
Design of Parallel and High Performance Computing
HS 2017
Torsten Hoefler, Markus Püschel
Department of Computer Science
ETH Zurich

Homework 5

A new lock?

Does the following code ensure that at any time, at most one thread is in the critical region if we assume sequential
consistency? Use sequential consistency to prove your answer.

The variables me and other are thread-local, the variables want[0], want[1] and turn are shared. The variables
want and turn are initially zero, me contains the thread id(∈ 0, 1) for each thread, while other contains the value
1−me.

want [me] = 1 ;
whi le (t u r n != me) {

whi le (want [o t h e r]) {}
t u r n = me ;

}
// CR
want [me] = 0 ;

Peterson Lock on x86

Prove that the following implementation of the Peterson lock is correct in the x86 memory model. The variables
me and other are thread-local, the variables want[0], want[1] and victim are shared. The variables want and
victim are initially zero, me contains the thread id(∈ 0, 1) for each thread, while other contains the value 1−me.

Use the following properties of the x86 memory model (cf. Sec. 8.2.2. of the Intel Intel 64 and IA-32 Architectures
Software Developers Manual, Vol 3A):

• Writes to memory are not reordered with other writes.

• Reads are not reordered with other reads.

• Reads cannot pass earlier LFENCE and MFENCE instructions.

• Writes cannot pass earlier LFENCE, SFENCE, and MFENCE instructions.

• MFENCE instructions cannot pass earlier reads or writes.

• Stores are not reordered with older loads.

want [me] = 1 ;
v i c t i m = me ;
asm (” mfence ”) ;
whi le (want [o t h e r] && (v i c t i m == me)) {} ;
// CR
asm (” mfence ”) ;
want [me] = 0 ;

Can you explain the reason for the mfence instruction in the unlock phase?

Solution: A new lock?

Assume both threads get to the critical region at the same time. They could execute the following read/write
statements:

1

Design of Parallel and High Performance Computing
HS 2017
Torsten Hoefler, Markus Püschel
Department of Computer Science
ETH Zurich

Homework 5

TA : W (want[A] = 1)→ R(turn == A)→ CR
TB : W (want[B] = 1)→ R(turn == A)→ R(want[A] == 0)→W (turn = B)→ R(turn == B)→ CR

A sequentially consistent interleaving of those read/write operations would be:

WB(want[B] = 1)) → RB(turn == A) → RB(want[A] == 0) → WA(want[A] = 1) → RA(turn == A) →
CRA →WB(turn = B)→ R(turn == B)→ CRB

This counterexample shows that the algorithm does not grantee mutual exclusion.

This solution can be achieved by looking at the problem long enough. How could we arrive there using a “standard”
technique?

To check if a lock guarantees sequential consistency one common technique is to assume it does not, trying
to reconstruct a sequentialy consistent order of the locks instruction where two threads reach the critical region
simultaneously.

If this leads to a contradiction the lock does provide mutual exclusion, otherwise we found a counterexample.

Without loss of generality assume thread B was the last one to write to turn:

WB(turn = B)→→ RB(turn == B)→ CRB

if that is the case then B had to read want[A] to be 0, otherwise it would spin, instead of entering the critical
section

RB(want[A] == 0)→WB(turn = B)→ RB(turn == B)→ CRB

and before that B has to read turn as A, otherwise it would not have entered the while loop in the first place.

WB(want[B] = 1)→ RB(turn == A)→ RB(want[A] == 0)→WB(turn = B)→ R(turn == B)→ CRB

For thread A there are now two paths to reach the critical section:

• Reading turn as A

• Reading turn as B and want[B] as 0

For the first option we get the sequence W (want[A] = 1) → R(turn == A) → CRA which is exactly the
counterexample shown before.

For the second path we get (by the same method as described above):

WA(want[A] = 1)→ RA(turn == B)→ RA(want[B] == 0)→WA(turn = A)→ R(turn == A)→ CRA

However, there is no sequentially consistent interleving of those instructions with those from process B, because
RA(want[B] == 0) has to happen before WB(want[B] = 1), while RB(want[A] == 0) has to happen before
WA(want[A] = 1).

Solution: Peterson Lock on x86

The memory model on x86 guarantees (among other things):

1. Stores are not reordered with other stores

2. Loads are not reordered with other loads

3. Stores to the same location have a total order

4. Neither loads nor stores are reordered with mfence instructions

2

Design of Parallel and High Performance Computing
HS 2017
Torsten Hoefler, Markus Püschel
Department of Computer Science
ETH Zurich

Homework 5

5. Transitive visibility

For both threads to enter the CR the following must happen:

TA : W (want[A] = 1)
1−→ W (victim = A)

4−→ R(want[B])
2−→ R(victim) → CR0 (1)

TB : W (want[B] = 1)
1−→ W (victim = B)

4−→ R(want[A])
2−→ R(victim) → CR1 (2)

Assume that TA was the last thread to write into victim:

WB(victim = B)
3−→ WA(victim = A) (3)

This implies that TA reads victim as 0 (because there are no other writes to victim). Therefore, to enter the
critical section, it must have read want[B] as 0.

WA(victim = A)
4−→ RA(want[B] == 0) (4)

If we combine the equations 2-4 we get

WB(want[B] = 1) → WB(victim = B) → WA(victim = A) → RA(want[1] == 0)

This is a contradiction, as want[1] is set to 1 and later observed to be 0, with no other writes in between.

3

