
spcl.inf.ethz.ch

@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)

Chapter 8: Filesystem Implementation

source: xkcd.com, April 2014



spcl.inf.ethz.ch

@spcl_eth

2

Nearly made it into pop-culture J

Source: http://en.wikipedia.org/wiki/Heartbleed



spcl.inf.ethz.ch

@spcl_eth

Acyclic graph directories

Á Two different names (aliasing)

Á If dict deletes listÝ dangling pointer

Solutions:

ÁBackpointers, so we can delete all pointers

Variable size records can be a problem

ÁBackpointers using a daisy chain organization

ÁReference counting (aka. entry-hold-count)

Á New directory entry type

ÁLinkïanother name (pointer) to an existing file

ÁResolve the linkïfollow pointer to locate the file

dict

list

verbs spell

words



spcl.inf.ethz.ch

@spcl_eth

General graph directory

Á How do we guarantee no cycles?

Options:

ÁAllow only links to files and not directories

ÁGarbage collection (with cycle collector)

ÁCheck for cycles when every new 

link is added

ÁRestrict directory links to parents

E.g., ñ.ò and ñ..ò

All cycles are therefore trivial

dict

list

verbs spell

words

course

root



spcl.inf.ethz.ch

@spcl_eth

Á True or false (raise hand)

ÁA file name identifies a string of data on a storage device

ÁThe file size is part of the fileôs metadata

ÁNames provide a means of abstraction through indirection

ÁNames are always assigned at object creation time

ÁA context is implicit to a name

ÁA context is implicit to an object

ÁName resolve may be specific to a context

ÁEach file has exactly one name

ÁThe call ñunlink fileò always removes the contents of ñfileò

ÁA fully qualified domain name is resolved recursively starting from the left

ÁA full (absolute) path identifies a unique (1:1) file (piece of data)

ÁA full (absolute) path identifies a unique name

ÁStable bindings can be changed with bind()

ÁEach name identifies exactly one object in a single context

5

Our Small Quiz



spcl.inf.ethz.ch

@spcl_eth

Access Control



spcl.inf.ethz.ch

@spcl_eth

Protection

Á File owner/creator should be able to control:

Áwhat can be done

Áby whom

Á Types of access

ÁRead

ÁWrite

ÁExecute

ÁAppend

ÁDelete

ÁList



spcl.inf.ethz.ch

@spcl_eth

Access control matrix

A B C D E F G H J é

Read X X X X X

Write X X X X

Append X X

Execute X X X X

Delete X

List X X

é

Principals

R
ig

h
ts

For a single file or directory:

Problem: how to scalably represent this matrix?



spcl.inf.ethz.ch

@spcl_eth

Row-wise: ACLs

Á Access Control Lists

ÁFor each right, list the principals

ÁStore with the file

Á Good: 

ÁEasy to change rights quickly

ÁScales to large numbers of files

Á Bad: 

ÁDoesnôt scale to large numbers of principals



spcl.inf.ethz.ch

@spcl_eth

Column-wise: Capabilities

Á Each principal with a right on a file holds a capability for that 

right

ÁStored with principal, not object (file)

ÁCannot be forged or (sometimes) copied

Á Good: 

ÁVery flexible, highly scalable in principals

ÁAccess control resources charged to principal

Á Bad:

ÁRevocation: hard to change access rights

(need to keep track of who has what capabilities)



spcl.inf.ethz.ch

@spcl_eth

POSIX (Unix) Access Control

Á Simplifies ACLs: each file identifies 3 principals:

ÁOwner (a single user)

ÁGroup (a collection of users, defined elsewhere)

ÁThe World (everyone, ñothersò in Linux)

Á For each principal, file defines 3 rights:

ÁRead (or list, if a directory)

ÁWrite (or create a file, if a directory)

ÁExecute (or traverse, if a directory)



spcl.inf.ethz.ch

@spcl_eth

Example



spcl.inf.ethz.ch

@spcl_eth

Full ACLs

Á POSIX now supports full ACLs

ÁRarely used, interestingly

Á setfacl, getfacl, é

Á Windows has very powerful ACL support

ÁArbitrary groups as principals

ÁModification rights

ÁDelegation rights



spcl.inf.ethz.ch

@spcl_eth

File Types



spcl.inf.ethz.ch

@spcl_eth

Is a directory a file?

Á Yesé

ÁAllocated just like a file on disk

ÁHas entries in other directories like a file

Á éand noé

ÁUsers canôt be allowed to read/write to it

Corrupt file system data structures

Bypass security mechanisms

ÁFile system provides special interface

opendir , closedir , readdir , seekdir , telldir , etc.



spcl.inf.ethz.ch

@spcl_eth

Directory implementation

Á Linear list of (file name, block pointer) pairs

ÁSimple to program

ÁLookup is slow for lots of files (linear scan) 

Á Hash table ïlinear list with closed hashing.

ÁFast name lookup

ÁCollisions

ÁFixed size

Á B-treeïname index, leaves are block pointers

Á Increasingly common

ÁComplex to maintain, but scales well



spcl.inf.ethz.ch

@spcl_eth

File types

Á Other file types treated ñspeciallyò by the OS

Á Simple, common cases:

ÁExecutable files

ÁDirectories, symbolic links, other file system data

Á Some distinguish between text and binary

Á Some have many types

ÁñDocumentò or ñmediaò types

ÁUsed to select default applications, editors, etc.



spcl.inf.ethz.ch

@spcl_eth



spcl.inf.ethz.ch

@spcl_eth

Unix devices and other file types

Á Unix also uses the file namespace for

ÁNaming I/O devices (/dev)

ÁNamed pipes (FIFOs)

ÁUnix domain sockets

Á More recently:

ÁProcess control (/proc)

ÁOS configuration and status (/proc, /sys)

Á Plan 9 from Bell Labs

ÁEvolution of Unix: almost everything is a file



spcl.inf.ethz.ch

@spcl_eth

Executable files

Á Most OSes recognize binary executables

ÁSometimes with a ñmagic numberò (first 2 Bytes)

ÁWill load, dynamically link, and execute in a process

Á Other files are sometimes recognized

ÁE.g. ñ#!ò script files in Unix

ñ#!/usr/bin/pythonò

Á Windows locks files that are currently executed, why?


