
spcl.inf.ethz.ch

@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)

Chapter 9: I/O Subsystems
Never underestimate the KISS principle!



spcl.inf.ethz.ch

@spcl_eth

Á Last time

ÁOn-disk data structures

File representation

Block allocation

Directories

ÁFAT32 case study

Very simple block interface

Single table

ÁFFS case study

Blocked interface

Uses inodes, direct, (single, double, triple é) indirect blocks

ÁNTFS case study

Extent interface

Direct and indirect extent pointers

2

Cache re-load and a magic trick



spcl.inf.ethz.ch

@spcl_eth

Á True or false (raise hand)

1. Directory structures can never contain cycles

2. Access control lists scale to large numbers of principals

3. Capabilities are stored with the principals and revocation can be complex

4. POSIX (Unix) access control is scalable to large numbers of files

5. Named pipes are just (special) files in Unix

6. Memory mapping improves sequential file access

7. Accessing different files on disk can have different speeds

8. The FAT filesystem enables fast random access

9. FFS enables fast random access for small files

10.The minimum storage for a file in FFS is 8kB (4kB inode + block)

11.Block groups in FFS are used to simplify the implementation

12.Multiple hard links in FFS are stored in the same inode

13.NTFS stores files that are contiguous on disk more efficiently than FFS

14.The volume information in NTFS is a file in NTFS

3

Our Small Quiz



spcl.inf.ethz.ch

@spcl_eth

In-memory data structures



spcl.inf.ethz.ch

@spcl_eth

Opening a file

Á Directories translated into kernel data structures on demand:

open(ñfooò);
directory

file inodedirectory structure

User space Kernel Disk



spcl.inf.ethz.ch

@spcl_eth

Reading and writing

Á Per-process open file table Ÿ index intoé

Á System open file table Ÿ cache of inodes

read(5,é)

File blocks

file inode

Per-process

open file table

User space Kernel Disk

System

open file table

5



spcl.inf.ethz.ch

@spcl_eth

Efficiency and Performance

Á Efficiency dependent on:

Ádisk allocation and directory algorithms

Átypes of data kept in fileôs directory entry

Á Performance

Ádisk cache ïseparate section of main memory for frequently used blocks

Á free-behind and read-ahead ïtechniques to optimize sequential access

Á improve PC performance by dedicating section of memory as virtual disk, 

or RAM disk



spcl.inf.ethz.ch

@spcl_eth

Page Cache

Á A page cache caches pages rather than disk blocks using virtual 

memory techniques

Á Memory-mapped I/O uses a page cache

Á Routine I/O through the file system uses the buffer (disk) cache

Á This leads to the following figure



spcl.inf.ethz.ch

@spcl_eth

Two layers of caching?

Memory-mapped files
File access with 
read()/write()

Page cache

Buffer cache

File system



spcl.inf.ethz.ch

@spcl_eth

Unified Buffer Cache

Memory-mapped files
File access with 
read()/write()

Buffer cache

File system



spcl.inf.ethz.ch

@spcl_eth

Filesystem Recovery

Á Consistency checking ïcompares data in directory structure 

with data blocks on disk, and tries to fix inconsistencies

Á Use system programs to back up data from disk to another 

storage device (floppy disk, magnetic tape, other magnetic disk, 

optical)

Á Recover lost file or disk by restoring data from backup



spcl.inf.ethz.ch

@spcl_eth

Disks, Partitions and Logical Volumes



spcl.inf.ethz.ch

@spcl_eth

Partitions

Á Multiplex single disk among >1 file systems

Á Contiguous block ranges per FS

File system C
File system 

B
File system A

P
a

rt
it
io

n
 

ta
b

le

Logical block address (LBA) on a single disk0



spcl.inf.ethz.ch

@spcl_eth

Logical volumes

Á Emulate 1 virtual disk from >1 physical ones

Á Single file system spanning >1 disk

File system A

(part 1)

File system A

(part 2)

File system A

(part 3)

Disk 1 Disk 2 Disk 3

Single logical volume with file system A



spcl.inf.ethz.ch

@spcl_eth

Multiple file systems

Á How to name files in multiple file systems?

Á Top-level volume names:

ÁWindows A:, B:, C:, D:, etc. (problematic)

Á \\fs-systems.ethz.ch\

Á Bind ñmount pointsò in name space

ÁUnix, etc. (flexible)

//fs-systems.ethz.ch/


spcl.inf.ethz.ch

@spcl_eth

Mount points



spcl.inf.ethz.ch

@spcl_eth

File hierarchy with mounts

/

home etc dev var usr

htor netos shm run lock bin

Mount point

Normal directory



spcl.inf.ethz.ch

@spcl_eth

Á Virtual File Systems (VFS) provide an object-oriented way of 

implementing file systems.

Á VFS allows the same system call interface (the API) to be used 

for different types of file systems.

Á The API is to the VFS interface, rather than any specific type of 

file system.

Virtual File Systems



spcl.inf.ethz.ch

@spcl_eth

Virtual File System

File system interface

VFS interface

FAT file system
EXT4 file 

system

NFS network 

file system

Advanced: check out Linuxô FUSE (Filesystem in Userspace)



spcl.inf.ethz.ch

@spcl_eth

Rest of today: I/O

1. Recap: what devices look like

2. Device drivers

3. The I/O subsystem



spcl.inf.ethz.ch

@spcl_eth

Recap from CASP: 

What does a device look like?



spcl.inf.ethz.ch

@spcl_eth

Recap: What is a device?

Specifically, to an OS programmer:

Á Piece of hardware visible from software

Á Occupies some location on a bus

Á Set of registers

ÁMemory mapped or I/O space

Á Source of interrupts

Á May initiate Direct Memory Access transfers



spcl.inf.ethz.ch

@spcl_eth

Recap: Registers

Á Details of registers given 

in chip ñdatasheetsò or 

ñdata booksò

Á Information is rarely 

trusted by OS 

programmers J

From the data 

sheet for the 

PC16550 UART

(standard PC 

serial port) 



spcl.inf.ethz.ch

@spcl_eth

Registers

Á Slightly more readable 

version:

ÁFrom Barrelfish, in a 

language called ñMackerelò

ÁCompiler generates code to 

do the ñbit-bangingò



spcl.inf.ethz.ch

@spcl_eth

Using registers

Á From the Barrelfish console 

driver

ÁVery simple!

Á Note the issues:

ÁPolling loop on send

ÁPolling loop on receive

Only a good idea for debug

ÁCPU must write all the data 

not much in this case



spcl.inf.ethz.ch

@spcl_eth

Very simple UART driver

Á Actually, far too simple!

ÁBut this is how the first version always looksé

Á No initialization code, no error handling.

Á Uses Programmed I/O (PIO)

ÁCPU explicitly reads and writes all values to and from registers

ÁAll data must pass through CPU registers

Á Uses polling

ÁCPU polls device register waiting before send/receive

Tight loop!

ÁCanôt do anything else in the meantime

Although could be extended with threads and careé

ÁWithout CPU polling, no I/O can occur



spcl.inf.ethz.ch

@spcl_eth

Recap: Interrupts

Á CPU Interrupt-request line triggered by I/O device

Á Interrupt handler receives interrupts

Á Maskable to ignore or delay some interrupts

Á Interrupt vector to dispatch interrupt to correct handler

ÁBased on priority

ÁSome nonmaskable

Á Interrupt mechanism also used for exceptions



spcl.inf.ethz.ch

@spcl_eth

Interrupt-driven I/O cycle

Process A performs 

blocking I/O operation

Scheduler blocks process 

A; switches to other 

processes

Interrupt handler 

processes data

CPU resumes interrupted 

process

Driver initiates I/O 

operation with device

Process A unblocks and 

operation returns

é

é

Device starts I/O

I/O completes (or 

error occurs); device 

raises interrupt

é

CPU Device



spcl.inf.ethz.ch

@spcl_eth

Recap: Direct Memory Access

Á Avoid programmed I/O for lots of data

ÁE.g. fast network or disk interfaces

Á Requires DMA controller

ÁGenerally built-in these days

Á Bypasses CPU to transfer data directly between I/O device and 

memory 

ÁDoesnôt take up CPU time

ÁCan save memory bandwidth

ÁOnly one interrupt per transfer



spcl.inf.ethz.ch

@spcl_eth

I/O protection

I/O operations can be dangerous to normal system operation!

Á Dedicated I/O instructions usually privileged

Á I/O performed via system calls

ÁRegister locations must be protected

Á DMA transfers must be carefully checked

ÁBypass memory protection!

ÁHow can that happen today?

Multiple operating systems on the same machine (e.g., virtualized)

Á IOMMUsare beginning to appearé



spcl.inf.ethz.ch

@spcl_eth

IOMMU does the same for the I/O devices as MMU does for the CPU!

Ễ Translates device adresses (so called DVAs) into physical ones

Ễ Uses so called IOTLB (I/O TLB)

Ễ Works for DMA-capable

devices :-)

Ễ Examples:

Ễ Intel VT-d

Ễ AMD IOMMU

Ễ ...very similar in functionality

Source: Wikipedia

IOMMUs



spcl.inf.ethz.ch

@spcl_eth

Ễ Security features for VMs

Ễ Possibility to assign different devices to different address domains

Ễ By address remapping we can isolate the domains from one another, 

thus 'sandboxing' untrusted devices

Source: Intel VT-d specification

IOMMUs


