spelinf.ethzch

ETHziirich W @spcl_eth

ETHziirich ’ /\«y"S’&, ¥ @spol o
ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)
Chapter 2: Processes

Last time: introduction

Setting the date to 1 January 1970 will
« Introduction: Why? _ brick your iPhone, iPad or iPod touch

February 12, 2016

Date bug will prevent 64-bit i0S devices from booting up, rendering them
inoperable e h fail-safe restore methods u
* Rolesofthe OS
Acoustic Cryptanalysis * Referee
. . % « lllusionist
Genkin, Shamir, Tromer, Dec. 2013 Gl
. ue
“Here, we describe a new acoustic cryptanalysis
key extraction attack, applicable to GnuPG's
current implementation of RSA. The attack can ¢ Structureofan OS
extract full 4096-bit RSA decryption keys from
B |aptop computers (of various models), within an - 10 ate b ks Phones cking hen 3ot e f tmed ot Photogaph
LQ% N, ’]HEYCM gonymw%ém =% hour, using the sound generated by the SaanEr Manually setting the date of your iPhone or iPad to 1 January 1970, or tricking
L = during the decryption of some chosen ciphertexts.” | TGS it gl e T g piTanaaty S LI G
MONEY, AND [MPERSONATE. ME TO MY FRENDS, boot back upifits switched off.
BUT AT LEAST THEY CANT NSTALL - hitp:tau.

DRIVERS WITHOUT MY PERMSSION.
© source: xkcd.com

that users are reporting that the fail-safe restore techniques using iTunes are not

ac.il/~tromer/acoustic/ L ‘The bug within Apple’s date and time settings within i0S causes such an issue
HATLY able to repair the problem.

L spelint ethzch
ETHziirich ETHziirich ? W @spcl_eth

This time General OS structure

= Entering and exiting the kernel
= Process concepts and lifecycle

= Contextswitching - o Server process
X Application Application
= Process creation (daemon)
Kernel threéds System Library System Library System Library
= Kernel architecture
System calls

= System calls in more detail
= User-spacethreads

User mode

Privileged mode

(Kernel

ETHziirich “n W ETHziirich
Kernel The kernel is a program!
= That part of the OS whichrunsin privileged mode = Kernelisjusta (special) computer program.
= Large part of Unix and Windows (except libraries) = Typically an event-driven server.
= Small part of L4, Barrelfish, etc. (microkernels) = Responds to multiple entry points:

= Does not exist in some embedded systems = System calls

= Hardware interrupts
= Also known as: = Program traps

* Nucleus, nub, supervisor, ... = May also includeinternal threads.

ETHzirich

spelint.ethz.ch
W @spcl_eth

General OS structure

XJ spelint.ethz.ch
Pt 2 W @spcl_eth

Application Application Se;‘é‘:eg:ggfss
- N ~ -
Csystem Library) (_system tibrary) System Library)
*:“
System calls User mode
* Privileged mode
Kernel

ETHzirich ’ /\«7‘5’&,

System Libraries

= Convenience functions
= printf(), etc.
= Common functionality

= System call wrappers
= Create and execute system calls from high-level languages
= See ‘man syscalls’ on Linux

ETHziirich

General OS structure

\1 spclinf.ethz.ch
/\(' ; A W @spcl_eth

. N ' Server process;
Application Application (daemon)
System Library System Library \astem Libray
LS|ystem calls User mode
v L
Privileged mode
Kernel

ETHzirich SIA

Daemons

= Processeswhich are part of the OS
= Microkernels: most of the OS
= Linux: increasingly large quantity

= Advantages:
= Modularity, fault tolerance
= Easier to schedule...

spelinf.ethz.ch
W @spcl_eth

ETHziirich

Entering and exiting the kernel

spclinf.ethz.ch

11

ETHziirich

When is the kernel entered?

= System Startup and ...

= Exception (aka. trap): caused by user program
= Interrupt: caused by “something else”

= System calls

= Exceptionvs. Interruptvs. System call (analog technology quiz, raise hand)

= Division by zero

= Fork

= Incoming network packet
= Segmentation violation

= Read QN
= Keyboard input / X 2

12

spcl.inf.ethz.ch
W @spcl_eth

ETHzirich

ETHzirich

spelint.ethz.ch
W @spcl_eth

/‘\7’&“&’Y

Recall: System Calls

= RPCto the kernel
= Kernelis aseries of syscall event handlers
= Mechanismis hardware-dependent

User process
runs

Execute
syscall

1

Process resumes

User mode

Privileged mode

\ Execute kernel
code

Systemcalls 13

/‘\7"&“&’Y

System call arguments

Syscalls are the way a program requests services from the kernel.

Implementation varies:

= Passed in processor registers

= Stored in memory (address (pointer)in register)
= Pushed on the stack

= System library (libc)wraps as a C function
= Kernelcodewraps handler as C call

14

spelint.ethz.ch

A, Ehe

ETHziirich

spelint.ethz.ch

When is the kernel exited?

= Creatinganew process
= Including startup

= Resumingaprocess after atrap
= Exception, interrupt or system call

= User-levelupcall
= Much like an interrupt, but to user-level

= Switching to another process

15

ETHziirich

/\7&'&’

Processes

W @spcl_eth

16

ETHziirich

ETHziirich

Process concept

“The execution of a program with restricted rights”
= Virtual machine, of sorts

= Onolder systems:
= Single dedicated processor
= Single address space
= System calls for OS functions

= In software:
computer system = (kernel + processes)

17

Process ingredients

= Virtual processor
= Address space
= Registers
= Instruction Pointer / Program Counter

= Programtext (objectcode)
= Program data (static, heap, stack)
= OS “stuff’:

= Open files, sockets, CPU share,
= Security rights, etc.

18

spelint.ethz.ch
W @spel_eth

ETHzirich

spelint.ethz.ch
W @spcl_eth

ETHzirich

/‘\7"&“&’Y

Process address space

S— ‘ Should look
familiar ...
Stack a a
(addresses are examples: some
machines used the top address
bit to indicate kernel mode)
BSS
Data
Text
00000000

19

/‘\7"&’&’Y

Process lifecycle

created
preemption

runnable
(ready)

110
completes

110
operation

terminated

blocked
(waiting)

20

\4 spcl.inf.ethzch
A W @spcl_eth

ETHziirich

spelint.ethz.ch
W @spcl_eth

ETHziirich

Multiplexing

= OStime-division multiplexes processes
= Or space-division on multiprocessors

= Each process has a Process Control Block (PCB)
= In-kernel data structure
= Holds all virtual processor state
Identifier and/or name
Registers
Memory used, pointer to page table
Files and sockets open, etc.

21

/\7&'&’

Process control block

Stack

kernel memory

(other kernel
data structures)

Process address space

BSS

Process
RLIE) Control
Text Block

22

ETHziirich

Process switching

Process A Kernel Process B

[Process Aexecutes]

\“ Save state to PCB(A) |

[Kernel executes]

Time

| Restore from PCB(B) };

[Process B executes]

| Save state to PCB(B) }ﬁ

[Kernel executes]|

/{ Restore from PCB(A) l

mss Aexecutes]

23

ETHziirich

Process Creation

24

spelinf.ethzch

ETHzirich Y W @spcl

Process creation

= Bootstrapping problem.Need:
= Code to run
= Memory to run it in
= Basic I/O set up (so you can talk to it)
= Way to refer to the process

= Typically, “spawn” system call takes enough arguments to
construct, from scratch, anew process.

25

ETHzirich

/‘\7"&“&’Y

Process creation on Windows
Did it work?

BOOL CreateProcess (

in opt LPCTSTR ApplicationName,

in;ut_opt LPTSTR CommandLine, What to run?

in_opt LPSECURITY_ATTRIBUTES ProcessAttributes,

in_opt LPSECURITY_ATTRIBUTES ThreadAttributes, What rights
in BOOL InheritHandles, will it have?
in DWORD CreationFlags,

in_opt LPVOID Environment,

in_opt LPCTSTR CurrentDirectory, What will it see

in LPSTARTUPINFO StartupInfo, when it starts up?
out LPPROCESS_INFORMATION ProcessInformation

‘\ The result

Moral: the parameter space is large! ‘

spelint.ethz.ch
W @spcl_eth

26

ETHziirich

Unix fork () and exec ()

Dramatically simplifies creating processes:

1. fork () : creates “child” copy of calling process

2. exec (): replaces text of calling process with anew program
3. Thereis no “CreateProcess(...)"”.

Unix is entirely constructed as a family tree of such processes.

ETHziirich

Unix as a process tree

FPID PID FGID SIDTIY TPGID STAT UID TIWE COND =
0 1 1 ? -1 Ss o 101 /sbindinit
437 438 4,7 -] upstart-udev-bridge --daemon
433 433 439 7 -1 s udevd —-daemon
4 209 439 437 1 \- udevd —~dencn
433 2096 433 439 7 -1 8K _ udevd --daenon
7 657 6977 N A4 bs=1. 1F=/procrkusg of =/var/run/reysloa/k
664 B 659 ? -1 81 101 rsyslogd —c4
ABEE i BESEea
15 - avahi-dagnon: chroot helper P
7T ALY 4% W hald ~-daencn-es Exercise:
R - e bl nald-sddonr 1K1 k out
? E _ Jusr/1ib/hal/hald-addon-rFki 11k
2 N v N |fowiot
? - " Jusr/1ib/hal/hal d-sddon-ceneric-bac
%g ; ; Z - :‘_ :aig-&:gcn-stcr&geﬁ polling /dE;QSd how to do
? -] . hald-addon-input: Listening on /dev .
100 T3 737 - \Z fusr/1ibrhal/hal d-addon-cpufreq this on your
oo Ed et s scpi: Jistenirg on crid f ite Uni
-1 Ss letuorkNanager
o s vz 07 - A Jabin/drlient = ~sF fusr/ o Metuer avorite Unix
15 gdnbinary g
715 7oL 757 - \~ fusee | ib/adn/ad-sinple-slave ~—display or Linux
102 11(1102 tty? 1102 Rs+ N\ fusr/bin/X 0 -br -verbose -auth /v| .
346 5L 7617 - _ fusr/1ib/adn/adn-sesslon-uorker machine...
1 361 13 1361 ? -1 Ssl 1000 . gnone-session
L 113 U3 LiE7 1% 100 (e h R ————
1 445 1446 1446 7 -1 Ss 1000 _ /usr/bin/seahorse-agent —-e
1L 1789 1381 13817 - 1000 A2 /bin/sh fuer/bin/conpiz
1i 904 13 1361 ? - 1000 I _ fusr/bin/compiz.real -
1904 194 1984 1984 7 1% 100 17 bindsh =2 Juserbin
1984 1985 1984 1984 7 - 1000 I N Ausr/bind/gtk-ui
L 1905 181 13617 - 1000 _ gnone=panel
1 907 13 1361 ? - 1000 - nautilus
1 1902 181 13817 - 1000 A2 gnone-pover-nanager
1 913 13 1361 ? -1 81 1000 _ fusr/libfevelution/2. 28/evo’
L 1906 L1 13817 - 1000 A2 usr/Lib/pol icuk -1 gnone/
917 13 1361 ? - 1000 _ bluetcoth-applet
918 131 13617 - 1000 A7 wpdatennotifier —startup-d/—|
921 13 1361 ? - 1000 _ python /usr/share/system—co| =
31 131 13617 - 1000 03 A Puer/Lib/anene-disieutility| |
lhelene: ..ce-2.6.31/arch/x86/ia32> L

28

ETHziirich

Fork in action

Return code from
fork() tells you
whether you're in the
parent or child
(cf. setjmp())

pid t p = fork();
if (p<0) {
// Error..
exit(-1);
} else if (p == 0) {
// We’'re in the child
execlp (“/bin/1s”, “1s”, NULL);
} else {
// We're a parent.
// p is the pid of the child
wait (NULL) ;
exit(0) ; Child process can’'t
} actually be cleaned

up until parent
“waits” for it.

29

ETHziirich

Process state diagram for Unix

preemption
forked It really is
called a
' Zombie
runnable

(ready)

“undead”

110
operation

blocked
(waiting)

parent
calls wait()

Dead
(and gone)

30

ETHzirich

spelinf.ethz.ch

Kernel Threads

31

ETHzirich

/‘\7"&“&’Y

W @spcl_eth

How do threads fit in?

= Itdepends...

= Types of threads:
= Kernel threads
= One-to-one user-space threads
= Many-to-one
= Many-to-many

= Do NOT confusethis with hardware threads/SMT/Hyperthreading
= In these, the CPU offers more physical resources for threads!

32

\1 spclinf.ethz.ch
W @spcl_eth

ETHziirich

spclinf.ethz.ch

Kernel threads

= Kernels can (and some do)implement threads

= Multiple execution contexts inside the kernel
= Much as in a JVM

= Says nothing about user space
= Context switch still required to/from user process

= First,how many stacks are therein the kernel?

33

ETHziirich

W @spcl_eth

Process switching

Process A Kernel Process B

[Process Aexecutes]

Save state to PCB(A)]

What's
happening
here?
Athread?

s]

Time

Restore from PCB(B) ‘;

[Process B executes]

| Save state to PCB(B) }-*

[Kernel executes]|

Restore from PCB(A)]

[Process Aexecutes]

34

ETHziirich

ETHziirich

Kernel architecture

= Basic Question: How many kernel stacks?

= Unix 6t edition has a kernel stack per process
= Arguably complicates design
= Q. On which stack does the thread scheduler run?

= A. On the first thread (#1)
— Every context switch is actually two!

= Linux et al. replicate this, and try to optimize it.

= Others (e.g., Barrelfish) have only one kernel stack per CPU
= Kernel must be purely event driven: no long-running kernel tasks
= More efficient, less code, harder to program (some say).

35

Process switching revisited

Process A

L_|

Kernel stack A Kernel stack B
Kernel stack 0

Process B

Saveto PCB(A)

Decide to
switch
process

For a kernel with
multiple kernel

Pick
processto run

Switch to
stacks Kernel
stack B
With clever_ness, Restore
can sometimes PCB(B)
run scheduler on T

current process’
kernel stack.

36

spcl.inf.ethz.ch
W @spcl_eth

ETHzirich

/‘\7’&“&’Y

ETHzirich

/‘\7"&“&’Y

spelint.ethz.ch
W @spcl_eth

System Calls in more detail

. We can now say in more detail what happens during a system
call

. Precise details are very dependent on OS and hardware
. Linux has 3 different ways to do this for 32-bit x86 alone!

. Linux:
. Good old int 0x80 or 0x2e (software interrupt, syscall number in EAX)
Set up registers and call handler
. Fast system calls (sysenter/sysexit, >Pentium II)
CPU sets up registers automatically

http://www.int80h.org/ © 37

Performing a system call

In user space:
1. Marshall the arguments somewhere safe
2 Saves registers
3. Loads system call number
4. Executes SYSCALL instruction
(or SYSENTER, or INT 0x80, or..)
5. And?

38

spelint.ethz.ch

ETHziirich A, Ehe

ETHziirich

spelinf.ethz.ch
W @spcl_eth

System calls in the kernel

] Kernel entered at fixed address
. Privileged mode is set
] Need to call theright function and return, so:
1. Save user stack pointer and return address
— Inthe Process Control Block
Load SP for this process’ kernel stack
Create a C stack frame on the kernel stack
Look up the syscall number in a jump table
Call the function (e.g., read (), getpid(), open(), etc.)

aprwn

39

Returning in the kernel

] When functionreturns:
1. Load the user space stack pointer
2. Adjust the return address to point to:
Return path in user space back from the call, OR
Loop to retry system call if necessary
3. Execute “syscall return” instruction
] Resultis execution backin user space, on user stack

= Alternatively, can do this to a different process...

40

ETHziirich

ETHziirich

User-space threads

41

From now on assume:

= Previous example was Unix 6t Edition:
= Which had no threads per se, only processes
= i.e., Process «— Kernel stack

= Fromnow on,we’llassume:
= Multiple kernel threads per CPU
= Efficient kernel context switching

= Howdo weimplementuser-visible threads?

42

ETHzirich

spelinf.ethzch

spelinf.ethz.ch

/‘\7’&“&’Y

What are the options?

1. Implementthreads withinaprocess (one kernel thread)
2. Multiplekernel threadsin a process
3. Somecombination of the above

. and other more unusual cases we won’t talk about...

W @spcl_eth

43

ETHzirich

/‘\7"&“&’Y
Many-to-one threads

= Early “thread libraries”
= Green threads (original Java VM)
= GNU Portable Threads
= Standard student exercise: implement them!

= Sometimes called “pure user-level threads”
= aka. lightweight threads, tasks (differences in control)
= No kernel support required
= Also (confusingly) “Lightweight Processes”

W @spcl_eth

44

ETHziirich

/\7&"*\’

Many-to-one threads

Kernel

spelint.ethz.ch
W @spcl_eth

ETHziirich

/\7&'&’
Address space layout for user level threads

spelinf.ethz.ch
W @spcl_eth

Thread 1 stack

Stack =

T

»

ﬁ Thread 3 stack
- Thread 2 stack
ust
B allocate BSS
Data on the Data
heap
Text Text

ETHziirich

One-to-one user threads

= Every user thread is/has akernel thread.
= Equivalentto:

= multiple processes sharing an address space

= Except that “process” now refers to a group of threads
= Mostmodern OS threads packages:

= Linux, Solaris, Windows XP, MacOSX, etc.

47

ETHziirich

User

One-to-one user threads

;@|@|;;;

Kernel

48

. spolint.ethzch v,_ spolint.ethzch
ETHzirich /\r”&v W @spel_eth ETHzirich /{)‘7&7&; W @spcl_eth

One-to-one user threads Comparison

Thread 1 stack User-level threads One-to-onethreads

= = Cheap to create and = Memory usage (kernel
destroy stack)

Thread 2 stack = Fastto context switch = Slow to switch
ﬂ I - = Can block entireprocess = Easierto schedule

Stack

Thread 3 stack * Not just on system calls = Nicely handles blocking

1

T T

BSS BSS
Data Data
Text Text

49 50

. spclinf.ethz.ch oo spclinf.ethz.ch
ETHziirich /{7&'&4 v aspci e [l ETHziirich /\,y&'&, W @spcl cth

Many-to-many threads Many-to-many threads

= Multiplex user-level threads over several kernel-level threads
= Onlyway to go for a multiprocessor

= l.e., pretty much everything these days
= Can “pin” user thread to kernel thread for ; ; ; ; ; ;
performance/predictability
= Thread migration costs are “interesting”...
User

Kernel

51 52

. . spclinf.ethzch
ETHziirich v e

Next week

= Synchronization:

= How to implement those useful primitives
= |nterprocess communication

= How processes communicate
= Scheduling:

= Now we can pick a new process/thread to run, how do we decide which
one?

53

