
spcl.inf.ethz.ch

@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)

Chapter 4: Scheduling and Synchronization

Source: xkcd

spcl.inf.ethz.ch

@spcl_eth

Example: Linux o(1) scheduler

Á 140 level Multilevel Feedback Queue

Á0-99 (high priority):

static, fixed, ñrealtimeò

FCFS or RR

Á100-139: User tasks, dynamic

Round-robin within a priority level

Priority ageing for interactive (I/O intensive) tasks

Á Complexity of scheduling is independent of no. tasks

ÁTwo arrays of queues: ñrunnableò & ñwaitingò

ÁWhen no more task in ñrunnableò array, swap arrays

2

spcl.inf.ethz.ch

@spcl_eth

Example: Linux ñcompletely fair schedulerò

Å Taskôs priority = how little progress it has made

ïAdjusted by fudge factors over time

ïGet ñbonusò if a task yields early (his time is distributed evenly)

Å Implementation uses Red-Black tree

ïSorted list of tasks

ïOperations now O(log n), but this is fast

Å Essentially, this is the old idea of ñfair queuingò from packet

networks

ïAlso called ñgeneralized processor schedulingò

ïEnsures guaranteed service rate for all processes

ïCFS does not, however, expose (or maintain) the guarantees

3

spcl.inf.ethz.ch

@spcl_eth

Problems with UNIX Scheduling

Á UNIX conflates protection domain and resource principal

ÁPriorities and scheduling decisions are per-process (thread)

Á However, may want to allocate resources across processes, or

separate resource allocation within a process

ÁE.g., web server structure

Multi-process

Multi-threaded

Event-driven

Á If I run more compiler jobs than you, I get more CPU time

Á In-kernel processing is accounted to nobody

4

spcl.inf.ethz.ch

@spcl_eth

Resource Containers [Banga et al., 1999]

New OS abstraction for explicit resource management, separate

from process structure

Á Operations to create/destroy, manage hierarchy, and associate

threads or sockets with containers

Á Independent of scheduling algorithms used

Á All kernel operations and resource usage accounted to a

resource container

Ý Explicit and fine-grained control over resource usage

Ý Protects against some forms of DoS attack

Á Most obvious modern form: virtual machines, containers

5

spcl.inf.ethz.ch

@spcl_eth

Á True or false (raise hand)

ÁThroughput is an important goal for batch schedulers

ÁResponse time is an important goal for batch schedulers

ÁRealtime schedulers schedule jobs faster than batch schedulers

ÁRealtime schedulers have higher throughput than batch schedulers

ÁThe scheduler has to be invoked by an application

ÁSJF scheduling minimizes job waiting times

ÁFCFS scheduling has low average waiting times

ÁStarvation can occur in FCFS scheduling

ÁStarvation can occur in SJF scheduling

ÁPreemption can be used to improve interactivity

ÁRound Robin scheduling is fair

ÁPriority scheduling always suffers from starvation

Áɋ(log N) is a lower time-bound for scheduling N processes

ÁMultilevel Feedback Queues in Linux prevent starvation

ÁSimple Unix scheduling fairly allocates the time to each user

6

Our Small Quiz

spcl.inf.ethz.ch

@spcl_eth

Real Time

7

spcl.inf.ethz.ch

@spcl_eth

Real-time scheduling

Á Problem: giving real time-based guarantees to tasks

ÁTasks can appear at any time

ÁTasks can have deadlines

ÁExecution time is generally known

ÁTasks can be periodic or aperiodic

Á Must be possible to reject tasks which are unschedulable, or
which would result in no feasible schedule

8

spcl.inf.ethz.ch

@spcl_eth

Example: multimedia scheduling

9

spcl.inf.ethz.ch

@spcl_eth

Rate-monotonic scheduling

Á Schedule periodic tasks by always running task with shortest
period first.
ÁStatic (offline) scheduling algorithm

Á Suppose:
Ám tasks

ÁCi is the execution time of iôthtask

ÁPi is the period of iôthtask

Á Then RMS will find a feasible schedule if:

Á (Proof is beyond scope of this course)

)12(
1

1

-¢ä
=

m

m

i i

i m
P

C

10cf. Liu, Leiland: ñScheduling Algorithms for Multiprogramming in a Hard-Real-Time Environmentò, JACM 1973

spcl.inf.ethz.ch

@spcl_eth

Earliest deadline first

Á Schedule task with earliest deadline first (duh..)

ÁDynamic, online.

ÁTasks donôt actually have to be periodicé

ÁMore complex ïat first sight O(n) for scheduling decisions

Á EDF will find a feasible schedule if:

Á Which is very handy. Assuming zero context switch timeé

1
1

¢ä
=

m

i i

i

P

C

11

spcl.inf.ethz.ch

@spcl_eth

Guaranteeing processor rate

Á E.g., you can use EDF to guarantee a rate of progress for a long-

running task

ÁBreak task into periodic jobs, period p and time s.

ÁA task arrives at start of a period

ÁDeadline is the end of the period

Á Provides a reservation scheduler which:

ÁEnsures task gets s seconds of time every p seconds

ÁApproximates weighted fair queuing

Á Algorithm is regularly rediscoveredé

12

spcl.inf.ethz.ch

@spcl_eth

Multiprocessor Scheduling

13

spcl.inf.ethz.ch

@spcl_eth

Challenge 1: sequential programs on multiprocessors

Á Queuing theory Ý straightforward, although:

ÁMore complex than uniprocessor scheduling

ÁHarder to analyze

Task queue

Core 0

Core 1

Core 2

Core 3

buté

14

spcl.inf.ethz.ch

@spcl_eth

Itôs much harder

Á Overhead of locking and sharing queue

ÁClassic case of scaling bottleneck in OS design

Á Solution: per-processor scheduling queues

Core 0

Core 1

Core 2

Core 3

In practice, each

is more complex

e.g., MFQ

15

spcl.inf.ethz.ch

@spcl_eth

Itôs much harder

Á Threads allocated arbitrarily to cores

Ý tend to move between cores

Ý tend to move between caches

Ý really bad locality and hence performance

Á Solution: affinity scheduling

ÁKeep each thread on a core most of the time

ÁPeriodically rebalance across cores

ÁNote: this is often non-work-conserving!

Á Alternative: hierarchical scheduling (Linux)

16

spcl.inf.ethz.ch

@spcl_eth

Challenge 2: parallel applications

Á Global barriers in parallel applications Ý

One slow thread has huge effect on performance

ÁCorollary of Amdahlôs Law

Á Multiple threads would benefit from cache sharing

Á Different applications pollute each othersô caches

Á Leads to concept of ñco-schedulingò

ÁTry to schedule all threads of an application together

Á Critically dependent on synchronization concepts

17

spcl.inf.ethz.ch

@spcl_eth

Multicore scheduling

Á Multiprocessor scheduling is two-dimensional

ÁWhen to schedule a task?

ÁWhere (which core) to schedule on?

Á General problem is NP hard L

Á But itôs worse than that:

ÁDonôt want a process holding a lock to sleep

Ý Might be other running tasks spinning on it

ÁNot all cores are equal

Á In general, this is a wide-open research problem

18

spcl.inf.ethz.ch

@spcl_eth

Littleôs Law

Á Assume, in a train station:

Á100 people arrive per minute

ÁEach person spends 15 minutes in the station

ÁHow big does the station have to be (house how many people)

Á Littleôs law: ñThe average number of active tasks in a system is

equal to the average arrival rate multiplied by the average time a

task spends in a systemò

19

spcl.inf.ethz.ch

@spcl_eth

Last time: Scheduling

Á Basics:

ÁWorkloads, tradeoffs, definitions

Á Batch-oriented scheduling

ÁFCFS, Convoys, SJF, Preemption: SRTF

Á Interactive workloads

ÁRR, Priority, Multilevel Feedback Queues, Linux, Resource containers

Á Realtime

ÁRMS, EDF

Á Multiprocessors

Á This time: OSPP Section 5 (not including IPC)

20

spcl.inf.ethz.ch

@spcl_eth

Goals today

Á Overview of inter-process communication systems

ÁHardware support

ÁWith shared memory

ÁWithout shared memory

ÁUpcalls

Á Generally: very broad field

ÁQuite competitiveé especially with microkernels

21

spcl.inf.ethz.ch

@spcl_eth

Recap: Hardware support for

synchronization

22

spcl.inf.ethz.ch

@spcl_eth

Disabling interrupts

Disable all

interrupts

/ traps

Enable interrupts

State to be

protected

Critical

section

23

spcl.inf.ethz.ch

@spcl_eth

Disabling interrupts

Á Nice and simple

Á Canôt be rescheduled inside critical section

Ýdata canôt be altered by anything else

Á Excepté

Á Another processor!

ÁHmmé.

Á Very efficient if in kernel on a uniprocessor.

24

spcl.inf.ethz.ch

@spcl_eth

Test-And-Set instruction

Á Atomically:

ÁRead the value of a memory location

ÁSet the location to 1 (or another constant)

Á Available on some hardware (e.g., PA-RISC)

Á (actually, more a RAC ïRead-And-Clear)

25

spcl.inf.ethz.ch

@spcl_eth

Compare-And-Swap (CAS)

Á Available on e.g., x86, IBM/370, SPARC, ARM,é

Á Theoretically, slightly more powerful than TAS

ÁWhy?

ÁOther variants e.g., CAS2, etc.

word cas(word *flag, word oldval, word newval) {

atomically {

if (*flag == oldval) {

*flag = newval;

return oldval;

} else {

return *flag;

}

}

}

26

spcl.inf.ethz.ch

@spcl_eth

Load-Link, Store-Conditional

Factors CAS, etc. into two instructions:

1. LL: load from a location and mark as ñownedò

2. SC: Atomically:

1. Store only if already marked by this processor

2. Clear any marks set by other processors

3. Return whether it worked.

Available on PPC, Alpha, MIPS, etcé

27

spcl.inf.ethz.ch

@spcl_eth

Back to TASé

old = TAS(flag)

if (old == True)

flag Ŷ False

Critical

section

Spin

forever

waiting?

28

spcl.inf.ethz.ch

@spcl_eth

Spinning

Á On a uniprocessor:

ÁNot much point in spinning at all. Whatôs going to happen?

ÁPossibly an interrupt

Á On a multiprocessor:

ÁCanôt spin forever

ÁAnother spin is always cheap

ÁBlocking thread and rescheduling is expensive

ÁSpinning only works if lock holder is running on another core

29

spcl.inf.ethz.ch

@spcl_eth

Competitive spinning

Á How long to spin for?

Á ñCompetitive spinningò:

ÁWithin a factor of 2 of optimal, offline (i.e., impossible!) algorithm

Á Good approach: spin for the context switch time

ÁBest case: avoid context switch entirely

ÁWorst case: twice as bad as simply rescheduling

30

spcl.inf.ethz.ch

@spcl_eth

IPC with shared memory

31

spcl.inf.ethz.ch

@spcl_eth

Techniques you already know J

Á Semaphores

ÁP, V operations

Á Mutexes

ÁAcquire, Release

Á Condition Variables

ÁWait, Signal (Notify), Broadcast (NotifyAll)

Á Monitors

ÁEnter, Exit

32

spcl.inf.ethz.ch

@spcl_eth

Á Most OSes provide some form of these

Á Key issue not yet covered: interaction between scheduling and

synchronization

Á Example: Priority inversion

ÁAssuming a priority scheduler, e.g., Unix, Windows

Focus here: interaction with scheduling

33

spcl.inf.ethz.ch

@spcl_eth

Priority Inversion

Time

Low priority

High priority

Acquire

lock

34

spcl.inf.ethz.ch

@spcl_eth

Priority Inversion

Time

Low priority

High priority

Acquire

lock

Preemption

35

spcl.inf.ethz.ch

@spcl_eth

Priority Inversion

Time

Low priority

High priority

Acquire

lock

Preemption
Wait for

lock

36

spcl.inf.ethz.ch

@spcl_eth

Priority Inversion

Time

Low priority

Med. priority

High priority

Acquire

lock

Preemption
Wait for

lock

Preemption

37

spcl.inf.ethz.ch

@spcl_eth

Priority Inversion

Time

Low priority

Med. priority

High priority

Acquire

lock

Preemption
Wait for

lock

Preemption Inverted
priority

38

spcl.inf.ethz.ch

@spcl_eth

Anyone recognize this?

39http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Mars_Pathfinder.html

spcl.inf.ethz.ch

@spcl_eth

Priority Inheritance

Å Process holding lock inherits priority of highest priority process

that is waiting for the lock.

ïReleasing lock Ý priority returns to previous value

ïEnsures forward progress

Å Alternative: Priority Ceiling

ïProcess holding lock acquires priority of highest-priority process that can

ever hold lock

ïRequires static analysis, used in embedded RT systems

40

spcl.inf.ethz.ch

@spcl_eth

Priority Inheritance

Time

Low priority

Med. priority

High priority

Acquire lock

Preemption Wait for lock

41

