
Operating	Systems	and	Networks

Network	Lecture	8:	Transport	Layer

Adrian	Perrig
Network	Security	Group
ETH	Zürich

2

• I	was	going	to	tell	you	a	joke	about	UDP,	but	I	
wasn’t	sure	if	you	were	going	to	get	it	…

3

Where	we	are	in	the	Course
• Starting	the	Transport	Layer!

– Builds	on	the	network	 layer	to	deliver	data	across	networks	for	
applications	with	the	desired	reliability	 or	quality

Physical
Link

Network
Transport
Application

Recall
• Transport	layer	provides	end-to-end	connectivity				
across	the	network

4

TCP
IP

802.11

app

IP

802.11

IP

Ethernet

TCP
IP

Ethernet

app

RouterHost Host

5

Recall	(2)
• Segments	carry	application	data	across	the	network
• Segments	are	carried	within	packets	within	frames

802.11 IP TCP App,	e.g.,	HTTP

Segment

Packet
Frame

6

Transport	Layer	Services
• Provide	different	kinds	of	data	delivery	across	the	
network	to	applications

Unreliable Reliable
Messages Datagrams	(UDP)
Bytestream Streams (TCP)

Comparison	of	Internet	Transports
• TCP	is	full-featured,	UDP	is	a	glorified	packet

7

TCP	(Streams) UDP	(Datagrams)
Connections Datagrams

Bytes	are	delivered once,	
reliably,	and	in	order

Messages may	be	lost,	
reordered,	duplicated

Arbitrary	length	content Limited	message	size
Flow	control	matches	
sender	to	receiver

Can	send	regardless
of	receiver state

Congestion control	matches	
sender	to	network

Can	send	regardless
of	network	state

8

Socket	API
• Simple	abstraction	to	use	the	network

– The	“network”	API	(really	Transport	service)	used	to	write	all	
Internet	apps

– Part	of	all	major	OSes and	languages;	originally	Berkeley	(Unix)	
~1983

• Supports	both	Internet	transport	services	(Streams	and	
Datagrams)

9

Socket	API	(2)
• Sockets let	apps	attach	to	the	local	network	at	

different	ports

Socket,
Port	#1

Socket,
Port	#2

Socket	API	(3)
• Same	API	used	for	Streams	and	Datagrams

10

Primitive Meaning
SOCKET Create	a	new	communication	endpoint
BIND Associate	a	local	address	(port)	with	a	socket
LISTEN Announce	willingness	to	accept	connections
ACCEPT Passively	establish	an	incoming	connection
CONNECT Actively	attempt	to	establish	a	connection
SEND(TO) Send	some	data	over	the	socket
RECEIVE(FROM) Receive	some	data	over	the	socket
CLOSE Release	the	socket

Only	needed	
for	Streams

To/From	
forms	for	
Datagrams

11

Ports
• Application	process	is	identified	 by	the	tuple	IP	address,	protocol,	

and	port
– Ports	are	16-bit	integers	representing	local	“mailboxes”	that	a	process	

leases

• Servers	often	bind	to	“well-known	 ports”
– <1024,	require	administrative	privileges

• Clients	often	assigned	“ephemeral”	 ports
– Chosen	by	OS,	used	temporarily	

Some	Well-Known	Ports

12

Port Protocol Use
20,	21 FTP File	transfer

22 SSH Remote	login,	replacement	for	Telnet
25 SMTP Email
80 HTTP World	Wide	Web
110 POP-3 Remote	email	access
143 IMAP Remote	email	access
443 HTTPS Secure	Web	(HTTP	over	SSL/TLS)
543 RTSP Media	player	control
631 IPP Printer	sharing

13

Topics
• Service	models

– Socket	API	and	ports
– Datagrams,	Streams

• User	Datagram	Protocol	(UDP)
• Connections	(TCP)
• Sliding	Window	(TCP)
• Flow	control	(TCP)
• Retransmission	timers	(TCP)

• Congestion	control	(TCP) Later

This
time

14

User	Datagram	Protocol	(UDP)	(§6.4)
• Sending	messages	with	UDP

– A	shim	layer	on	packets

I	just	want	to	
send	a	packet!

Network

15

User	Datagram	Protocol	(UDP)
• Used	by	apps	that	don’t	want	reliability	or	bytestreams

– Voice-over-IP	 (unreliable)
– DNS,	RPC	(message-oriented)
– DHCP	(bootstrapping)

(If	application	wants	reliability	and	messages	then	it	has	
work	to	do!)

16

Datagram	Sockets
Client	(host	1) Server	(host	2)Time

request

reply

17

Datagram	Sockets	(2)
Client	(host	1) Server	(host	2)Time

1:	socket 2:	bind
1:	socket

6:	sendto

3:	recvfrom*4:	sendto

5:	recvfrom*

7:	close 7:	close
*=	call	blocks

request

reply

18

UDP	Buffering
App

Port	Mux/Demux

App AppApplication

Transport
(TCP)

Network	(IP) packet

Message	queues

Ports

19

UDP	Header
• Uses	ports	to	identify	sending	and	receiving	application	
processes

• Datagram	length	up	to	64K
• Checksum	(16	bits)	for	reliability

20

UDP	Pseudoheader
• Optional	checksum	covers	UDP	segment	and	IP	
pseudoheader
– Checks	key	IP	fields	(addresses)
– Value	of	zero	means	“no	checksum”

21

Connection	Establishment	(6.5.5,	6.5.7,	6.2.2)

• How	to	set	up	connections
– We’ll	see	how	TCP	does	it

SYN!	ACK!

Network

SYNACK!

22

Connection	Establishment
• Both	sender	and	receiver	must	be	ready	before	we	
start	the	transfer	of	data
– Need	to	agree	on	a	set	of	parameters
– e.g.,	the	Maximum	Segment	Size	(MSS)

• This	is	signaling
– It	sets	up	state	at	the	endpoints
– Like	“dialing”	for	a	telephone	call

23

Three-Way	Handshake
• Used	in	TCP;	opens	connection	 for	

data	in	both	directions

• Each	side	probes	the	other	with	a	
fresh	Initial	Sequence	Number	 (ISN)
– Sends	on	a	SYNchronize segment
– Echo	on	an	ACKnowledge segment

• Chosen	to	be	robust	even	against	
delayed	duplicates

Active	party
(client)

Passive	party
(server)

24

Three-Way	Handshake	(2)
• Three	steps:

– Client	sends	SYN(x)
– Server	 replies	with	SYN(y)ACK(x+1)
– Client	replies	with	ACK(y+1)
– SYNs	are	retransmitted	 if	lost

• Sequence	and	ack numbers	
carried	on	further	segments

1

2

3

Active	party
(client)

Passive	party
(server)

Time

25

Three-Way	Handshake	(3)
• Suppose	delayed,	duplicate	
copies	of	the	SYN	and	ACK	
arrive	at	the	server!
– Improbable,	but	anyhow	…

Active	party
(client)

Passive	party
(server)

26

Three-Way	Handshake	(4)
• Suppose	delayed,	duplicate	
copies	of	the	SYN	and	ACK	
arrive	at	the	server!
– Improbable,	but	anyhow	…

• Connection	will	be	cleanly	
rejected	on	both	sides	J

Active	party
(client)

Passive	party
(server)

X
XREJECT

REJECT

TCP	Connection	State	Machine
• Captures	the	states	(rectangles)	and	transitions	(arrows)

– A/B	means	event	A	triggers	the	transition,	with	action	B

27

Both	parties	
run	instances	
of	this	state	
machine

TCP	Connections	(2)
• Follow	the	path	of	the	client:	

28

TCP	Connections	(3)
• And	the	path	of	the	server:	

29

TCP	Connections	(4)
• Again,	with	states	…

30

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

1

2

3

Active	party	(client) Passive	party	(server)

Time

CLOSEDCLOSED

31

TCP	Connections	(5)
• Finite	state	machines	are	a	useful	tool	to	specify	and	
check	the	handling	of	all	cases	that	may	occur

• TCP	allows	for	simultaneous	open
– i.e.,	both	sides	open	at	once	instead	of	the	client-server	
pattern

– Try	at	home	to	confirm	it	works	J

32

Connection	Release	(6.5.6-6.5.7,	6.2.3)

• How	to	release	connections
– We’ll	see	how	TCP	does	it

Network

FIN! FIN!

33

Connection	Release
• Orderly	release	by	both	parties	when	done
– Delivers	all	pending	data	and	“hangs	up”
– Cleans	up	state	in	sender	and	receiver

• Key	problem	is	to	provide	reliability	while	releasing
– TCP	uses	a	“symmetric”	close	in	which	both	sides	
shutdown	independently

34

TCP	Connection	Release
• Two	steps:

– Active	party	sends	FIN(x),	passive
party	sends	ACK

– Passive	party	sends	FIN(y),	active
party	sends	ACK

– FINs	are	retransmitted	if	lost

• Each	FIN/ACK	closes	one	direction	
of	data	transfer

Active	party Passive	party

1

2

TCP	Connection	State	Machine

35

Both	parties	
run	instances	
of	this	state	
machine

TCP	Release
• Follow	the	active	party

36

TCP	Release	(2)
• Follow	the	passive	party

37

TCP	Release	(3)
• Again,	with	states	…

38

Active	party Passive	party

1

2

FIN_WAIT_1

CLOSE_WAIT

LAST_ACKFIN_WAIT_2

TIME_WAIT

CLOSEDCLOSED

ESTABLISHED

(timeout)

ESTABLISHED

39

TIME_WAIT	State
• We	wait	a	long	time	(two	times	the	maximum	
segment	lifetime	of	60	seconds)	after	sending	all	
segments		and	before	completing	the	close

• Why?
– ACK	might	have	been	lost,	in	which	case	FIN	will	be	resent	
for	an	orderly	close

– Could	otherwise	interfere	with	a	subsequent	connection

40

Sliding	Windows	(§3.4,	§6.5.8)
• The	sliding	window	algorithm

– Pipelining	and	reliability
– Building	on	Stop-and-Wait	

Yeah!

Network

41

Recall
• ARQ	with	one	message	at	a	time	is	
Stop-and-Wait	(normal	case	below)

Frame	0

ACK	0Timeout Time

Sender Receiver

Frame	1

ACK	1

42

Limitation	of	Stop-and-Wait
• It	allows	only	a	single	message	to	be	outstanding	from	
the	sender:
– Fine	for	LAN	(only	one	frame	fit)
– Not	efficient	 for	network	paths	with	BD	>>	1	packet

43

Limitation	of	Stop-and-Wait	(2)
• Example:	R=1	Mbps,	D	=	50	ms

– RTT	(Round	Trip	Time)	=	2D	=	100	ms
– How	many	packets/sec?	

– What	if	R=10	Mbps?

44

Sliding	Window
• Generalization	of	stop-and-wait
– Allows	W	packets	to	be	outstanding
– Can	send	W	packets	per	RTT	(=2D)

– Pipelining improves	performance	
– Need	W=2BD	to	fill	network	path

45

Sliding	Window	(2)
• What	W	will	use	the	network	capacity?
• Ex:	R=1	Mbps,	D	=	50	ms

• Ex:	What	if	R=10	Mbps?

46

Sliding	Window	(3)
• Ex:	R=1	Mbps,	D	=	50	ms

– 2BD	=	106 b/sec	x	100.	10-3	sec	=	100	kbit
– W	=	2BD	=	10	packets	of	1200	bytes

• Ex:	What	if	R=10	Mbps?
– 2BD	=	1000	kbit
– W	=	2BD	=	100	packets	of	1200	bytes

47

Sliding	Window	Protocol
• Many	variations,	depending	on	how	buffers,	
acknowledgements,	and	retransmissions	are	handled

• Go-Back-N
– Simplest	version,	can	be	inefficient

• Selective	Repeat
– More	complex,	better	performance

48

Sliding	Window	– Sender	
• Sender	buffers	up	to	W	segments	until	they	are	
acknowledged
– LFS=LAST FRAME SENT,	LAR=LAST ACK REC’D
– Sends	while	LFS	– LAR	≤	W	

.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR LFS

W=5

Acked Unacked 3 ..Unavailable

Available

seq.	number

Sliding
Window

49

Sliding	Window	– Sender	(2)	
• Transport	accepts	another	segment	of	data	from	the	
Application	...
– Transport	 sends	it	(as	LFS–LAR	à 5)

.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR LFS

W=5

Acked Unacked 3 ..Unavailable

seq.	number

4

50

Sliding	Window	– Sender	(3)	
• Next	higher	ACK	arrives	from	peer…

– Window	advances,	buffer	 is	freed	
– LFS–LAR	à 4	(can	send	one	more)	

.. 5 6 7 2 3 4 5 2 3 ..

LAR LFS

W=5

Acked 3 ..Unavail.

Available

seq.	number

..2 Unacked

51

Sliding	Window	– Go-Back-N
• Receiver	keeps	only	a	single	packet	buffer	for	the		
next	segment
– State	variable,	LAS	=	LAST ACK SENT

• On	receive:
– If	seq.	number	is	LAS+1,	accept	and	pass	it	to	app,	update	
LAS,	send	ACK

– Otherwise	discard	(as	out	of	order)

52

Sliding	Window	– Selective	Repeat
• Receiver	passes	data	to	app	in	order,	and	buffers	out-of-order	

segments	to	reduce	 retransmissions

• ACK	conveys	highest	in-order	 segment,	plus	hints	about	out-of-
order	segments

• TCP	uses	a	selective	 repeat	design;	we’ll	see	the	details	later

53

Sliding	Window	– Selective	Repeat	(2)

• Buffers	W	segments,	keeps	state	variable,	LAS	=	LAST ACK
SENT

• On	receive:
– Buffer	segments	[LAS+1,	LAS+W]	
– Pass	up	to	app	in-order	 segments	from	LAS+1,	and	update	LAS
– Send	ACK	for	LAS	regardless

54

Sliding	Window	– Retransmissions
• Go-Back-N	sender	uses	a	single	timer	to	detect	losses

– On	timeout,	resends	buffered	packets	 starting	at	LAR+1

• Selective	 Repeat	sender	uses	a	timer	per	unacked segment	to	
detect	losses
– On	timeout	for	segment,	resend	it
– Hope	to	resend	fewer	segments

55

Sequence	Numbers
• Need	more	than	0/1	for	Stop-and-Wait	…

– But	how	many?

• For	Selective	Repeat,	need	W	numbers	for	packets,	plus	W	for	acks of	
earlier	packets
– 2W	seq.	numbers
– Fewer	for	Go-Back-N	(W+1)

• Typically	implement	seq.	number	with	an	N-bit	counter	that	wraps	
around	at	2N—1	
– E.g.,	N=8:			…,	253,	254,	255,	0,	1,	2,	3,	…

56

Sequence	Time	Plot

Time

Se
q.
	N
um

be
r

Acks
(at	Receiver)

Delay	(=RTT/2)

Transmissions
(at	Sender)

Window
size

57

Sequence	Time	Plot	(2)

Time

Se
q.
	N
um

be
r

Go-Back-N	scenario

58

Sequence	Time	Plot	(3)

Time

Se
q.
	N
um

be
r Loss

Timeout

Retransmissions

59

Flow	Control	(§6.5.8)
• Adding	flow	control	to	the	sliding	window	algorithm

– To	slow	the	over-enthusiastic	 sender	

Please	slow	down!

Network

60

Problem
• Sliding	window	uses	pipelining	to	keep	the	network	busy

– What	if	the	receiver	 is	overloaded?

Streaming	video
Big	Iron Wee	Mobile

Arg …

61

Sliding	Window	– Receiver	
• Consider	receiver	with	W	buffers

– LAS=LAST ACK SENT,	app	pulls	in-order	 data	from	buffer	with	
recv()	call

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too	high

seq.	number

555 5Acceptable

Sliding
Window

62

Sliding	Window	– Receiver	(2)	
• Suppose	the	next	two	segments	arrive	but	app	does	not	
call	recv()

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too	high

Acceptable

seq.	number

555 5

63

Sliding	Window	– Receiver	(3)	
• Suppose	the	next	two	segments	arrive	but	app	does	not	
call	recv()
– LAS	rises,	but	we	can’t	slide	window!

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too	high

Acceptable

seq.	number

555 544Acked

64

Sliding	Window	– Receiver	(4)	
• If	further	segments	arrive	(even	in	order)	we	can	fill	the	
buffer	
– Must	drop	segments	until	app	recvs!

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too	high

Nothing
Acceptable

seq.	number

5 44Acked 44 4Acked

65

Sliding	Window	– Receiver	(5)	
• App	recv()	takes	two	segments

– Window	slides	(phew)

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too	high

Acceptable

seq.	number

555 5 44 4Acked

66

Flow	Control
• Avoid	loss	at	receiver	by	telling	sender	the	available	
buffer	space
– WIN=#Acceptable,	not	W	(from	LAS)

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too	high

Acceptable

seq.	number

555 544Acked

67

Flow	Control	(2)
• Sender	uses	the	lower	of	the	sliding	window	and	flow	
control	window	(WIN)	as	the	effective	window	size

.. 5 6 7 5 2 3 ..

LAS

WIN=3

Finished 3 ..Too	high

seq.	number

555 544Acked

68

Flow	Control	(3)
• TCP-style	example
– SEQ/ACK sliding	window
– Flow	control	with	WIN

– SEQ +	length	<	ACK+WIN

– 4KB	buffer	at	receiver
– Circular	buffer	of	bytes

69

Retransmission	Timeouts	(§6.5.9)
• How	to	set	the	timeout	for	sending	a	retransmission

– Adapting	to	the	network	path

Lost?

Network

70

Retransmissions
• With	sliding	window,	the	strategy	for	detecting	loss	is	
the	timeout
– Set	timer	when	a	segment	is	sent
– Cancel	 timer	when	ack is	received
– If	timer	fires,	retransmit data	as	lost

Retransmit!

71

Timeout	Problem
• Timeout	should	be	“just	right”

– Too	long	wastes	network	capacity
– Too	short	leads	to	spurious	resends
– But	what	is	“just	right”?

• Easy	to	set	on	a	LAN	(Link)
– Short,	fixed,	predictable	RTT

• Hard	on	the	Internet	(Transport)
– Wide	range,	variable	RTT

Example	of	RTTs

72

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200
Seconds

Ro
un

d	
Tr
ip
	T
im
e	
(m

s)

BCNàSEAàBCN

Example	of	RTTs	(2)

73

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200
Seconds

Ro
un

d	
Tr
ip
	T
im
e	
(m

s) Variation	due	to	queuing	at	routers,	
changes	in	network	paths,	etc.

BCNàSEAàBCN

Propagation	(+transmission)	delay	≈	2D

Example	of	RTTs	(3)

74

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200
Seconds

Ro
un

d	
Tr
ip
	T
im
e	
(m

s)

Timer	too	high!

Timer	too	low!

Need	to	adapt	to	the	
network	conditions

75

Adaptive	Timeout
• Keep	smoothed	estimates	of	the	RTT	(1)	and	variance	 in	RTT	(2)

– Update	estimates	with	a	moving	average
1. SRTTN+1 =	0.9*SRTTN +	0.1*RTTN+1
2. SvarN+1 =	0.9*SvarN +	0.1*|RTTN+1– SRTTN+1|

• Set	timeout	to	a	multiple	of	estimates
– To	estimate	the	upper	RTT	in	practice
– TCP	TimeoutN =	SRTTN +	4*SvarN

Example	of	Adaptive	Timeout

76

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200
Seconds

RT
T	
(m

s)

SRTT

Svar

Example	of	Adaptive	Timeout	(2)

77

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200
Seconds

RT
T	
(m

s)

Timeout	(SRTT	+	4*Svar)
Early

timeout

78

Adaptive	Timeout	(2)
• Simple	to	compute,	does	a	good	job	of	tracking	actual	
RTT
– Little	“headroom”	 to	lower
– Yet	very	few	early	timeouts

• Turns	out	to	be	important	for	good	performance	and	
robustness

79

Transmission	Control	Protocol	(TCP)	(§6.5)
• How	TCP	works!

– The	transport	protocol	used	for	most	content	on	the	Internet

TCPTCPTCP

We	love	TCP/IP!

Network

We	love	TCP/IP!We	love	TCP/IP!We	©TCP/IP!

80

TCP	Features
• A	reliable	bytestream service
• Based	on	connections	
• Sliding	window	for	reliability

– With	adaptive	timeout

• Flow	control	for	slow	receivers

• Congestion	control	to	allocate	network	bandwidth

This
time

Next
time

Reliable	Bytestream
• Message	boundaries	not	preserved	from	send()	to	recv()

– But	reliable	and	ordered	 (receive	 bytes	in	same	order	as	sent)	

81

Four	segments,	each	with	512	bytes	of	
data	and	carried	in	an	IP	packet

2048	bytes	of	data	delivered	
to	app	in	a	single	recv()	call

Sender Receiver

82

Reliable	Bytestream (2)
• Bidirectional	data	transfer

– Control	information	 (e.g.,	ACK)	piggybacks	on	data	segments	in	
reverse	direction	

A B
data	BàA

ACK AàB

ACK BàA

data	AàB

83

TCP	Header	(1)
• Ports	identify	apps	(socket	API)

– 16-bit	identifiers

84

TCP	Header	(2)
• SEQ/ACK used	for	sliding	window

– Selective	 Repeat,	with	byte	positions

85

TCP	Sliding	Window	– Receiver	
• Cumulative	ACK tells	next	expected	byte	sequence	
number	(“LAS+1”)

• Optionally,	selective	ACKs (SACK)	give	hints	for	receiver	
buffer	state
– List	up	to	3	ranges	of	received	 bytes

ACK up	to	100	and	200-299	

86

TCP	Sliding	Window	– Sender
• Uses	adaptive	retransmission	timeout	to	resend	data	from	LAS+1
• Uses	heuristics	to	infer	 loss	quickly	and	resend	to	avoid	timeouts

– “Three	duplicate	ACKs”	treated	as	loss	

ACK 100
ACK 100,	
200-299

ACK 100,	
200-399

ACK 100,	
200-499

Sender	decides	100-199	 is	lost

87

TCP	Header	(3)
• SYN/FIN/RST flags	for	connections

– Flag	indicates	segment	is	a	SYN etc.

88

TCP	Header	(4)
• Window	size	for	flow	control

– Relative	to	ACK,	and	in	bytes

89

Other	TCP	Details
• Many,	many	quirks	you	can	learn	about	its	operation

– But	they	are	the	details

• Biggest	remaining	mystery	is	the	workings	of	congestion	
control
– We’ll	tackle	this	next	time!

