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© source: xkcd.com  

RSA Key Extraction via Low-Bandwidth 

 Acoustic Cryptanalysis 
 

Genkin, Shamir, Tromer, Dec. 2013 

 

“Here, we describe a new acoustic cryptanalysis  

key extraction attack, applicable to GnuPG's  

current implementation of RSA. The attack can 

extract full 4096-bit RSA decryption keys from  

laptop computers (of various models), within an  

hour, using the sound generated by the computer  

during the decryption of some chosen ciphertexts.” 
 

                          http://tau.ac.il/~tromer/acoustic/ 
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Last time: introduction 

 

• Introduction: Why? 

 

• Roles of the OS 

• Referee 

• Illusionist 

• Glue 

 

• Structure of an OS 
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This time 

 Entering and exiting the kernel 

 Process concepts and lifecycle 

 Context switching 

 Process creation 

 Kernel threads 

 Kernel architecture 

 System calls in more detail 

 User-space threads  
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General OS structure 
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System calls 

CPU Device Device CPU 
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Kernel 

 That part of the OS which runs in privileged mode 

 Large part of Unix and Windows (except libraries) 

 Small part of L4, Barrelfish, etc. (microkernels) 

 Does not exist in some embedded systems 

 

 Also known as: 

 Nucleus, nub, supervisor, … 

5 

spcl.inf.ethz.ch 

@spcl_eth 

The kernel is a program! 

 Kernel is just a (special) computer program. 

 Typically an event-driven server.  

 Responds to multiple entry points: 

 System calls 

 Hardware interrupts 

 Program traps 

 May also include internal threads. 
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System Libraries 

 Convenience functions 

 printf(), etc.  

 Common functionality 

 

 System call wrappers 

 Create and execute system calls from high-level languages 

 See „man syscalls‟ on Linux 
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Daemons 

 Processes which are part of the OS 

 Microkernels: most of the OS 

 Linux: increasingly large quantity 

 

 Advantages: 

 Modularity, fault tolerance 

 Easier to schedule… 
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Entering and exiting the kernel 
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 System Startup and … 

 Exception (aka. trap): caused by user program 

 Interrupt: caused by “something else” 

 System calls 

 

 Exception vs. Interrupt vs. System call (analog technology quiz, raise hand) 

 Division by zero 

 Fork 

 Incoming network packet 

 Segmentation violation  

 Read 

 Keyboard input 

 

 

When is the kernel entered? 
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Recall: System Calls 

 RPC to the kernel 

 Kernel is a series of syscall event handlers 

 Mechanism is hardware-dependent 

 

System calls 

Privileged mode 

User mode 

User process 

runs 
Process resumes 

Execute kernel 

code 

Execute 

syscall 
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System call arguments 

Syscalls are the way a program requests services from the kernel. 

 

Implementation varies: 

 Passed in processor registers 

 Stored in memory (address (pointer) in register) 

 Pushed on the stack 

 

 System library (libc) wraps as a C function 

 Kernel code wraps handler as C call 
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When is the kernel exited? 

 Creating a new process 

 Including startup 

 

 Resuming a process after a trap 

 Exception, interrupt or system call 

 

 User-level upcall 

 Much like an interrupt, but to user-level 

 

 Switching to another process 
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Processes 
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Process concept 

“The execution of a program with restricted rights” 

 

 Virtual machine, of sorts 

 

 On older systems: 

 Single dedicated processor 

 Single address space 

 System calls for OS functions 

 

 In software: 

computer system = (kernel + processes) 
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Process ingredients 

 Virtual processor 

 Address space 

 Registers 

 Instruction Pointer / Program Counter 

 

 Program text (object code) 

 

 Program data (static, heap, stack) 

 

 OS “stuff”:  

 Open files, sockets, CPU share,  

 Security rights, etc.  
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Process address space 

Stack 
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7FFFFFFF 

(addresses are examples: some 

machines used the top address 

bit to indicate kernel mode) 

Should look 

familiar … 
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Process lifecycle 
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Multiplexing 

 OS time-division multiplexes processes 

 Or space-division on multiprocessors 

 

 Each process has a Process Control Block (PCB) 

 In-kernel data structure 

 Holds all virtual processor state 

Identifier and/or name 

Registers 

Memory used, pointer to page table 

Files and sockets open, etc.  
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Process control block 
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Process switching 

[Kernel executes] 

[Kernel executes] 

[Process A executes] 

Process A Kernel Process B 

T
im

e
 

[Process B executes] 

[Process A executes] 

Save state to PCB(A) 

Save state to PCB(B) 

Restore from PCB(A) 

Restore from PCB(B) 
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Process Creation 
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Process creation 

 Bootstrapping problem. Need: 

 Code to run 

 Memory to run it in 

 Basic I/O set up (so you can talk to it) 

 Way to refer to the process 

 

 Typically, “spawn” system call takes enough arguments to 
construct, from scratch, a new process.  
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Process creation on Windows 

BOOL CreateProcess( 

  in_opt LPCTSTR  ApplicationName, 

  inout_opt   LPTSTR   CommandLine, 

  in_opt      LPSECURITY_ATTRIBUTES ProcessAttributes, 

  in_opt      LPSECURITY_ATTRIBUTES ThreadAttributes, 

  in          BOOL   InheritHandles, 

  in  DWORD   CreationFlags, 

  in_opt      LPVOID   Environment, 

  in_opt      LPCTSTR  CurrentDirectory, 

  in          LPSTARTUPINFO  StartupInfo, 

  out         LPPROCESS_INFORMATION ProcessInformation 

); 

 

What to run? 

What rights 

will it have? 

What will it see 

when it starts up? 

The result 

Did it work? 

Moral: the parameter space is large!  
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Dramatically simplifies creating processes: 

1.  fork(): creates “child” copy of calling process 

2.  exec(): replaces text of calling process with a new program 

3. There is no “CreateProcess(...)”. 

 

Unix is entirely constructed as a family tree of such processes. 
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Unix as a process tree 

Exercise: 

work out 

how to do 

this on your 

favorite Unix 

or Linux 

machine… 
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Fork in action 

pid_t p = fork(); 

if ( p < 0 ) { 

 // Error… 

 exit(-1); 

} else if ( p == 0 ) { 

 // We’re in the child 

 execlp(“/bin/ls”, “ls”, NULL); 

} else { 

 // We’re a parent.  

 // p is the pid of the child 

 wait(NULL); 

 exit(0); 

} 
Child process can‟t 

actually be cleaned 

up until parent 

“waits” for it. 

Return code from 

fork() tells you 

whether you‟re in the 

parent or child 

(cf. setjmp()) 
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Process state diagram for Unix 
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Kernel Threads 
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How do threads fit in? 

 It depends… 

 

 Types of threads: 

 Kernel threads 

 One-to-one user-space threads 

 Many-to-one 

 Many-to-many 

 

 Do NOT confuse this with hardware threads/SMT/Hyperthreading 

 In these, the CPU offers more physical resources for threads! 
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Kernel threads 

 Kernels can (and some do) implement threads 

 

 Multiple execution contexts inside the kernel 

 Much as in a JVM 

 

 Says nothing about user space 

 Context switch still required to/from user process 

 

 First, how many stacks are there in the kernel? 
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Process switching 
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Kernel architecture 

 Basic Question: How many kernel stacks? 

 

 Unix 6th edition has a kernel stack per process 

 Arguably complicates design 

 Q. On which stack does the thread scheduler run? 

 A. On the first thread (#1) 

 Every context switch is actually two! 

 Linux et al. replicate this, and try to optimize it. 

 

 Others (e.g., Barrelfish) have only one kernel stack per CPU 

 Kernel must be purely event driven: no long-running kernel tasks 

 More efficient, less code, harder to program (some say).  
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Process switching revisited 

Process A Kernel stack A Process B Kernel stack B 
Kernel stack 0 

For a kernel with 

multiple kernel 

stacks 

With cleverness, 

can sometimes 

run scheduler on 

current process‟ 

kernel stack. 
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process 

Pick 

process to run 
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System Calls in more detail 

 We can now say in more detail what happens during a system 

call 

 

 Precise details are very dependent on OS and hardware 

 Linux has 3 different ways to do this for 32-bit x86 alone! 

 

 Linux: 

 Good old int 0x80 or 0x2e (software interrupt, syscall number in EAX) 

Set up registers and call handler 

 Fast system calls (sysenter/sysexit, >Pentium II) 

CPU sets up registers automatically 
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Performing a system call 

In user space: 

1. Marshall the arguments somewhere safe 

2. Saves registers 

3. Loads system call number 

4. Executes SYSCALL instruction 

(or SYSENTER, or INT 0x80, or..) 

5. And? 
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System calls in the kernel 

 Kernel entered at fixed address  

 Privileged mode is set 

 Need to call the right function and return, so: 

1. Save user stack pointer and return address 

– In the Process Control Block 

2. Load SP for this process‟ kernel stack 

3. Create a C stack frame on the kernel stack 

4. Look up the syscall number in a jump table 

5. Call the function (e.g., read(), getpid(), open(), etc.) 
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Returning in the kernel 

 When function returns: 

1. Load the user space stack pointer 

2. Adjust the return address to point to: 

Return path in user space back from the call, OR 

Loop to retry system call if necessary 

3. Execute “syscall return” instruction 

 Result is execution back in user space, on user stack 

 Alternatively, can do this to a different process… 
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User-space threads 
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From now on assume: 

 Previous example was Unix 6th Edition: 

 Which had no threads per se, only processes 

 i.e., Process ↔ Kernel stack 

 

 From now on, we’ll assume: 

 Multiple kernel threads per CPU 

 Efficient kernel context switching 

 

 How do we implement user-visible threads? 

42 



spcl.inf.ethz.ch 

@spcl_eth 

What are the options? 

1. Implement threads within a process (one kernel thread) 

2. Multiple kernel threads in a process 

3. Some combination of the above 

 

 and other more unusual cases we won’t talk about… 
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Many-to-one threads 

 Early “thread libraries” 

 Green threads (original Java VM) 

 GNU Portable Threads 

 Standard student exercise: implement them! 

 

 Sometimes called “pure user-level threads” 

 aka. lightweight threads, tasks (differences in control) 

 No kernel support required 

 Also (confusingly) “Lightweight Processes” 
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Many-to-one threads 
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CPU 0 CPU 1 
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Address space layout for user level threads 
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One-to-one user threads 

 Every user thread is/has a kernel thread. 

 Equivalent to: 

 multiple processes sharing an address space 

 Except that “process” now refers to a group of threads 

 Most modern OS threads packages: 

 Linux, Solaris, Windows XP, MacOSX, etc.  
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One-to-one user threads 
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One-to-one user threads 
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Comparison 

User-level threads 

 Cheap to create and 

destroy 

 Fast to context switch 

 Can block entire process 

 Not just on system calls 

One-to-one threads 

 Memory usage (kernel 

stack) 

 Slow to switch 

 Easier to schedule 

 Nicely handles blocking 
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Many-to-many threads 

 Multiplex user-level threads over several kernel-level threads 

 Only way to go for a multiprocessor 

 I.e., pretty much everything these days 

 Can “pin” user thread to kernel thread for 

performance/predictability 

 Thread migration costs are “interesting”… 
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Many-to-many threads 

Kernel 

User 

CPU 0 CPU 1 
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Next week 

 

 Synchronization: 

 How to implement those useful primitives 

 Interprocess communication 

 How processes communicate 

 Scheduling: 

 Now we can pick a new process/thread to run, how do we decide which 

one? 
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