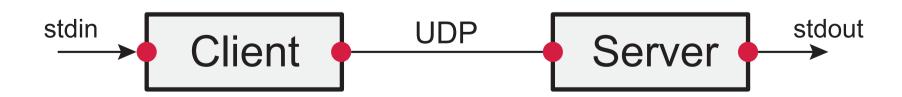
Operating Systems and Networks


Networks Part: Project 1

Network Security Group ETH Zürich

Reliable Transport

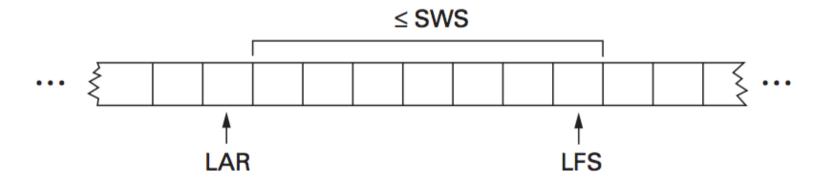
Implement a reliable packet stream (not byte stream!)

- Packet drops
- Packet corruption
- Flow control
- Packet reordering

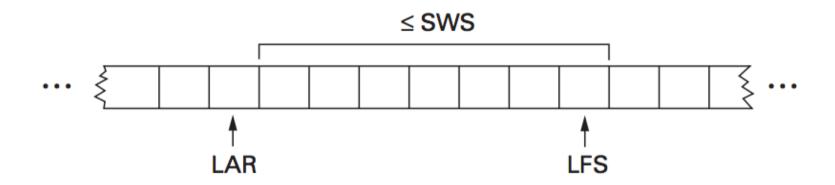
Fundamental Mechanisms

- Error Detection
 - Corrupt packets must be discarded
 - Implemented via Checksum
- Acknowledgements (ACK)
 - Small control packet to confirm the reception of a packet
 - When sender gets an ACK, sender learns that recipient has successfully gotten a packet
- Timeouts
 - If sender doesn't get an ACK after "reasonable" time, it retransmits the original packet

Naive Approach: Stop-and-Wait

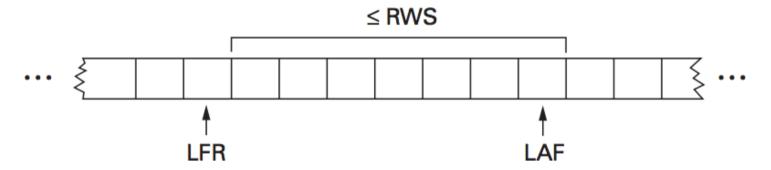

- Algorithm
 - After transmitting one packet, sender waits for an ACK
 - If the ACK doesn't arrive in time, sender retransmits
- Disadvantage
 - Inefficient use of link's capacity

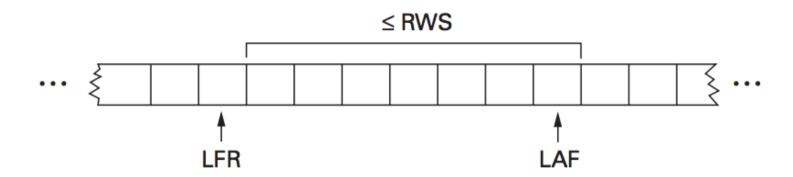
Sliding Window Protocol


- Objective: Better utilization of link bandwidth
 - ⇒ Sender is allowed to send multiple unacknowledged packets (how many?)
- Windows
 - Number of Unacknowledged packets are determined by Windows
 - Sender Window (SW)
 - Receiver Window (RW)
 - Requirement: Need to keep sender's and receiver's windows synchronized (how?)

Sliding Window: Sender

- Assigns sequence number to each frame (seqno)
- Maintain three state variables:
 - Send Window Size (SWS): max # of unacknowledged frames that sender can transmit
 - Last Acknowledgement Received (LAR): seqno of last ACK
 - Last Frame Sent (LFS)


Sliding Window: Sender Invariant


- Maintain invariant: LFS LAR ≤ SWS
- Buffer up to SWS unacknowledged packets
- Associates timeout with each frame sent
 - Retransmits if no ACK received before timeout
- Advance LAR when ACK arrives
 - Another frame can be sent

Sliding Window: Receiver

- Maintain three state variables:
 - Receive Window Size (RWS): max # of out-of-order frames it will accept
 - Last Acceptable Frame (LAF)
 - Last Frame Received (LFR)

Sliding Window: Receiver Invariant

- Maintain invariant: LAF LFR ≤ RWS
- When frame #seqno arrives:
 - if LFR < seqno ≤ LAF accept
 - if seqno ≤ LFR or seqno > LAF discard
- Receiver ACKs the next seqno it's expecting (CumACK)
 - LFR = CumACK 1
 - LAF = CumACK + RWS-1

Questions

- 1. Can there be data after the EOF?
 - No
- 2. Can we assume that a reliable_state struct is destroyed by a call of the rel_destroy function if a EOF is read from the input AND an EOF is received from the other side.
 - No
- Can we assume that every call to rel_timer updates all reliable_state structs
 - Yes, iterate!