spcl.inf.ethz.ch

ETH:zurich & g A3l 7 _Ax 9 @spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)
Chapter 9: I/0O Subsystems

52131 Issue with opening Class 377 doors on

the Thameslink route

January 2014 in Train Operations

% Equipment Infrastructure Rolling stock Station and platform South East

Concerns have been raised about intermittent faults when opening the doors of the Class 377 §

Response from First Capital Connect

trains at certain stations on the Thameslink route.

It is reported that at certain times when Drivers attempt to release the doors at the station, the FCC would like to thank the reporter for bringing this matter to our attention.

Train Management System (TMS) indicates that the beacons cannot be detected, preventing the Operation of Class 377 train doors require a Global Positioning Satellite (GPS) signal to identify

doors from opening. The location of the train then needs to be inputted into the TMS, allowing the that the train is in a station to allow the Driver to open the doors. Effectively this prevents the doors

doors to open. In some instances, even this will not release the doors, and trains have needed to being operated in error when the train is not at a station and as such is a safety feature of the

be rebooted. This can take in excess of five minutes, leaving passengers on the train without an

) trains.
exit route.
Itis noted that this has happened at many stations on the Brighton to Bedford route, but occurs Where the stations are in tunnels, for example St Pancras International low level, and the train
most frequently at St. Pancras International, City Thameslink, Farringdon, Blackfriars and Brighton. | cannot receive a GPS signal directly, additional GPS repeater beacons are fitted to the track to
There are concerns that this could delay an emergency exit if an incident were to occur, leaving relay the signal to the train to enable the Driver to release the doors.

passengers at risk.

A considerable amount of work has already been done with Network Rail to improve the efficiency
of the beacons and this work has also caused a massive reduction in the number of times that the
* doors do not release first time.

However, we are aware that there are still occasional problems, which results in the Driver having
¢ 10 either manually tell the train where it is via the "location not found" option in the TMS, or in the

| event of that not working, using the emergency door release option in the train management
system.

Initial investigations are pointing towards the signal from the beacon being distorted by an unknown
source.

: . P AT SRR . Ty L * B ’ v
. Sa g XY, . [V PP £ A . “m w
" 3 x 2 g P B

. : : spcl.inf.ethz.ch
ETH ziirich 2 S TN Y

Cache re-load and a magic trick

A Last time
A On-disk data structures
File representation
Block allocation
Directories
A FAT32 case study
Very simple block interface
Single table
A FFS case study
Blocked interface
Usesinodes, direct, (single, double, tri
A NTFS case study
Extent interface
Direct and indirect extent pointers

e . b S S AT spcl.inf.ethz.ch
ETH:zurich s / Z\/iﬁz W @spcl_eth

Our Small Quiz

A True or false (raise hand)
1. Directory structures can never contain cycles
Access control lists scale to large numbers of principals
Capabilities are stored with the principals and revocation can be complex
POSIX (Unix) access control is scalable to large numbers of files
Named pipes are just (special) files in Unix
Memory mapping improves sequential file access
Accessing different files on disk can have different speeds
The FAT filesystem enables fast random access
FFS enables fast random access for small files
10. The minimum storage for a file in FFS is 8kB (4kB inode + block)
11.Block groups in FFS are used to simplify the implementation
12. Multiple hard links in FFS are stored in the same inode
13.NTFS stores files that are contiguous on disk more efficiently than FFS
14. The volume information in NTFS is a file in NTFS

© 0N Ok WD

spcl.inf.ethz.ch

ETH:zurich (Y 7 A7 ¥ @spcl_eth

In-memory data structures

ETH:zurich

spcl.inf.ethz.ch

Opening a file

3y @spcl_eth

A Directories translated into kernel data structures on demand:

o p e fodo N—

directory structure

directory

> file inode

User space

Kernel

N

Disk

spcl.inf.ethz.ch

ETH:zurich ' 7 /Y 7 _A\x o @spcl_eth

Reading and writing

A Perrprocess open file table Y index
A System open fil e inodeBl e Y cache of

2!

) \ file inode
<€

read(-5—¢é

'\\
Per-process System
open file table open file table

File blocks

User space Kernel Disk

spcl.inf.ethz.ch

ETHzurich e S alk ' / 9 @spcl_eth

Efficiency and Performance

A Efficiency dependent on:
A disk allocation and directory algorithms
Atypes of data kept in filebds direct«

A Performance
A disk cache i separate section of main memory for frequently used blocks
A free-behind and read-ahead i techniques to optimize sequential access

A improve PC performance by dedicating section of memory as virtual disk,
or RAM disk

ETH-urich S , /\&’S} Sgtlgfssg;;ig
Page Cache

A A page cache caches pages rather than disk blocks using virtual
memory techniques

A Memory-mapped I/O uses a page cache

A Routine I/0 through the file system uses the buffer (disk) cache

A This leads to the following figure

o : T spcl.inf.ethz.ch
ETH:zurich e Tt /ﬁ&z W @spcl_eth

Two layers of caching?

File access with

Memory-mapped files read()/write()

\

Page cache

Buffer cache

I

File system

ETH:zurich

spcl.inf.ethz.ch

"y @spcl_eth

Unified Buffer Cache

File access with

Memory-mapped files read()/write()

Buffer cache

I

File system

o e, ST i spcl.inf.ethz.ch
ETH ziirich B TN Y

Filesystem Recovery

A Consistency checking i compares data in directory structure
with data blocks on disk, and tries to fix inconsistencies

A Use system programs to back up data from disk to another
storage device (floppy disk, magnetic tape, other magnetic disk,
optical)

A Recover lost file or disk by restoring data from backup

spcl.inf.ethz.ch

ETH:zurich (Y Y A7 o @spcl_eth

Disks, Partitions and Logical Volumes

spcl.inf.ethz.ch
"y @spcl_eth

ETH:zurich

Partitions

c
S o i
£ 2| File system A Bl e File system C
g ° B
>

0 Logical block address (LBA) on a single disk

A Multiplex single disk among >1 file systems
A Contiguous block ranges per FS

o : T spcl.inf.ethz.ch
ETH:zurich e Tt /ﬁ&z W @spcl_eth

Logical volumes

Disk 1 Disk 2 Disk 3
File system A File system A File system A
(part 1) (part 2) (part 3)

Y

Single logical volume with file system A

A Emulate 1 virtual disk from >1 physical ones
A Single file system spanning >1 disk

spcl.inf.ethz.ch

ETH:zurich e Sal / 7 _Ax 9 @spcl_eth

Multiple file systems

How to name files in multiple file systems?

Top-level volume names:

A Windows A:, B:, C:, D:, etc. (problematic)

A \\fs-systems.ethz.ch\

A Bind Amount pointso Iin name space

A Unix, etc. (flexible)

A
A

//fs-systems.ethz.ch/

spcl.inf.ethz.ch

ETH:zurich ' 7 7 A7 ¥ @spcl_eth

Mount points

htor@rosalo3:~= df -h

Filesystem Size Used Availl Use% Mounted on
/dev/sdas 675G 426G 599G 7% /

devtmpfs 64G 164K 684G 1% /dev

tmpfs 4G 0 84G 0% jdev/shm
Jdev/sdaz 321G 1.9G 227G 7% /tmp
Jdev/sdaz 61G 8l9M 57G 2% /Svar
Jdev/users SST 4.7T 54T 8% fusers
Jdev/scratch S524T 67T 4577 13 jscratch/tencila
Jdev/apps 30T 3.6T 26T 13% /apps
Jdev/project 1.9 1.2P 7367 62% /project
63@Egn1: /scratch AS7T 2737 1897 58% /scratch/rosa

htur@rnaal@3:~:|D

spcl.inf.ethz.ch

ETH:zurich e Sal / 7 _Ax 9 @spcl_eth

File hierarchy with mounts

/
home etc dev var usr
htor netos shm run lock bin

Mount point

Normal directory

- . , G : spcl.inf.ethz.ch
ETH ziirich 2 S TN Y

Virtual File Systems

A Virtual File Systems (VFS) provide an object-oriented way of
Implementing file systems.

A VFS allows the same system call interface (the API) to be used
for different types of file systems.

A The APl is to the VFS interface, rather than any specific type of
file system.

ETH:zurich

spcl.inf.ethz.ch

Virtual File System

File system interface

l

VES interface

|

l

FAT file system

l

EXT4 file
system

l

NFS network
file system

Advanced: c¢heck FHlasystenhin ldsargpace)F USE

(

3y @spcl_eth

%ﬂ

L]

spcl.inf.ethz.ch

ETH:zurich ' 7 /Y 7 _A\x o @spcl_eth

Rest of today: I/O

1. Recap: what devices look like
2. Device drivers

3. The l/O subsystem

spcl.inf.ethz.ch

ETH:zurich ' 7 (Y 7 A7 ¥ @spcl_eth

Recap from CASP:
What does a device look like?

o : T spcl.inf.ethz.ch
ETH:zurich e Tt /ﬁ&z W @spcl_eth

Recap: What is a device?

Specifically, to an OS programmer:
A Piece of hardware visible from software
A Occupies some location on a bus

A Set of registers

A Memory mapped or 1/O space

Source of interrupts

A May initiate Direct Memory Access transfers

\ >\

spcl.inf.ethz.ch

ETHzurich R i, ' 9 @spcl_eth

Recap: Registers

A Details of registers given

i N C h | p ﬁ d 3 t q < 8.4 LINE STATUS REGISTER

This register provides status information to the CPU con-

N a cerning the data transfer. Table Il shows the contents of the
n d a t a b 00 k SO Line Status Register. Details on each bit follow.
A |nfo rm atl on iS rare'y Bit 0: This bit is the receiver Data Ready (DR) indicator. Bit
0 is set to a logic 1 whenever a complete incoming charac-
trusted by OS ter has been received and transferred into the Receiver
Buffer Register or the FIFO. Bit 0 is reset to a logic 0 by
p rOg rammers .J reading all of the data in the Receiver Buffer Register or the
FIFO.

Bit 1: This bit is the Overrun Error (OE) indicator. Bit 1 indi-
cates that data in the Receiver Buffer Register was not read
by the GPU before the next character was transferred into
the Receiver Buffer Register, thereby destroying the previ-
ous character. The OE indicator is set to a logic 1 upon
detection of an overrun condition and reset whenever the
CPU reads the contents of the Line Status Register. If the
FIFO mode data continues to fill the FIFO beyond the trig-
ger level, an overrun error will occur only after the FIFO is
FrOm the data full and the next character has been completely received in

the shift register. OE is indicated to the CPU as soon as it
Sheet fOr the happens. The character in the shift register is overwritten,
but it is not transferred to the FIFO.

PC16550 UART Bit 2: This bit is the Parity Error (PE) indicator. Bit 2 indi-

cates that the received data character does not have the
(Standard PC nnrrant avunm nr adAd narihs ac ealantad by tha sl narihe
serial port)

spcl.inf.ethz.ch

ETH:zurich el ' 9 @spcl_eth

Registers

A Slightly more readable
version:

A From Barrelfish, in a

register mcr rw adde { baze, 0x6) "Hodem control" {

| anguage call e i ;;Ezzjezirmn:énﬁda--;
A . out "Out":
A Compiler generates code to Lose L Lo’

do t hleamdpingo *

register lsr rw addr { baze, 0x7) "Line status" {

a
dr 1 "Data ready":
oe 1 “"Overrun error":
pe 1 "Parity error":
fe 1 "Framing error":
bi 1 "Break interrupt":
thre 1 "Tranzmitter holding register":
temt 1 "Tranzmitter empty":
erfifo 1 "Error in RCVWE FIFO":

I

register msr rw add- { baze, 0x8) "Hodem status" {
dot= 1 "Delta clear to zend":

dd=t 1 "Neltas datas ==t readu"+

ETH:zurich

spcl.inf.ethz.ch
3y @spcl_eth

Using registers

A From the Barrelfish console
driver

A Very simple!

A Note the issues:
A Polling loop on send
A Polling loop on receive
Only a good idea for debug
A CPU must write all the data
not much in this case

static void serial_putc(char o)

A7 Wait until FIFOD can hold more characters
while(IPCIESSOD_UART _lsr_rd{&coml), threl:
A lrite character

, PCABSSOD_UART _thr _wr(tcoml, it

void serial_write(char *c, size_t len)

for fint i = 03 i € lent i++) o
A EEED translate noto i
A thiz really belongs in a user-side terminal library
if (c[il == ') f
serial_putcl ' s

, serial _putcic[il):
L

woid serial_poll{void)

#¢ Read az many characters as possible from FIFD
while{PCIERS0DN_UART _ler_rdiscoml) drd

char © = PCIESSOD_UART _rbr_rd{&coml):

serial _inputtc, 1):

o e ST i spcl.inf.ethz.ch
ETH ziirich B TN Y

Very simple UART driver

Actually, far too simple!
ABut this is how the first version al

No initialization code, no error handling.

Uses Programmed 1/O (PIO)
A CPU explicitly reads and writes all values to and from registers
A All data must pass through CPU registers

Uses polling
A CPU polls device register waiting before send/receive
Tight loop!
ACandt do anything else in the meant.
Al t hough coul d be extended with thr
A Without CPU polling, no I/0O can occur

. : : spcl.inf.ethz.ch
ETH ziirich 2 S TN Y

2

Recap: Interrupts

A CPU Interrupt-request line triggered by 1/0O device

A Interrupt handler receives interrupts

A Maskable to ignore or delay some interrupts

A Interrupt vector to dispatch interrupt to correct handler

A Based on priority
A Some nonmaskable

A Interrupt mechanism also used for exceptions

ETH:zurich

spcl.inf.ethz.ch
3y @spcl_eth

Interrupt-driven I/O cycle

CPU

Process A performs
blocking 1/0O operation

Driver initiates 1/0
operation with device

Device

Device starts I/0

Scheduler blocks process
A; switches to other
processes

e

Interrupt handler
processes data

I/O completes (or
error occurs); device
raises interrupt

T —
/

|

CPU resumes interrupted
process

Ve

e

Process A unblocks and
operation returns

o Sy G : spcl.inf.ethz.ch
ETH ziirich 2 S TN Y

Recap: Direct Memory Access

A Avoid programmed I/O for lots of data
A E.g. fast network or disk interfaces

A Requires DMA controller
A Generally built-in these days
A Bypasses CPU to transfer data directly between 1/O device and
memory
ADoesndot take up CPU ti me
A Can save memory bandwidth
A Only one interrupt per transfer

o e ST i spcl.inf.ethz.ch
ETH ziirich B TN Y

2

/O protection

I/O operations can be dangerous to normal system operation!

A Dedicated I/O instructions usually privileged

A 1/0 performed via system calls
A Register locations must be protected

A DMA transfers must be carefully checked
A Bypass memory protection!

A How can that happen today?
Multiple operating systems on the same machine (e.g., virtualized)

AIOMMUsar e beginning to appear é

- . T f T S e E spcl.inf.ethz.ch
ETHzurich RV o e /@2' 3 @spcl_eth

&

IOMMUSs

IOMMU does the same for the I/O devices as MMU does for the CPU!

e Translates device adresses (so called DVAS) into physical ones

e Uses so called IOTLB (I/0 TLB)

¢ Works for DMA-capable
devices :-)

qq

¢ Examples: Main Memory
e Intel VT-d f
¢ AMD IOMMU

T Physical addresses T

o o] IOMMU] [MMU |

e ...very similar in functionality FoN : 2 3
Device Taddresses . Virtual Taddressesi

Device | : CPU |

: i

Source: Wikipedia

ETH:zurich

spcl.inf.ethz.ch

) Y @spcl_eth
|IOMMUSs

e Security features for VMs

¢ Possibility to assign different devices to different address domains

¢ By address remapping we can isolate the domains from one another,
thus 'sandboxing’ untrusted devices

System Memory System Memory
: Domain 1 N Domain 2 N
0S Code & Driver A Driver B
Data 1] Buffe;rs /O BufE—:rs
Py Driver A ,-": Driver B
VO Buffers |Gy | O Buffers 10 Buffers| / VO Buffers| /
[Y i "gﬂ_ J A u:. i vy AN R ". /J
(A 5 N \ /
.'-. _." < E DMA-Remapping Hardware
[: x A
I/O Devices Device A Device B Q
Device DMA without 1solation

Device DMA isolated using DMA remapping hardware

Source: Intel VT-d specification

