0,0,
I I I I i I I i
Very 1 1101 1 1 1 1 1
sy TG T 10101010

Approach — Add Redundancy

* Error detection codes

— Add check bits to the message bits to let some errors be
detected

* Error correction codes
— Add more check bits tolet some errors be corrected

* Keyissueis now to structure the code to detect many
errors with few check bits and modest computation

Motivating Example

* Asimple codeto handle errors:
— Send two copies! Ermorif different.

* How good is this code?
— How many errorscan it detect/comrect?
— How many errorswill makeit fail?

Motivating Example (2)

* We want to handle more errors with less overhead
— Will look at better codes; they are applied mathematics
— But, they can’t handleall errors
— And they focus on accidental errors

Using Error Codes

* Codeword consists of D data plus R check bits
(=systematic block code)

Data bits Check bits
[o [rfnD)]>

* Sender:

— Compute R check bits based on the D data bits; send the
codeword of D+R bits

Using Error Codes (2)

* Receiver:
— Receive D+R bits with unknownerrors
— Recompute R check bits based on the D data bits; errorif R
doesn’t match R’

Data bits Check bits

_>| D R S

R=fn(D)

Intuition for Error Codes
* For D data bits, R check bits:
All
codewords
Correct
codewords

* Randomly chosen codeword is unlikely to be correct;
overhead is low

R.W. Hamming (1915-1998)

* Much early work on codes:

— “Error Detectingand Emror
Correcting Codes”, BSTJ, 1950

* See also:
— “You and Your Research”, 1986

Source IBE GHN, © 2009 18E

Hamming Distance

* Distanceis the number of bit flips needed to change
D+R1 to D+R2

* Hamming distance of a code is the minimum distance
between any pair of codewords

Hamming Distance (2)

* Error detection:

— For a code of Hamming distance d+1, up to d emrors will always
be detected

Hamming Distance (3)

e Error correction:

— For a code of Hamming distance 2d+1, up to d errors can
always be corrected by mapping to the closest codeword

Error Detection (§3.2.2)

* Some bits may be received in error due to noise. How
do we detect this?
— Parity
— Checksums
— CRCs

* Detection will let us fix the error, for example, by
retransmission (later)

Simple Error Detection — Parity Bit

* Take D data bits, add 1 check bit that is the sum of the D
bits
— Sum is modulo 2 or XOR

Parity Bit (2)
* How well does parity work?
— What is the distance of the code?

— How many errorswill it detect/correct?

* What about larger errors?

Checksums

* |dea: sum up datain N-bit words
— Widely used in, e.g., TCP/IP/UDP

1500 bytes |16 bits |

* Stronger protection than parity

Internet Checksum

* Sumis defined in 1s complement arithmetic (must add
back carries)
— And it’s the negative sum

* “The checksum field is the 16 bit one's complement of the one's
complement sum of all 16 bit words ...” —RFC 791

40

Internet Checksum (2)

Sending: ggg;
1. Arrange data in 16-bit words fag2

2. Put zero in checksum position, add

3.Add any carryover back to get 16 bit:

4. Negate (complement) to get sum

Internet Checksum (3)

in g 0001
Sending: ggg
1. Arrange data in 16-bit words fee7
2. Put zero in checksum position, add +(0000)

2dd£0

3. Add any carryover back to get 16 bits dgfg
" ddf2

4. Negate (complement) to get sum 2304

Internet Checksum (4)

N 0001
Receiving: £203
1.Arrange data in 16-bit words]
2.Checksum will be non-zero, add + 220d

3.Add any carryover back to get 16 bits

4.Negate the result and check it is 0

Internet Checksum (5)

N 0001
Receiving: £203
1.Arrange data in 16-hit words 3]
2.Checksum will be non-zero, add + 220d

2£££d

3.Add any carryover back to get 16 bits f’*f‘zi

4 Negate the result and check it is O 00bo

Internet Checksum (6)

* How well does the checksum work?
— What is the distance of the code?
— How many errorswill it detect/correct?

* What about larger errors?

Cyclic Redundancy Check (CRC)

* Even stronger protection

— Given n data bits, generate k check bits such that the n+k bits
are evenly divisible by a generator C

* Example with numbers:
— Message = 302, k= onedigit, C=3

CRCs (2)

* The catch:

— It’s based on mathematics of finite fields, in which
“numbers” represent polynomials

— e.g., 10011010 isx’ +x* +x3 +x1

* What this means:

— We work with binary values and operate using modulo 2
arithmetic

CRCs (3)

* Send Procedure:

Extend the n data bits with k zeros
Divide by the generator value C
Keep remainder, ignore quotient
Adjust k check bits by remainder

N

* Receive Procedure:
1. Divide and check for zero remainder

CRCs (4)

Data bits: 10011|11o1o11111
1101011111

Check bits:
C(x)=x*x1+1
C=10011
k=4

CRCs (5)

00001 110 Quotient (thrown away)
111 100707070 = Frame with four zeros appended

[
0
5}

170 = Remainder

Transmitted frame: 1 1 0 1 0 1 1 1 1 1N0NMNG]<— Frame with four zeros appended
minus remainder

CRCs (6)

* Protection depend on generator

— Standard CRC-32 is 1 0000 010011000001 0001 11011011
0111

* Properties:
— HD=4, detects up to triple bit errors
— Also odd number of errors
— And bursts of up to k bitsin emror

— Not vulnerable to systematic errors (i.e., moving data around)
like checksums

Error Detection in Practice

* CRCs are widely used on links
— Ethernet, 802.11, ADSL, Cable ...

* Checksum used in Internet
—IP, TCP, UDP ... but it is weak

* Parity
—Is little used

Error Correction (§3.2.1)

* Some bits may be received in error due to noise.
How do we fix them?
— Hamming code
— Other codes

* And why should we use detection when we can use
correction?

Why Error Correction is Hard

* |If we had reliable check bits we could use them to
narrow down the position of the error
— Then correction would be easy

* But error could bein the check bits as well as the data
bits!
— Data might even be correct

Intuition for Error Correcting Code

* Suppose we construct a code with a Hamming distance
of at least 3
— Need 23 bit errors tochange one valid codeword into another
— Single bit errors will be closest to a unique valid codeword

* |f we assume errors are only 1 bit, we can correct them
by mapping an error to the closest valid codeword
— Works for d errors if HD2 2d+ 1

Intuition (2)

* Visualization of code:

OO0 00OQ vald
O‘OO‘ codeword
OO0O0000O
olololelolo NN
O‘OO‘ codeword
000000

Intuition (3)

e Visualization of code:

Valid
codeword

Three bit
errors to
gettoB

Hamming Code

* Gives a method for constructing a code with a distance
of 3
—Usesn=2K—k- 1,e.g.,n=4, k=3
— Put check bits in positions p that are powers of 2, starting with
position 1
— Check bit in position p is parity of positions with a p termin
their values
* Plus an easy way to correct [soon]

Hamming Code (2)

* Example: data=0101, 3 check bits
— 7 bit code, check bit positions 1,2, 4
— Check 1 covers positions 1, 3, 5, 7
— Check 2 covers positions 2, 3, 6, 7
— Check 4 covers positions 4, 5, 6, 7

Hamming Code (3)

* Example: data=0101, 3 check bits
— 7 bit code, check bit positions 1,2, 4
— Check 1 covers positions 1, 3, 5, 7
— Check 2 covers positions 2, 3, 6, 7
— Check 4 covers positions 4, 5, 6, 7

0100101 —

p1=0+1+1=0, py= 0+0+1 =1, py= 140+1=0

Hamming Code (4)

* To decode:
— Recompute check bits (with parity sumincluding the check bit)
— Arrange as abinary number
— Value (syndrome) tells error position
— Value of zero meansno error
— Otherwise, flip bit to correct

Hamming Code (5)
* Example, continued
—>0100101
P1= p2=
Pg=

Syndrome =
Data =

Hamming Code (6)
* Example, continued
—0100101

p1=0+0+1+1=0, py=1+0+0+1 =0,
pg=0+1+0+1=0

Syndrome = 000, no error
Data=0101

Hamming Code (7)
* Example, continued
—>0100111
P1= p2=
Pg=

Syndrome =
Data =

Hamming Code (8)
* Example, continued
—>0100111

p1=0+0+1+1=0, py=1+0+1+1 =1,
pg=0+1+1+1=1

Syndrome =1 1 0, flip position 6
Data =01 01 (correct afterflip!)

Other Error Correction Codes

* Codes used in practice are much more involved than
Hamming

* Convolutional codes (§3.2.3)
— Take a streamof data and output a mix of the recent input bits
— Makes each output bit less fragile
— Decode using Viterbialgorithm (which can use bit confidence
values)

Other Codes (2) — LDPC

* Low Density Parity Check (§3.2.3)
— LDPC based on sparse matrices
— Decoded iteratively using a belief

propagation algorithm

— State of the art today

* Invented by Robert Gallager in
1963 as part of his PhD thesis
— Promptly forgotten until 199 ...

Source IEE GHN, © 2009 IEE

Detection vs. Correction

* Which is better will depend on the pattern of errors. For
example:

— 1000 bit messages witha bit emror rate (BER) of 1 in 10000

* Which has less overhead?

— It depends! We need to know more about the errors

Detection vs. Correction (2)

1. Assume bit errors are random
— Messages have 0or maybe 1 error

* Error correction:
— Need ~10 check bits per message
— Overhead:

e Error detection:
— Need ~1 check bit per message plus 1000 bit retransmission 1/10 of the
time
— Overhead:

Detection vs. Correction (3)

2. Assume errors come in bursts of 100 consecutively garbled bits
— Only 1 or 2 messages in 1000 have errors

* Error correction:
— Need >>100 check bits per message
— Overhead:

e Error detection:
— Can use 32 check bits per message plus 1000 bit resend 2/1000 of the time
— Overhead:

Detection vs. Correction (4)

* Error correction:
— Needed when errors are expected
* Small number of errorsare correctable
— Or when no time for retransmission
* Error detection:
— More efficient when errors are not expected
— And when errors are large when they do occur

Error Correction in Practice

* Heavily used in physical layer

— LDPC is thefuture, used fordemandinglinks like802.11, DVB, WiMAX, LTE,
power-line, ...

— Convolutional codes widely used inpractice

* Error detection (with retransmission) is used in the link layer and above
for residual errors

* Correction also used in the application layer
— Called Forward Error Correction (FEC)
— Normally with an erasure error model (entire paclets arelost)
— E.g., Reed-Solomon (CDs, DVDs, etc.)

