
spcl.inf.ethz.ch

@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)

Chapter 7: Filesystem Abstractions

Highly recommended read: http://googleprojectzero.blogspot.ch/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

spcl.inf.ethz.ch

@spcl_eth

Á True or false (raise hand)

ÁCopy-on-write can be used to communicate between processes

ÁCopy-on-write leads to faster process creation (with fork)

ÁCopy-on-write saves memory

ÁPaging can be seen as a cache for memory on disk

ÁPaging supports an address space larger than main memory

ÁIt’s always optimal to replace the least recently used (LRU) page

ÁThe “second chance” (clock) algorithm approximates LRU

ÁThrashing can bring the system to a complete halt

ÁThrashing occurs only when a single process allocates too much memory

ÁThe working set model allows to select processes to suspend

ÁPaging requires no memory management unit

ÁPage-faults are handled by the disk

ÁA priority allocation scheme for memory frames may suffer from priority

inversion

2

Our Small Quiz

spcl.inf.ethz.ch

@spcl_eth

Filesystem Abstractions

spcl.inf.ethz.ch

@spcl_eth

What is the filing system?

Á Virtualizes stable storage (disk)

Á Between disk (blocks) and programmer abstractions (files)

Á Combination of multiplexing and emulation

Á Generally part of the core OS

Á Other utilities come extra:

ÁMostly administrative

Á Book: OSPP Sections 11+13 (partly)

spcl.inf.ethz.ch

@spcl_eth

What does the file system need to provide?

Goal Physical characteristic Design implication

High performance High cost of I/O access Organize placement:

access data in large,

sequential units

Use caching to reduce I/O

Named data Large capacity, persistent

across crashes, shared

between programs

Support files and directories

with meaningful names

Controlled sharing Device stores many users’

data

Include access control

metadata with files

Reliable storage Crashes occur during

update

Transactions to make set of

updates atomic

Storage devices fail Redundancy to detect and

correct failures

Flash memory wears out Wear-levelling to prolong life

spcl.inf.ethz.ch

@spcl_eth

What the file system builds on

Application

Library

File system

Block cache

Block device interface

Device driver

I/O, DMA, Interrupts

Physical device

File system API

and implementation

I/O system

(see later)

spcl.inf.ethz.ch

@spcl_eth

Filing System Interface

spcl.inf.ethz.ch

@spcl_eth

What is a file, to the filing system?

Á Some data

Á A size (how many bytes or records)

Á One or more names for the file

Á Other metadata and attributes

Á The type of the file

Á Some structure (how the data is organized)

Á Where on (disk) etc. the data is stored

ÁNext week’s topic

spcl.inf.ethz.ch

@spcl_eth

File metadata

Á Metadata: important concept!

ÁData about an object, not the object itself

Á File metadata examples:

ÁName

ÁLocation on disk (next lecture)

ÁTimes of creation, last change, last access

ÁOwnership, access control rights (perhaps)

ÁFile type, file structure (later)

ÁArbitrary descriptive data (used for searching)

spcl.inf.ethz.ch

@spcl_eth

Naming

spcl.inf.ethz.ch

@spcl_eth

Background

Á Good place to introduce Naming in general

Á Naming in computer systems is:

ÁComplex

ÁFundamental

Á Computer systems are composed of many, many layers of

different name systems.

ÁE.g., virtual memory, file systems, Internet, …

spcl.inf.ethz.ch

@spcl_eth

Basics: We need to name objects

Socket clientSocket = new Socket("hostname", 6789);

Create a new object

Give it a name

spcl.inf.ethz.ch

@spcl_eth

Naming provides indirection

DataOutputStream outToServer = new

DataOutputStream(clientSocket.getOutputStream());

Could be any

socket we have

now

spcl.inf.ethz.ch

@spcl_eth

Indirection

Á Well-known quote by David Wheeler:

“All problems in computer science can be solved by another level

of indirection”

Á Might be less elegantly paraphrased as:

“Any problem in computer science can be recast as a sufficiently

complex naming problem”

spcl.inf.ethz.ch

@spcl_eth

Binding

Á The association between a name and a value is called a binding.

Á In most cases, the binding isn’t immediately visible

ÁMost people miss it, or don’t know it exists

ÁOften conflated with creating the value itself

Á Sometimes bindings are explicit, and are objects themselves.

spcl.inf.ethz.ch

@spcl_eth

A General Naming Model

spcl.inf.ethz.ch

@spcl_eth

A general model of naming

Á Designer creates a naming scheme.

1. Name space: what names are valid?

2. Universe of values: what values are valid?

3. Name mapping algorithm: what is the association of names to values?

Á Mapping algorithm also known as a resolver

Á Requires a context

spcl.inf.ethz.ch

@spcl_eth

General model

N1

N2

N3

N4

N5

N6

N7

Foo

Bar

Gronk

Baz

Name

mapping

algorithm

Context A

spcl.inf.ethz.ch

@spcl_eth

Context

Á “you”, “here”, “Ueli Maurer” are names that require a context to

be useful

Á Any naming scheme must have ≥ 1 context

Á Context may not be stated: always look for it!

spcl.inf.ethz.ch

@spcl_eth

Example naming scheme: Virtual address space

Á Name space:

ÁVirtual memory addresses (e.g., 64-bit numbers)

Á Universe of values:

ÁPhysical memory addresses (e.g., 64-bit numbers)

Á Mapping algorithm:

ÁTranslation via a page table

Á Context:

ÁPage table root

spcl.inf.ethz.ch

@spcl_eth

Á IPv4 addresses:

ÁE.g., 129.132.102.54

ÁSingle (global) context: routable from anywhere

ÁWell, sort of…

Á ATM virtual circuit/path identifiers

ÁE.g., 43:4435

ÁLocal context: only valid on a particular link/port

ÁMany contexts!

Single vs. multiple contexts

spcl.inf.ethz.ch

@spcl_eth

Naming operations

spcl.inf.ethz.ch

@spcl_eth

Resolution

Á Basic operation:

Á value← RESOLVE(name, context)

Á In practice, resolution mechanism depends on context:

Ávalue Ŷ context.RESOLVE(name)

spcl.inf.ethz.ch

@spcl_eth

Resolution example

ÁProblem:

ÁHow does A determine

B’s MAC address given

its IP address?

ÁName space:

ÁIP addresses

ÁUniverse of values:

ÁEthernet MAC addresses

ÁMapping algorithm:

ÁARP: the Address

Resolution Protocol

.Ωǎ Lt ŀŘŘǊΥ млΦмлΦрΦно
Ethernet: 00:1e:c9:74:db:63

!Ωǎ Lt ŀŘŘǊΥ млΦмлΦфΦпм
Ethernet: 00:1f:3b:3a:73:55

spcl.inf.ethz.ch

@spcl_eth

Managing bindings

Á Typical operations:

Ástatus Ŷ BIND(name, value, context)

Ástatus Ŷ UNBIND(name, context)

Á May fail according to naming scheme rules

Á Unbind may need a value

spcl.inf.ethz.ch

@spcl_eth

Example

Á Unix file system (more on this later):

$ ln target new_link

Á Binds “new_link” to value obtained by resolving “target” in the

current context (working directory)

$ rm new_link

Á Removes binding of “new_link” in cwd

Á Actually called unlink at the system call level!

spcl.inf.ethz.ch

@spcl_eth

Enumeration

Á Not always available:

Álist Ŷ ENUMERATE(context)

Á Return all the bindings (or names) in a context

spcl.inf.ethz.ch

@spcl_eth

Example enumeration

$ ls

or

C:/> dir

spcl.inf.ethz.ch

@spcl_eth

Comparing names

–result Ŷ COMPARE(name1, name2)

• But what does this mean?

–Are the names themselves the same?

–Are they bound to the same object?

–Do they refer to identical copies of one thing?

• All these are different!

• Requires a definition of “equality” on objects

• In general, impossible…

spcl.inf.ethz.ch

@spcl_eth

Examples

Á Different names, same referent:

/home/ htor /bio.txt

~/bio.txt

Á Different names, same content:

htor.inf.ethz.ch://home/ htor / git /personal/websites/eth/bio.txt

free.inf.ethz.ch://home/ htor / public_html /bio.txt

spcl.inf.ethz.ch

@spcl_eth

Naming policy alternatives

spcl.inf.ethz.ch

@spcl_eth

How many values for a name? (in a single context)

Á If only one, mapping is injective

ÁCar number plates

ÁVirtual memory addresses

Á Otherwise: multiple values for a name

ÁPhone book (people have more than one number)

ÁDNS names (can return multiple ‘A’ records)

spcl.inf.ethz.ch

@spcl_eth

How many names for a value?

Á Only one name for each value

ÁNames of models of car

Á IP protocol identifiers

Á Multiple names for the same value

ÁPhone book again (people sharing a home phone)

ÁURLs (multiple links to same page)

spcl.inf.ethz.ch

@spcl_eth

Unique identifier spaces and stable bindings

Á At most one value bound to a name

Á Once created, bindings can never be changed

Á Useful: can always determine identity of two objects

ÁSocial security numbers

ÁEthernet MAC addresses

E8:92:A4:*:*:* Ÿ LG corporation

E8:92:A4:F2:0B:97 Ÿ Torstenôsphoneôs WiFi interface

spcl.inf.ethz.ch

@spcl_eth

Types of lookup

spcl.inf.ethz.ch

@spcl_eth

Name mapping algorithms

1. Table lookup

Á Simplest scheme

Á Analogy: phone book

2. Recursive lookup (pathnames)

3. Multiple lookup (search paths)

spcl.inf.ethz.ch

@spcl_eth

Table lookup: other examples

Á Processor registers are named by small integers

Á Memory cells are named by numbers

Á Ethernet interfaces are named by MAC addresses

ÁFrom the network side --- again numbers in the local OS

Á Unix accounts are named by small (16bit) numbers (userids)

Á Unix userids are named by short strings

Á Unix sockets are named by small integers

spcl.inf.ethz.ch

@spcl_eth

Default and explicit contexts,

qualified names

spcl.inf.ethz.ch

@spcl_eth

Where is the context?

1. Default (implicit): supplied by the resolver

1. Constant: built in to the resolver

2. Variable: from current environment (state)

2. Explicit: supplied by the object

1. Per object

2. Per name (qualified name)

spcl.inf.ethz.ch

@spcl_eth

Constant default context

Á Universal name space:

e.g., DNS

Á Short answer:

Á context is the DNS root server

Á Longer answer:

Á /etc/hosts, plus DNS root server

Á Even longer answer:

Á /etc/nsswitch.conf, WINS resolver, domain search path, … L

spcl.inf.ethz.ch

spcl.inf.ethz.ch

@spcl_eth

Variable default context

Á Example: current working directory

$ pwd

/home/ htor / svn

$ ls

osnet /

$ cd osnet

$ ls

archive/ lecture/ organisation/ svnadmin /

assignments / legis / recitation sessions/ svn - commit.tmp

$ ls lecture

chapter1/ chapter2/ chapter5/ chapter8/ template.pptx

chapter10/ chapter3/ chapter6/ chapter9/

chapter11/ chapter4/ chapter7/ dates.xls

$

spcl.inf.ethz.ch

@spcl_eth

Explicit per-object context

Á Note: context reference is a name!

ÁSometimes called a base name

Á Examples:

$ ssh ïl htor spcl.inf.ethz.ch

$ dig @8.8.8.8 - q a spcl.inf.ethz.ch

$ dig @google - public - dns - a.google.com - q a spcl

spcl.inf.ethz.ch

@spcl_eth

Explicit per-name context

Á Each name comes with its context

ÁActually, the name of the context

Á (context,name) = qualified name

Á Recursive resolution process:

ÁResolve context to a context object

ÁResolve name relative to resulting context

Á Examples:

Áhtor@inf.ethz.ch

Á /var/log/syslog

mailto:troscoe@inf.ethz.ch

spcl.inf.ethz.ch

@spcl_eth

Path names, naming networks, recursive

resolution

spcl.inf.ethz.ch

@spcl_eth

Path names

• Recursive resolution Ý path names

• Name can be written forwards or backwards

–Examples: /var/log/messages or spcl.inf.ethz.ch

• Recursion must terminate:

–Either at a fixed, known context reference

• (the root)

–Or at another name, naming a default context

•Example: relative pathnames

• Syntax gives clue (leading ‘/’)

•Or trailing “.” as in spcl.inf.ethz.ch.

spcl.inf.ethz.ch

@spcl_eth

Naming networks

.

..

/

usr

home

…

.

..

bin

lib

share

…

.

..

htor

alonso

schuepb

…

spcl.inf.ethz.ch

@spcl_eth

“Soft links”

Á So far, names resolve to values

ÁValues may be names in a different naming scheme (usually are…)

Á Names can resolve to other names in the same scheme:

ÁUnix symbolic links (ln ïs), Windows “short cuts”

ÁForwarding addresses (Die Post vs. USPS, WWW, Email)

spcl.inf.ethz.ch

@spcl_eth

Multiple lookup

spcl.inf.ethz.ch

@spcl_eth

Sometimes, one context is not enough…

Á Multiple lookup, or “search path”

Á try several contexts in order

Á Union mounts: overlay two or more contexts

Á Examples:

Ábinary directories in Unix

Á resolving symbols in link libraries

Á Somewhat controversial…

Á Note: “search”, but not in the Google sense…

spcl.inf.ethz.ch

@spcl_eth

$ echo $PATH

/home/ htor /bin:/local/bin:/ usr /local/bin:/ usr /bin:

/bin:/sbin:/usr/sbin:/etc:/usr/bin/X11:/etc/local:

/ usr/local/sbin:/home/netos/tools/bin:/usr/bin :

/home/netos/tools/i686 - pc - linux - gnu/bin

$ which bash

/bin/bash

$

“Search path” example

spcl.inf.ethz.ch

@spcl_eth

Name Discovery

spcl.inf.ethz.ch

@spcl_eth

How to find a name in the first place?

Á Many options:

ÁWell-known.

ÁBroadcast the name.

ÁQuery (google/bing search)

ÁBroadcast the query.

ÁResolve some other name to a name space

Á Introduction

ÁPhysical rendezvous

Á Often reduces to another name lookup…

spcl.inf.ethz.ch

@spcl_eth

Bad names

“The Hideous Name”, Rob Pike and P.J. Weinberger, AT&T Bell

Labs

research!ucbvax !@cmu- cs - pt.arpa :@CMU- ITC -

LINUS:dave%CMU- ITC - LINUS@CMU- CS- PT

(Attributed to the Carnegie-Mellon mailer)

spcl.inf.ethz.ch

@spcl_eth

Warning

Á Don’t look too closely at names

Á Almost everything can be viewed as naming

ÁThis does not mean it should be.

“All problems in computer science can be solved by another level of

indirectionéò

ñ...except for the problem of too many layers of indirection.ò

Á A naming model is a good servant, but a poor master.

spcl.inf.ethz.ch

@spcl_eth

Conclusion

Á Naming is everywhere in Computer Systems

ÁName spaces

ÁContexts

ÁResolution mechanisms

Á When trying to understand a system, ask:

ÁWhat are the naming schemes?

ÁWhat’s the context?

ÁWhat’s the policy?

Á When designing a system, it will help stop you making (some)

silly mistakes!

spcl.inf.ethz.ch

@spcl_eth

File system operations

We’ve already seen the file system as a naming scheme.

Directory (name space) operations:

Á Link (bind a name)

Á Unlink (unbind a name)

Á Rename

Á List entries

spcl.inf.ethz.ch

@spcl_eth

Acyclic-Graph Directories

Á Two different names (aliasing)

Á If dict deletes listÝ dangling pointer

Solutions:

ÁBackpointers, so we can delete all pointers

Variable size records can be a problem

ÁBackpointers using a daisy chain organization

ÁEntry-hold-count solution

Á New directory entry type

ÁLink–another name (pointer) to an existing file

ÁResolve the link–follow pointer to locate the file

dict

list

verbs spell

words

spcl.inf.ethz.ch

@spcl_eth

General Graph Directory

Á How do we guarantee no cycles?

Options:

ÁAllow only links to files and not directories

ÁGarbage collection (with cycle collector)

ÁCheck for cycles when every new

link is added

ÁRestrict directory links to parents

E.g., ñ.ò and ñ..ò

All cycles are therefore trivial

dict

list

verbs spell

words

course

root

spcl.inf.ethz.ch

@spcl_eth

Access Control

spcl.inf.ethz.ch

@spcl_eth

Protection

Á File owner/creator should be able to control:

Áwhat can be done

Áby whom

Á Types of access

ÁRead

ÁWrite

ÁExecute

ÁAppend

ÁDelete

ÁList

spcl.inf.ethz.ch

@spcl_eth

Access control matrix

A B C D E F G H J …

Read X X X X X

Write X X X X

Append X X

Execute X X X X

Delete X

List X X

…

Principals

R
ig

h
ts

For a single file or directory:

Problem: how to scalably represent this matrix?

spcl.inf.ethz.ch

@spcl_eth

Row-wise: ACLs

Á Access Control Lists

ÁFor each right, list the principals

ÁStore with the file

Á Good:

ÁEasy to change rights quickly

ÁScales to large numbers of files

Á Bad:

ÁDoesn’t scale to large numbers of principals

spcl.inf.ethz.ch

@spcl_eth

Column-wise: Capabilities

Á Each principal with a right on a file holds a capability for that

right

ÁStored with principal, not object (file)

ÁCannot be forged or (sometimes) copied

Á Good:

ÁVery flexible, highly scalable in principals

ÁAccess control resources charged to principal

Á Bad:

ÁRevocation: hard to change access rights

(need to keep track of who has what capabilities)

spcl.inf.ethz.ch

@spcl_eth

POSIX (Unix) Access Control

Á Simplifies ACLs: each file identifies 3 principals:

ÁOwner (a single user)

ÁGroup (a collection of users, defined elsewhere)

ÁThe World (everyone)

Á For each principal, file defines 3 rights:

ÁRead (or traverse, if a directory)

ÁWrite (or create a file, if a directory)

ÁExecute (or list, if a directory)

spcl.inf.ethz.ch

@spcl_eth

Example

spcl.inf.ethz.ch

@spcl_eth

Full ACLs

Á POSIX now supports full ACLs

ÁRarely used, interestingly

Á setfacl, getfacl, …

Á Windows has very powerful ACL support

ÁArbitrary groups as principals

ÁModification rights

ÁDelegation rights

