Models: Amdahl’s Law, PRAM, α-β

Tal Ben-Nun

Design of Parallel and High-Performance Computing

Fall 2017
DPHPC Overview

- cache coherency
- memory
- memory hierarchy
- vector ISA
- shared memory
- distributed memory
- locality
- parallelism

memory models
- locks
- lock free
- wait free
- linearizability

- distributed algorithms
- group communications

- Amdahl's and Gustafson's law
- PRAM
- LogP

I/O complexity
- balance principles I
- Little's Law
- balance principles II
- scheduling
Speedup

- An application runs in time T_1 on one processor, T_p for p processors.

- Measured speedup on p processors: $\frac{T_1}{T_p}$

- Can we bound/estimate speedup without running the application?
Scaling Models – Intuition

Consider the following application:

```cpp
auto A = InitializeArray(random_seed, important_info);

for (int i = 0; i < 10000; ++i)
    for (int j = 0; j < 10000; ++j)
        B[i][j] = Compute(A[i][j]);

SequentialDecisionProcess(B);

for (int i = 0; i < 10000; ++i)
    for (int j = 0; j < 10000; ++j)
        C[i][j] = Compute(B[i][j]);

WriteResults(C);
```
Amdahl’s Law

- Given $f \in [0, 1]$ the sequential fraction of an application:

$$T_p \geq \frac{(1 - f)T_1}{p} + f \cdot T_1$$

Gene Amdahl
1922-2015
Scaling Models – Intuition (revisited)

Consider the following application:

```cpp
auto A = InitializeArray(random_seed, important_info);
for (int i = 0; i < 10000; ++i)
    for (int j = 0; j < 10000; ++j)
        B[i][j] = Compute(A[i][j]);
SequentialDecisionProcess(B);
for (int i = 0; i < 10000; ++i)
    for (int j = 0; j < 10000; ++j)
        C[i][j] = Compute(B[i][j]);
WriteResults(C);
```

Sequential

Parallel

Sequential

Parallel

Sequential

\[f \quad 1 - f \]

\[f \quad \frac{1 - f}{2} \quad \frac{1 - f}{2} \]
Amdahl’s Law

- Given $f \in [0, 1]$ the sequential fraction of an application:

\[
T_p \geq \frac{(1 - f)T_1}{p} + f \cdot T_1
\]

- Speedup can be modeled as:

\[
S_p \leq \frac{T_1}{T_p} \leq \frac{1}{1 - f + fp}
\]

- And efficiency:

\[
E_p = \frac{S_p}{p} \leq \frac{1}{1 - f + fp}
\]
Amdahl's Law: Runtime

\[
\frac{1}{T_{\text{total}}} = \frac{1-f}{T_1} + \frac{f}{T_{\text{other}}} = \frac{(1-f)}{T_1} + \frac{f}{T_{\text{other}}}
\]

\[T_{\text{total}} = \frac{1}{\frac{1-f}{T_1} + \frac{1}{T_{\text{other}}}}\]

\[f = \frac{1}{\frac{1}{T_{\text{other}}} + \frac{1-f}{T_1}}\]

\[T_{\text{other}} = \frac{1}{\frac{1-f}{T_1} + \frac{1}{T_{\text{other}}}}\]
Amdahl’s Law: Speedup

Number of Cores

Speedup

linear speedup

$f = 1/15$

$f = 1/5$
Amdahl’s Law

- As $p \to \infty$:
 - $T_\infty \geq f \cdot T_1$
 - $S_\infty \leq \frac{1}{f}$
 - $E_\infty = 0$ (if $f \neq 0$)
Is Amdahl’s law pessimistic or optimistic?
Amdahl’s Law is Pessimistic

- Fixes the problem size

- More processors \rightarrow Larger problems

- f is not a constant fraction, but $f(n)$
 - The same applies for T_1 and $T_1(n)$
Case Study: Weather Forecasting

- Grid point climate/atmospheric models
 - GFS
 - GME
 - COSMO

- The denser the grid, the more accurate prediction becomes

- Important for anticipating natural disasters!
Gustafson’s Law

- States:

\[S_\infty \leq \frac{1}{f(n)} \quad n \to \infty \quad (if \ f(n) \to 0) \]

→ Larger problems can be solved (with more resources) at the same time.
Strong and Weak Scaling

- **Strong scaling:**
 - Behavior of $S_p(n)$ for a fixed n, and $p \to \infty$

 Fixed problem size as p increases

- **Weak scaling:**
 - Behavior of $S_p(n)$ for $n, p \to \infty$

 Increasing problem size as p increases
Pessimism/Optimism Revisited

Could both models be optimistic?
Runtime With Parallel Overhead

Runtime increases with # of processors.

Parallel overhead increases with # of processors.
Other Issue: Load Balancing

- Amdahl’s Law assumes that computation divides evenly
- Processor waiting time is another form of overhead
Runtime with Parallel Overhead and Work Imbalance

Time lost due to work imbalance
Real Speedup Graphs often Look like This:
Additional Resources

- Assumption in both laws: increasing p does not change other resources (e.g. cache)

- It is thus possible to achieve super-linear speedup:
 - Example 1: Cache size increase leads to larger working set
 - Example 2: Probabilistic convergent algorithms
Amdahl’s Law: Summary

- Strong, simple models for scaling

- Ignore overhead incurred by parallelization and load imbalance

- In reality: \(S_p(n) = \frac{T_1(n)}{T_p(n)+A_p(n)} \)

- Programs are not always that simple
 - \(f \) does not always exist
PRAM Model

- Parallel Random Access Machine

- Abstract model for shared memory parallelism

- Any processor can access the memory at unit time

- What about access conflicts?
 - Exclusive read exclusive write (EREW)
 - Concurrent read exclusive write (CREW)
 - Concurrent read concurrent write (CRCW)
PRAM Model: Program Representation

- Programs represented as DAGs (Directed Acyclic Graphs)
 - Nodes: Unit-time operations
 - Edges: Dependencies

- We can now define:
 - $W(n) = \#nodes$
 - $D(n) =$longest path from input to output

- Average parallelism: $W(n)/D(n)$
PRAM Model: Advantages

- Powerful tool for analyzing parallel algorithms

- No need to manage communication and synchronization
 - Focus on algorithmic aspects

- Time-unit and processor abstraction is robust w.r.t. architectures
PRAM Model: Examples

- Consider reduction: \((x_1 + x_2 + \cdots + x_n)\)

- Sequential:

 \[
 W(n) = \Theta(n) \\
 D(n) = \Theta(n) \\
 \text{Parallelism} = \mathcal{O}(1)
 \]

- Binary tree:

 \[
 W(n) = \Theta(n) \\
 D(n) = \Theta(\log n) \\
 \text{Parallelism} = \mathcal{O}(n/\log n)
 \]
PRAM Model: Examples

- **Merge-sort:**

```cpp
List MergeSort(List L) {
    if (L.length() == 1)
        return L;
    auto L1 = MergeSort(L.sublist(0, n / 2));
    auto L2 = MergeSort(L.sublist(n / 2 + 1, n));
    return merge(L1, L2);
}
```

- $W(n) = \Theta(n \log n)$
- $D(n) = D\left(\frac{n}{2}\right) + \Theta(n) = \Theta(n)$
- Average parallelism: $\Theta(\log n)$
PRAM Model: Examples

- **Scan (prefix sum):**
 - Input: \(L = (x_1, ..., x_n)\)
 - Output: \((0, x_1, x_1 + x_2, ..., \sum x_i)\)

Images: The PRAM Model and Algorithms
Prof. Robert van Engelen
PRAM Model: Examples

- **Scan (prefix sum):**
 - Input: $L = (x_1, ..., x_n)$
 - Output: $(0, x_1, x_1 + x_2, ..., \sum x_i)$

```java
List Scan(List L) {
    if (L.length() == 1)
        return List { 0 };
    List sums (L.length()/2);
    for (int i = 0; i < L.length()/2; ++i)
        sums[i] = L[2 * i - 1] + L[2 * i];

    List evens = Scan(sums);

    List odds(ceil(L.length() / 2.0));
    for (int i = 0; i < odds.length(); ++i)
        odds[i] = evens[i] + L[2 * i];

    return Interleave(evens, odds);
}
```

$W(n) = W\left(\frac{n}{2}\right) + \Theta(n) = \Theta(n)$

$D(n) = D\left(\frac{n}{2}\right) + \Theta(1) = \Theta(\log n)$

Parallelism: $\mathcal{O}(n/\log n)$
Reasoning in PRAM

- Given a DAG with $W(n)$ nodes and $D(n)$ depth:
 - Sequential runtime: $T_1(n) = W(n)$
 - Time on ∞ processors: $T_\infty(n) = D(n)$
 - Time on p processors: $T_p(n) = ?$

- $T_p(n) \geq D(n)$, $T_p(n) \geq W(n)/p$

- Can we bound T_p from above?
Brent’s Theorem

\[T_p(n) \leq D(n) + \frac{W(n) - D(n)}{p} \]

- Intuition: Bound parallelism at each level of the DAG
Brent’s Theorem

\[\sum_{i=1}^{D} s_i = W\]

\[T_p\] breakdown

\[
\begin{bmatrix}
\frac{s_1}{p} \\
\frac{s_2}{p}
\end{bmatrix}
\]

\[
\begin{bmatrix}
\frac{s_D}{p}
\end{bmatrix}
\]
Brent’s Theorem: Proof

- Observe: a DAG of depth D can be partitioned to D levels, s.t. there are no interdependencies between nodes at the same level.

- At each DAG level \(i \), we define \(T_p^i \) as the time for layer \(i \) and \(p \) processors, \(s_i (= T_1^i) \) denotes the number of nodes in level \(i \), thus:
 \[
 T_p^i = \left\lfloor \frac{s_i}{p} \right\rfloor \leq \frac{s_i + p - 1}{p}
 \]

- It follows that:
 \[
 T_p(n) \leq \sum_{i=1}^{D} T_p^i \leq \sum_{i=1}^{D} \frac{s_i + p - 1}{p}
 \]
Brent’s Theorem: Proof

\[T_p(n) \leq \sum_{i=1}^{D} \frac{s_i + p - 1}{p} = \]

\[= \frac{1}{p} W(n) + \frac{p - 1}{p} D(n) = \]

\[= D(n) + \frac{W(n) - D(n)}{p} \leq D(n) + \frac{W(n)}{p} \]

- To conclude:

\[\frac{T_1}{p} = \frac{W(n)}{p} \leq T_p(n) \leq \frac{W(n)}{p} + D(n) = \frac{T_1}{p} + T_\infty \]
Speedups

- \(S_p(n) = \frac{T_1(n)}{T_p(n)} \leq \frac{W(n)}{D(n)} \)
- \(S_p(n) \leq p \)
- \(S_p(n) \geq \frac{p}{\frac{D(n)}{W(n)}p+1} \rightarrow \frac{W(n)}{D(n)} \quad \text{as} \quad p \rightarrow \infty \)

\[\Rightarrow S_\infty(n) = \frac{W(n)}{D(n)} \]

- For fixed \(n \), speedup is limited. For \(n \rightarrow \infty \), speedup can be unbounded
 - Example: Tree reduction
Communication Models: \(\alpha - \beta \) Model

- **Gist:**
 \[\alpha = \text{Latency (cycles)}, \quad \beta = \text{Bandwidth (units/cycle)} \]

- **How long does it take to send a message of size \(n \)?**

![Diagram showing latency and bandwidth](image)
$T(n) = \alpha + \frac{n - 1}{\beta}$
Little’s Law: Primer

Problem 1:
- In Tannenbar, every minute on average 2 students come and leave
- Each student spends 8 minutes inside
- Q: How many students are in Tannenbar at a given time?
 A: 16

Problem 2:
- In your fridge, you have 150 bottles of Vivi Kola (on average)
- You drink and buy on average 25 bottles per week
- Q: How many weeks does every bottle last?
 A: 6
Little’s Law

- Queueing theory
- In a stationary system (input rate = output rate), the number of customers \(N \) in a queue is given by:
 \[
 N = \lambda W
 \]
 - Where \(\lambda \) = arrival rate and \(W \) = average time spent in the system
- Simple rule, yet powerful: \(N \) is independent of I/O distribution
- Connection: in the \(\alpha-\beta \) model, arrival rate is \(\beta \) and time spent in system is \(\alpha \) cycles
Little’s Law and the α-β Model

β Units arrive per cycle

β Units leave per cycle

α Cycles spent in system

$N = \alpha \cdot \beta$

N Concurrent units in transit

β

Communication Medium

$\frac{1}{\beta}$
Example: Memory Systems

- **Latency × Throughput = Concurrency**
 - Latency is reduced by half every 9 years
 - Throughput doubles every 3 years
 \[\Rightarrow \text{Parallel processing beneficial!} \]

- **Real-world statistics:**
 - Intel Core 2 (2006): $\alpha = 100$ cycles, $\beta = 2$ bytes/cycle $\Rightarrow N = 200$
 - Intel Haswell (2014): $\alpha = 63$ cycles, $\beta = 23$ bytes/cycle $\Rightarrow N = 1449$