
Operating	Systems	and	Networks

Network	Lecture	10:	Congestion	Control

Adrian	Perrig
Network	Security	Group
ETH	Zürich



2

Where	we	are	in	the	Course
• More	fun	in	the	Transport	Layer!
– The	mystery	of	congestion	control
– Depends	on	the	Network	layer	too

Physical
Link

Application

Network
Transport



3

Topic
• Understanding	congestion,	a	“traffic	jam”	in	the	
network
– Later	we	will	learn	how	to	control	it

What’s	the	hold	up?

Network



Nature	of	Congestion
• Routers/switches	have	internal	buffering	for	contention

4

.	.	.

.	.	.

.	.	. .	.	.

Input	Buffer Output	BufferFabric

Input Output



Nature	of	Congestion	(2)
• Simplified	view	of	per	port	output	queues
– Typically	FIFO	(First	In	First	Out),	discard	when	full

5

Router

=

(FIFO)	Queue
Queued
Packets

Router



6

Nature	of	Congestion	(3)
• Queues	help	by	absorbing	bursts	when	input	>	
output	rate

• But	if	input	>	output	rate	persistently,	queue	will	
overflow
– This	is	congestion

• Congestion	is	a	function	of	the	traffic	patterns	– can	
occur	even	if	every	link	has	same	capacity



Effects	of	Congestion
• What	happens	to	performance	as	we	increase	the	load?

7



8

Effects	of	Congestion	(3)
• As	offered	load	rises,	congestion	occurs	as	queues	
begin	to	fill:
– Delay	and	loss	rise	sharply	with	more	load
– Throughput	falls	below	load	(due	to	loss)
– Goodput may	fall	below	throughput	(due	to	spurious	
retransmissions)

• None	of	the	above	is	good!
– Want	to	operate	network	just	before	the	onset	of	congestion



9

Bandwidth	Allocation
• Important	task	for	network	is	to	allocate	its	capacity	to	
senders
– Good	allocation	is	efficient	and	fair

• Efficient means	most	capacity	is	used	but	there	is	no	
congestion

• Fair means	every	sender	gets	a	reasonable	share	the	
network



10

Bandwidth	Allocation	(2)
• Key	observation:
– In	an	effective	solution,	Transport	and	Network	layers	
must	work	together

• Network	layer	witnesses	congestion
– Only	it	can	provide	direct	feedback

• Transport	layer	causes	congestion
– Only	it	can	reduce	offered	load



11

Bandwidth	Allocation	(3)
• Why	is	it	hard?	(Just	split	equally!)
– Number	of	senders	and	their	offered	load	is	constantly	
changing

– Senders	may	lack	capacity	in	different	parts	of	the	network
– Network	is	distributed;	no	single	party	has	an	overall	picture	of	
its	state



12

Bandwidth	Allocation	(4)
• Solution	context:
– Senders	adapt	concurrently	based	on	their	own	view	of	the	
network

– Design	this	adaption	so	the	network	usage	as	a	whole	is	
efficient	and	fair

– Adaptation	is	continuous	since	offered	loads	continue	to	
change	over	time



13

Topics
• Nature	of	congestion
• Fair	allocations
• AIMD	control	law
• TCP	Congestion	Control	history
• ACK	clocking
• TCP	Slow-start
• TCP	Fast	Retransmit/Recovery
• Congestion	Avoidance	(ECN)



14

Fairness	of	Bandwidth	Allocation	(§6.3.1)

• What’s	a	“fair”	bandwidth	allocation?
– The	max-min	fair	allocation



15

Recall
• We	want	a	good	bandwidth	allocation	to	be	fair	and	
efficient
– Now	we	learn	what	fair	means

• Caveat:	in	practice,	efficiency	is	more	important	than	
fairness



16

Efficiency	vs.	Fairness
• Cannot	always	have	both!
– Example	network	with	traffic	AàB,	BàC	and	AàC	
– How	much	traffic	can	we	carry?

A B C
1 1



17

Efficiency	vs.	Fairness	(2)
• If	we	care	about	fairness:
– Give	equal	bandwidth	to	each	flow
– AàB:	½	unit,	BàC:	½,	and	AàC,	½	
– Total	traffic	carried	is	1	½	units

A B C
1 1



18

Efficiency	vs.	Fairness	(3)
• If	we	care	about	efficiency:
– Maximize	total	traffic	in	network
– AàB:	1	unit,	BàC:	1,	and	AàC,	0	
– Total	traffic	rises	to	2	units!

A B C
1 1



19

The	Slippery	Notion	of	Fairness
• Why	is	“equal	per	flow”	fair	anyway?
– AàC	uses	more	network	resources	(two	links)	than	AàB	
or	BàC

– Host	A	sends	two	flows,	B	sends	one

• Not	productive	to	seek	exact	fairness
– More	important	to	avoid	starvation
– “Equal	per	flow”	is	good	enough



20

Generalizing	“Equal	per	Flow”
• Bottleneck for	a	flow	of	traffic	is	the	link	that	limits	its	
bandwidth
– Where	congestion	occurs	for	the	flow
– For	AàC,	link	A–B	is	the	bottleneck

A B C
1 10

Bottleneck



21

Generalizing	“Equal	per	Flow”	(2)
• Flows	may	have	different	bottlenecks
– For	AàC,	link	A–B	is	the	bottleneck
– For	BàC,	link	B–C	is	the	bottleneck
– Can	no	longer	divide	links	equally	…

A B C
1 10



22

Max-Min	Fairness
• Intuitively,	flows	bottlenecked	on	a	link	get	an	
equal	share	of	that	link

• Max-min	fair	allocation is	one	that:
– Increasing	the	rate	of	one	flow	will	decrease	the	rate	
of	a	smaller	flow

– This	“maximizes	the	minimum”	flow



23

Max-Min	Fairness	(2)
• To	find	it	given	a	network,	imagine	“pouring	water	into	
the	network”
1. Start	with	all	flows	at	rate	0
2. Increase	the	flows	until	there	is	a	new	bottleneck	in	the	

network
3. Hold	fixed	the	rate	of	the	flows	that	are	bottlenecked
4. Go	to	step	2	for	any	remaining	flows



Max-Min	Example
• Example:	network	with	4	flows,	links	equal	bandwidth
– What	is	the	max-min	fair	allocation?	

24



Max-Min	Example	(2)
• When	rate=1/3,	flows	B,	C,	and	D	bottleneck	R4—R5	
– Fix	B,	C,	and	D,	continue	to	increase	A	

25

Bottleneck



Max-Min	Example	(3)
• When	rate=2/3,	flow	A	bottlenecks	R2—R3.	Done.	

26

Bottleneck

Bottleneck



Max-Min	Example	(4)
• End	with	A=2/3,	B,	C,	D=1/3,	and	R2—R3,	R4—R5	full	
– Other	links	have	extra	capacity	that	can’t	be	used

• ,	linksxample:	network	with	4	flows,	links	equal	
bandwidth
– What	is	the	max-min	fair	allocation?	

27



Adapting	over	Time
• Allocation	changes	as	flows	start	and	stop

28

Time	



Adapting	over	Time	(2)

29

Flow	1	slows	when	
Flow	2	starts

Flow	1	speeds	up	
when	Flow	2	stops

Time	

Flow	3	limit	
is	elsewhere



30

Recall
• Want	to	allocate	capacity	to	senders
– Network	layer	provides	feedback
– Transport	layer	adjusts	offered	load
– A	good	allocation	is	efficient	and	fair

• How	should	we	perform	the	allocation?
– Several	different	possibilities	…



31

Bandwidth	Allocation	Models
• Open	loop	versus	closed	loop
– Open:	reserve	bandwidth	before	use
– Closed:	use	feedback	to	adjust	rates

• Host	versus	Network	support
– Who	sets/enforces	allocations?

• Window	versus	Rate	based
– How	is	allocation	expressed?

TCP	is	a	closed	loop,	host-driven,	and	window-based



32

Bandwidth	Allocation	Models	(2)
• We’ll	look	at	closed-loop,	host-driven,	and	window-based

• Network	layer	returns	feedback	on	current	allocation	to	
senders	
– At	least	tells	if	there	is	congestion

• Transport	layer	adjusts	sender’s	behavior	via	window	in	
response
– How	senders	adapt	is	a	control	law



33

Additive	Increase	Multiplicative	Decrease	
(AIMD)	(§6.3.2)

• Bandwidth	allocation	models
– Additive	Increase	Multiplicative	Decrease	(AIMD)	control	law

AIMD!

Sawtooth



34

Additive	Increase	Multiplicative	Decrease	
• AIMD	is	a	control	law	hosts	can	use	to	reach	a	good	
allocation
– Hosts	additively	increase	rate	while	network	is	not	
congested

– Hosts	multiplicatively	decrease	rate	when	congestion	
occurs

– Used	by	TCP	J

• Let’s	explore	the	AIMD	game	…



35

AIMD	Game
• Hosts	1	and	2	share	a	bottleneck
– But	do	not	talk	to	each	other	directly

• Router	provides	binary	feedback
– Tells	hosts	if	network	is	congested

Rest	of
Network

Bottleneck

Router

Host	1

Host	2

1

1
1



36

AIMD	Game	(2)
• Each	point	is	a	possible	allocation

Host	1

Host	20 1

1

Fair

Efficient

Optimal
Allocation

Congested



37

AIMD	Game	(3)
• AI	and	MD	move	the	allocation	

Host	1

Host	20 1

1

Fair,	y=x

Efficient,	x+y=1

Optimal
Allocation

Congested

Multiplicative
Decrease

Additive
Increase



38

AIMD	Game	(4)
• Play	the	game!

Host	1

Host	20 1

1

Fair

Efficient

Congested

A	starting	
point



39

AIMD	Game	(5)
• Always	converge	to	good	allocation!

Host	1

Host	20 1

1

Fair

Efficient

Congested

A	starting	
point



40

AIMD	Sawtooth
• Produces	a	“sawtooth”	pattern	over	time	for	rate	of	
each	host
– This	is	the	TCP	sawtooth (later)

Multiplicative
Decrease

Additive
Increase

Time

Host	1	or	
2’s	Rate



41

AIMD	Properties
• Converges	to	an	allocation	that	is	efficient	and	fair	when	
hosts	run	it
– Holds	for	more	general	topologies

• Other	increase/decrease	control	laws	do	not!	(Try	MIAD,	
MIMD,	AIAD)

• Requires	only	binary	feedback	from	the	network



Feedback	Signals
• Several	possible	signals,	with	different	pros/cons
– We’ll	look	at	classic	TCP	that	uses	packet	loss	as	a	signal

42

Signal Example	Protocol Pros	/	Cons
Packet loss TCP	NewReno

Cubic TCP	(Linux)
+Hard to	get	wrong

-Hear	about	congestion	late
Packet delay Compound TCP	

(Windows)
+Hear about	congestion	early
-Need	to	infer	congestion

Router	
indication

TCPs	with	Explicit	
Congestion	Notification

+Hear	about	congestion	early
-Require router	support



43

History	of	TCP	Congestion	Control (§6.5.10)

• The	story	of	TCP	congestion	control
– Collapse,	control,	and	diversification

What’s	up?

Internet



44

Congestion	Collapse	in	the	1980s
• Early	TCP	used	a	fixed	size	sliding	window	(e.g.,	8	
packets)
– Initially	fine	for	reliability

• But	something	strange	happened as	the	ARPANET	grew
– Links	stayed	busy	but	transfer	rates fell	by	orders	of	
magnitude!	



45

Congestion	Collapse	(2)
• Queues	became	full,	retransmissions	clogged	the	network,	and	

goodput fell

Congestion
collapse



46

Van	Jacobson	(1950—)	
• Widely	credited	with	saving	the	Internet	from	
congestion	collapse	in	the	late	80s
– Introduced	congestion	control	principles
– Practical	solutions	(TCP	Tahoe/Reno)	

• Much	other	pioneering	work:
– Tools	like	traceroute,	tcpdump,	pathchar
– IP	header	compression,	multicast	tools

Source:	Wikipedia	(public	domain)



47

TCP	Tahoe/Reno
• Avoid	congestion	collapse	without	changing	routers	(or	
even	receivers)

• Idea	is	to	fix	timeouts	and	introduce	a	congestion	
window (cwnd)	over	the	sliding	window	to	limit	
queues/loss

• TCP	Tahoe/Reno	implements	AIMD	by	adapting	cwnd
using	packet	loss	as	the	network	feedback	signal



48

TCP	Tahoe/Reno	(2)
• TCP	behaviors	we	will	study:
– ACK clocking
– Adaptive	timeout	(mean	and	variance)
– Slow-start
– Fast	Retransmission
– Fast	Recovery

• Together,	they	implement	AIMD



TCP	Timeline

49

1988

19901970 19801975 1985

Origins	of	“TCP”
(Cerf	&	Kahn,	’74)

3-way	handshake
(Tomlinson,	‘75)

TCP	Reno
(Jacobson,	‘90)

Congestion	collapse	
Observed,	‘86

TCP/IP	“flag	day”
(BSD	Unix	4.2,	‘83)

TCP	Tahoe
(Jacobson,	’88)

Pre-history Congestion	control
.	.	.

TCP	and	IP
(RFC	791/793,	‘81)



TCP	Timeline	(2)

50

201020001995 2005

ECN
(Floyd,	‘94)

TCP	Reno
(Jacobson,	‘90) TCP	New	Reno

(Hoe,	‘95) TCP	BIC
(Linux,	‘04

TCP	with	SACK
(Floyd,	‘96)

DiversificationClassic	congestion	control
.	.	.

1990

TCP	LEDBAT
(IETF	’08)

TCP	Vegas
(Brakmo,	‘93)

TCP	CUBIC
(Linux,	’06)

.	.	.

BackgroundRouter	support
Delay
based

FAST	TCP
(Low	et	al.,	’04)

Compound	TCP
(Windows,	’07)



51

TCP	Ack Clocking	(§6.5.10)
• The	self-clocking	behavior	of	sliding	windows,	and	how	
it	is	used	by	TCP
– The	“ACK clock”

Tick	Tock!



52

Sliding	Window	ACK	Clock
• Each	in-order	ACK advances	the	sliding	window	and	lets	
a	new	segment	enter	the	network
– ACKs “clock”	data	segments

Ack 1		2		3		4		5		6		7		8		9	10

20	19	18	17	16	15	14	13	12	11	Data



Benefit	of	ACK	Clocking
• Consider	what	happens	when	sender	injects	a	burst	of	
segments	into	the	network

53

Fast	link Fast	linkSlow	(bottleneck)	link

Queue



Benefit	of	ACK	Clocking	(2)
• Segments	are	buffered	and	spread	out	on	slow	link

54

Fast	link Fast	linkSlow	(bottleneck)	link

Segments	
“spread	out”



Benefit	of	ACK	Clocking	(3)
• ACKs maintain	the	spread	back	to	the	original	sender

55

Slow	link
Acks maintain	spread



Benefit	of	ACK	Clocking	(4)
• Sender	clocks	new	segments	with	the	spread
– Now	sending	at	the	bottleneck	link	without	queuing!

56

Slow	link

Segments	spread Queue	no	longer	builds



57

Benefit	of	ACK	Clocking	(4)
• Helps	the	network	run	with	low	levels	of	loss	and	delay!

• The	network	has	smoothed	out	the	burst	of	data	
segments

• ACK clock	transfers	this	smooth	timing	back	to	the	
sender

• Subsequent	data	segments	are	not	sent	in	bursts	so	
they	do	not queue	up	in	the	network



58

TCP	Uses	ACK	Clocking
• TCP	uses	a	sliding	window	because	of	the	value	of	ACK

clocking

• Sliding	window	controls	how	many	segments	are	inside	the	
network
– Called	the	congestion	window,	or	cwnd
– Rate	is	roughly	cwnd/RTT

• TCP	only	sends	small	bursts	of	segments	to	let	the	network											
keep	the	traffic	smooth



59

TCP	Slow	Start	(§6.5.10)
• How	TCP	implements	AIMD,	part	1
– “Slow	start”	is	a	component	of	the	AI	portion	of	AIMD	

Slow-start



60

Considerations
• We	want	TCP	to	follow	an	AIMD	control	law	for	a	good	

allocation

• Sender	uses	a	congestion	window or	cwnd to	set	its	rate	
(≈cwnd/RTT)

• Sender	uses	packet	loss	as	the	network	congestion	signal

• Need	TCP	to	work	across	a	very	large	range	of	rates	and	RTTs



61

TCP	Startup	Problem
• We	want	to	quickly	near	the	right	rate,	cwndIDEAL,	but	it	
varies	greatly
– Fixed	sliding	window	doesn’t	adapt	and	is	rough	on	the	
network	(loss!)	

– AI	with	small	bursts	adapts	cwnd gently	to	the	network,	but	
might	take	a	long	time	to	become	efficient



62

Slow-Start	Solution
• Start	by	doubling	cwnd every	RTT
– Exponential	growth	(1,	2,	4,	8,	16,	…)
– Start	slow,	quickly	reach	large	values

AI

Fixed

TimeW
in
do

w
	(c
w
nd

)

Slow-start



63

Slow-Start	Solution	(2)
• Eventually	packet	loss	will	occur	when	the	network	is	
congested
– Loss	timeout	tells	us	cwnd is	too	large
– Next	time,	switch	to	AI	beforehand
– Slowly	adapt	cwnd near	right	value

• In	terms	of	cwnd:
– Expect	loss	for	cwndC ≈	2BD+queue
– Use	ssthresh =	cwndC/2	to	switch	to	AI	after	observing	loss



64

Slow-Start	Solution	(3)
• Combined	behavior,	after	first	time
– Most	time	spend	near	right	value

AI

Fixed

Time

Window

ssthresh

cwndC

cwndIDEAL
AI	phase

Slow-start



Slow-Start	(Doubling)	Timeline

65

Increment	cwnd
by	1	segment	
size	for	each	
ACK



Additive	Increase	Timeline

66

Increment	cwnd by	
1	segment	size	every	
cwnd ACKs	(or	1	
RTT)



67

TCP	Tahoe	(Implementation)
• Initial	slow-start	(doubling)	phase

– Start	with	cwnd =	1	(or	small	value)
– cwnd +=	1	segment	size	per	ACK

• Later	Additive	Increase	phase
– cwnd +=	1/cwnd	segments	per	ACK
– Roughly	adds	1	segment	size	per	RTT

• Switching	threshold	(initially	infinity)
– Switch	to	AI	when	cwnd >	ssthresh
– Set	ssthresh =	cwnd/2	after	loss
– Begin	with	slow-start	after	timeout



68

Timeout	Misfortunes
• Why	do	a	slow-start	after	timeout?
– Instead	of	MD	cwnd (for	AIMD)

• Timeouts	are	sufficiently	long	that	the	ACK clock	will	have	
run	down
– Slow-start	ramps	up	the	ACK clock

• We	need	to	detect	loss	before	a	timeout	to	get	to	full	
AIMD
– Done	in	TCP	Reno	



69

TCP	Fast	Retransmit	/	Fast	Recovery	
(§6.5.10)

• How	TCP	implements	AIMD,	part	2
– “Fast	retransmit”	and	“fast	recovery”	are	the	MD	portion	of	
AIMD

AIMD	sawtooth



70

Recall
• We	want	TCP	to	follow	an	AIMD	control	law	for	a	good	

allocation

• Sender	uses	a	congestion	window or	cwnd to	set	its	rate	
(≈cwnd/RTT)

• Sender	uses	slow-start	to	ramp	up	the	ACK clock,	followed	by	
Additive	Increase

• But	after	a	timeout,	sender	slow-starts	again	with	cwnd=1	
(as	it	has	no	ACK clock)



71

Inferring	Loss	from	ACKs
• TCP	uses	a	cumulative	ACK
– Carries	highest	in-order	seq.	number
– Normally	a	steady	advance

• Duplicate	ACKs	give	us	hints	about	what	data	hasn’t	
arrived
– Tell	us	some	new	data	did	arrive,	but	it	was	not	next	segment
– Thus	the	next	segment	may	be	lost



72

Fast	Retransmit
• Treat	three	duplicate	ACKs	as	a	loss	
– Retransmit	next	expected	segment
– Some	repetition	allows	for	reordering,	but	still	detects	loss	
quickly

Ack 1		2		3		4		5		5		5		5 5		5



Fast	Retransmit	(2)

73

Ack 10
Ack 11
Ack 12
Ack 13

.	.	.	

Ack 13

Ack 13
Ack 13

Data	14.	.	.	
Ack 13

Ack 20
.	.	.	.	.	.	

Data	20
Third	duplicate	
ACK,	so	send	14 Retransmission	fills	

in	the	hole	at	14
ACK	jumps	after	
loss	is	repaired

.	.	.	.	.	.	

Data	14	was	
lost	earlier,	but	
got	15	to	20



74

Fast	Retransmit	(3)
• It	can	repair	single	segment	loss	quickly,	typically	before	
a	timeout

• However,	we	have	quiet	time	at	the	sender/receiver	
while	waiting	for	the	ACK	to	jump

• And	we	still	need	to	MD	cwnd …



75

Inferring	Non-Loss	from	ACKs
• Duplicate	ACKs	also	give	us	hints	about	what	data	has	
arrived
– Each	new	duplicate	ACK	means	that	some	new	segment	has	
arrived

– It	will	be	the	segments	after	the	loss
– Thus	advancing	the	sliding	window	will	not	increase	the	
number	of	segments	stored	in	the	network



76

Fast	Recovery
• First	fast	retransmit,	and	MD	cwnd
• Then	pretend	further	duplicate	ACKs	are	the	expected	
ACKs
– Lets	new	segments	be	sent	for	ACKs	
– Reconcile	views	when	the	ACK	jumps

Ack 1		2		3		4		5		5		5		5		5		5



Fast	Recovery	(2)

77

Ack 12
Ack 13
Ack 13

Ack 13
Ack 13

Data	14Ack 13

Ack 20
.	.	.	.	.	.	

Data	20
Third	duplicate	
ACK,	so	send	14

Data	14	was	
lost	earlier,	but	
got	15	to	20

Retransmission	fills	
in	the	hole	at	14

Set	ssthresh,	
cwnd =		cwnd/2	

Data	21
Data	22

More	ACKs	advance	
window;	may	send	

segments	before	jump

Ack 13

Exit	Fast	Recovery



78

Fast	Recovery	(3)
• With	fast	retransmit,	it	repairs	a	single	segment	loss	
quickly	and	keeps	the	ACK clock	running

• This	allows	us	to	realize	AIMD
– No	timeouts	or	slow-start	after	loss,	just	continue	with	a	
smaller	cwnd

• TCP	Reno	combines	slow-start,	fast	retransmit	and	fast	
recovery
– Multiplicative	Decrease	is	½	



TCP	Reno

79

MD	of	½	,	no	slow-start

ACK	clock	
running

TCP	sawtooth



80

TCP	Reno,	NewReno,	and	SACK
• Reno	can	repair	one	loss	per	RTT
– Multiple	losses	cause	a	timeout

• NewReno further	refines	ACK	heuristics
– Repairs	multiple	losses	without	timeout

• SACK	is	a	better	idea
– Receiver	sends	ACK	ranges	so	sender	can	retransmit	
without	guesswork



81

Explicit	Congestion	Notification	(§5.3.4,	§6.5.10)

• How	routers	can	help	hosts	to	avoid	congestion
– Explicit	Congestion	Notification

!!



82

Congestion	Avoidance	vs.	Control
• Classic	TCP	drives	the	network	into	congestion	and	
then	recovers
– Needs	to	see	loss	to	slow	down

• Would	be	better	to	use	the	network	but	avoid	
congestion	altogether!
– Reduces	loss	and	delay

• But	how	can	we	do	this?



Feedback	Signals
• Delay	and	router	signals	can	let	us	avoid	congestion

83

Signal Example	Protocol Pros	/	Cons

Packet loss Classic TCP
Cubic TCP	(Linux)

Hard to	get	wrong
Hear	about	congestion	late

Packet delay Compound TCP	
(Windows)

Hear about	congestion	early
Need	to	infer	congestion

Router	
indication

TCPs	with	Explicit	
Congestion	Notification

Hear	about	congestion	early
Require router	support



ECN	(Explicit	Congestion	Notification)
• Router	detects	the	onset	of	congestion	via	its	queue
– When	congested,	it	marks affected	packets	(IP	header)

84



ECN	(2)
• Marked	packets	arrive	at	receiver;	treated	as	loss
– TCP	receiver	reliably	informs	TCP	sender	of	the	congestion

85



86

ECN	(3)
• Advantages
– Routers	deliver	clear	signal	to	hosts
– Congestion	is	detected	early,	no	loss
– No	extra	packets	need	to	be	sent

• Disadvantage
– Routers	and	both	sender	and	receiver	must	be	upgraded



87

Example	1
Assume	a	TCP	sender	without	fast	retransmit,	but	with	slow	start	and	additive	
increase.	Also	assume:
• Segments	n,	n+1,	n+2,	…,	n+10	transmitted	at	times	0,1,2,…,10	ms
• Transmission	time	/	segment	=	1	ms
• RTT	(2	x	propagation	+	transmision +	ack processing	+	ack transmission)	=	10	

ms
• Segment	n	is	lost	(only)
• In	order	segments	and	ACKs
• Retransmission	timer	for	segment	n	is	60	ms,	starting	at	the	end	of	

transmission
• cwnd =	ssthresh =	64	at	time	0
• offeredWindow =	70



88

Example	2:	Infer	Events	that	Occurred


