Design of Parallel and High-Performance Computing
Fall 2017
Recitation Session: distributed memory

Motivational video: https://www.youtube.com/watch?v=PuCx50FdSic

Instructor: Torsten Hoefler & Markus Püschel
TA: Salvatore Di Girolamo
Final project presentation: Monday 12/18 (next week)
- Send presentation to me by Sunday 12/17 11:59pm
 Presentation filename: dphpc_{XX}.{pdf,pptx} where XX is your team ID.
- Should have (pretty much) final results
- Show us how great your project is
- Some more ideas what to talk about:
 Which architecture(s) did you test on?
 How did you verify correctness of the parallelization?
 Use bounds models for comparisons [1]!
 (Somewhat) realistic use-cases and input sets?
 Emphasize on the key concepts (may relate to theory of lecture)!
 What are remaining issues/limitations?

Report will be due in January!
- Still, starting to write early is very helpful --- write – rewrite – rewrite (no joke!)

Remember: A Simple Model for Communication

- **Transfer time** $T(s) = \alpha + \beta s$
 - $\alpha =$ startup time (latency)
 - $\beta =$ cost per byte (bandwidth=$1/\beta$)

- **As s increases, bandwidth approaches $1/\beta$ asymptotically**
 - Convergence rate depends on α
 - $s_{1/2} = \alpha/\beta$

- **Assuming no pipelining** (new messages can only be issued from a process after all arrived)
Bandwidth vs. Latency

- $s_{1/2} = \alpha/\beta$ often used to distinguish bandwidth- and latency-bound messages
 - $s_{1/2}$ is in the order of kilobytes on real systems

\[\frac{1}{2} \]
Quick Example

- Simplest linear broadcast
 - One process has a data item to be distributed to all processes

- Broadcasting s bytes among P processes:
 - $T(s) = (P-1) \times (\alpha + \beta s) = \mathcal{O}(P)$

- Class question: Do you know a faster method to accomplish the same?
k-ary Tree Broadcast

- Origin process is the root of the tree, passes messages to k neighbors which pass them on
 - k=2 -> binary tree

- Class Question: What is the broadcast time in the simple latency/bandwidth model?
 - \(T(s) \approx \left[\log_k(P) \right] \cdot k \cdot (\alpha + \beta \cdot s) = O(\log(P)) \) (for fixed k)

- Class Question: What is the optimal k?
 - \[0 = \frac{\ln(P) \cdot k}{\ln(k)} \frac{d}{dk} = \frac{\ln(P) \ln(k) - \ln(P)}{\ln^2(k)} \rightarrow k = e = 2.71\ldots \]
 - Independent of P, \(\alpha, \beta \)? Really?
Faster Trees?

Class Question: Can we broadcast faster than in a ternary tree?
- Yes because each respective root is idle after sending three messages!
- Those roots could keep sending!
- Result is a k-nomial tree

 For k=2, it’s a binomial tree

Class Question: What about the runtime?
- \[T(s) = \lceil \log_k(P) \rceil \cdot (k - 1) \cdot (\alpha + \beta \cdot s) = O(\log(P)) \]

Class Question: What is the optimal k here?
- \(T(s) \) d/dk is monotonically increasing for k>1, thus \(k_{opt} = 2 \)

Class Question: Can we broadcast faster than in a k-nomial tree?
- \(O(\log(P)) \) is asymptotically optimal for s=1!
- But what about large s?
Open Problems

- **Look for optimal parallel algorithms (even in simple models!)**
 - And then check the more realistic models
 - Useful optimization targets are MPI collective operations
 - *Broadcast/Reduce, Scatter/Gather, Alltoall, Allreduce, Allgather, Scan/Exscan, ...*
 - Implementations of those (check current MPI libraries 😊)
 - Useful also in scientific computations
 - *Barnes Hut, linear algebra, FFT, ...*

- **Lots of work to do!**
 - Contact me for thesis ideas (or check SPCL) if you like this topic
 - Usually involve optimization (ILP/LP) and clever algorithms (algebra) combined with practical experiments on large-scale machines (10,000+ processors)
HPC Networking Basics

- **Familiar (non-HPC) network: Internet TCP/IP**
 - Common model:

- **Class Question: What parameters are needed to model the performance (including pipelining)?**
 - Latency, Bandwidth, Injection Rate, Host Overhead
The LogP Model

- **Defined by four parameters:**
 - L: an upper bound on the latency, or delay, incurred in communicating a message containing a word (or small number of words) from its source module to its target module.
 - o: the overhead, defined as the length of time that a processor is engaged in the transmission or reception of each message; during this time, the processor cannot perform other operations.
 - g: the gap, defined as the minimum time interval between consecutive message transmissions or consecutive message receptions at a processor. The reciprocal of g corresponds to the available per-processor communication bandwidth.
 - P: the number of processor/memory modules. We assume unit time for local operations and call it a cycle.
The LogP Model

level

Sender

Receiver

CPU

Network

0_s

g
L

g
0_r

time
Simple Examples

- **Sending a single message**
 - $T = 2o + L$

- **Ping-Pong Round-Trip**
 - $T_{RTT} = 4o + 2L$

- **Transmitting n messages**
 - $T(n) = L + (n-1) \cdot \max(g, o) + 2o$
Simplifications

- o is bigger than g on some machines
 - g can be ignored (eliminates max() terms)
 - be careful with multicore!

- Offloading networks might have very low o
 - Can be ignored (not yet but hopefully soon)

- L might be ignored for long message streams
 - If they are pipelined

- Account g also for the first message
 - Eliminates “-1”
Benefits over Latency/Bandwidth Model

- **Models pipelining**
 - L/g messages can be “in flight”
 - Captures state of the art (cf. TCP windows)

- **Models computation/communication overlap**
 - Asynchronous algorithms

- **Models endpoint congestion/overload**
 - Benefits balanced algorithms
Class Question: What is the LogP running time for a linear broadcast of a single packet?

- $T_{\text{lin}} = L + (P-2) \times \max(o,g) + 2o$

Class Question: Approximate the LogP runtime for a binary-tree broadcast of a single packet?

- $T_{\text{bin}} \leq \log_2 P \times (L + \max(o,g) + 2o)$

Class Question: Approximate the LogP runtime for an k-ary-tree broadcast of a single packet?

- $T_{\text{k-n}} \leq \log_k P \times (L + (k-1)\max(o,g) + 2o)$
Example: Broadcasts

- **Class Question:** Approximate the LogP runtime for a binomial tree broadcast of a single packet (assume $L > g!$)?
 - $T_{bin} \leq \log_2 P \times (L + 2o)$

- **Class Question:** Approximate the LogP runtime for a k-nomial tree broadcast of a single packet?
 - $T_{k-n} \leq \log_k P \times (L + (k-2)\max(o,g) + 2o)$

- **Class Question:** What is the optimal k (assume $o>g$)?
 - Derive by k: $0 = o \times \ln(k_{\text{opt}}) - L/k_{\text{opt}} + o$ (solve numerically)

 For larger L, k grows and for larger o, k shrinks

 - Models pipelining capability better than simple model!
Class Question: Can we do better than k_{opt}-ary binomial broadcast?

- Problem: fixed k in all stages might not be optimal
- We can construct a schedule for the optimal broadcast in practical settings
- First proposed by Karp et al. in “Optimal Broadcast and Summation in the LogP Model”
Example: Optimal Broadcast

- Broadcast to P-1 processes
 - Each process who received the value sends it on; each process receives exactly once

P=8, L=6, g=4, o=2
Optimal Broadcast Runtime

- This determines the maximum number of PEs ($P(t)$) that can be reached in time t
- $P(t)$ can be computed with a generalized Fibonacci recurrence (assuming $o \geq g$):

$$P(t) = \begin{cases} 1 : & t < 2o + L \\ P(t - o) + P(t - L - 2o) : & \text{otherwise.} \end{cases}$$

- Which can be bounded by (see [1]):

$$2 \left\lfloor \frac{t}{L + 2o} \right\rfloor \leq P(t) \leq 2 \left\lfloor \frac{t}{o} \right\rfloor$$

- A closed solution is an interesting open problem!

[1]: TH et al.: “Scalable Communication Protocols for Dynamic Sparse Data Exchange” (Lemma 1)
Scatter

- **Single item**: Distribute $P-1$ items from the source processor to their respective destinations.
 - k-item: multiple items for each processor

- **Parameter simplifications**:
 - G normalized to 1, other parameters scaled.
 - G is the gap per item
 - o not considered (only communication)

- **LogP and k-item scatter**: source sends $k(P-1)$ to all processors
 - No message size considered.

- **Simple for LogGP**:
 - Group messages to the same processor

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-Message</td>
<td>$((P-1)k - 1)g + L$</td>
</tr>
<tr>
<td>Simple Long-Msg.</td>
<td>$(P-2)g + (P-1)(k-1) + L$</td>
</tr>
<tr>
<td>Binomial Tree</td>
<td>$\max{L, g} \log_2 P + (P-1)k - \log_2 P$</td>
</tr>
</tbody>
</table>
Optimal Scatter

- Problem: the sending processor may be ready to send before the receiving processor can send the first message...

- Optimal scatter runtime:

\[
\begin{align*}
t(1) &= 0 \\
t(P) &= \min_{0 < s < P} \{(s - 1) + \max(L + t(s), g + t(P - s))\}
\end{align*}
\]

- Assume P_i has data items for P processors
- P_i splits the data in two groups:
 - one of size s=S(P), send to P_j
 - the other of size P-s, kept for itself