ETHzurich

spcl.inf.ethz.ch
3y @spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)
Chapter 8: Filesystem Implementatiq'n,u,_,;;;:«

T R

S2Te CaRLR :f*7)T 5.7 e ‘ YR i
fh S :
ket "1&7‘

i S BE THE \JORST LJEB
%&.@ SECURITY LAPSE EVER.

bl | UORST 50 FAR.
GNE US TIME.

|

I TTEPN THJ& EUG ENT
Just B\WNI ENCRYPTION.

IT LETS WEBSITE VISITORS
MAKE. A SERVER DISPENSE

RANDOM MEMORY CONTENTS.

3]

iTB NOT J0ST HEf'.S

ITS TRAFAC DATA.
EMAILS. PASSWORDS.
EROTIC FANFCTION.

15 EVERYTFHING
CI)I"TFRM}‘E':ED?

source: xkcd com, Aprll 014

UMTED TO DATA SORED
IN COMPUTER MEMORY.

50 PAPER IS SAFE. =

OUR IMAGNATIONS, T00. | |

eEE.uEuBEmE. =

|

"

- spcl.inf.ethz.ch
ETH:zurich 7 A7 ¥ @spcl_eth

Nearly made it into pop-culture J

@) Heartbeat - Normal usage

Server, send me S
this 4 letter word erver
if you are there: bird

Client "bird"

W Heartbeat - Malicious usage

Server, send me _ Server
this 500 letter bird. Server
word ifyouare = mMasterkeyis

. there: "bird" 31431498531054.
Client _ * User Carol wants

to change
password to
"password 123"...

Source: http://en.wikipedia.org/wiki/Heartbleed

spcl.inf.ethz.ch

ETHzurich e i ' / 9 @spcl_eth

Acyclic graph directories

A Two different names (aliasing)
dict verbs spell

A If dict deletes list Y dangling pointer

Solutions:

A Backpointers, so we can delete all pointers
Variable size records can be a problem

A Backpointers using a daisy chain organization

A Reference counting (aka. entry-hold-count)

A New directory entry type
A Link i another name (pointer) to an existing file
A Resolve the link i follow pointer to locate the file

o : spcl.inf.ethz.ch
ETH:zurich RS a— /\j{gﬁ'&z W @spcl_eth

General graph directory

A How do we guarantee no cycles?
Options:
A Allow only links to files and not directories

A Garbage collection (with cycle collector)

A Check for cycles when every new
link is added

A Restrict directory links to parents
E. g.andi.fo. . 0
All cycles are therefore trivial

*Cou =

dict verbs spell

- . <y G s g spcl.inf.ethz.ch
ETHzurich T e s /\@J 3 @spcl_eth

Our Small Quiz

A True or false (raise hand)
A Afile name identifies a string of data on a storage device
AThe file size is part of the file
A Names provide a means of abstraction through indirection
A Names are always assigned at object creation time
A A context is implicit to a name
A A context is implicit to an object
A Name resolve may be specific to a context
A Each file has exactly one name
AThe call Aunlink fileo always removV:
A A fully qualified domain name is resolved recursively starting from the left
A Afull (absolute) path identifies a unique (1:1) file (piece of data)
A A full (absolute) path identifies a unique name
A Stable bindings can be changed with bind()

Ve

A Each name identifies exactly one object in a single context

(@)
w

spcl.inf.ethz.ch

ETH:zurich (Y 7 A7 ¥ @spcl_eth

Access Control

spcl.inf.ethz.ch

ETH:zurich ! e ? / 7 _Ax ¥ @spcl_eth

Protection

A File owner/creator should be able to control:
A what can be done
A by whom

A Types of access
A Read

Ve

A Write
A Execute
A Append
A Delete

A List

spcl.inf.ethz.ch

3y @spcl_eth

ETH:zurich
Access control matrix

For a single file or directory:
Principals
--IEI-IEI------
Read X X X
" Write X X X X
En Append X X
. Execute X X X X
Delete X
List X X

é
Problem: how to scalably represent this matrix?

o : spcl.inf.ethz.ch
ETHziirich N TN Y

Row-wise: ACLS

A Access Control Lists
A For each right, list the principals
A Store with the file
A Good:
A Easy to change rights quickly
A Scales to large numbers of files
A Bad:
ADoesndt scale to |l arge numbers of pi

. . S G ; spcl.inf.ethz.ch
ETH ziirich 3 TN Y

2

Column-wise: Capabilities

Ve

A Each principal with aright on a file holds a capability for that
right
A Stored with principal, not object (file)
A Cannot be forged or (sometimes) copied

A Good:

A Very flexible, highly scalable in principals

A Access control resources charged to principal

A Bad:

A Revocation: hard to change access rights
(need to keep track of who has what capabilities)

o S G s , spcl.inf.ethz.ch
ETH ziirich 2 e S TN Y

POSIX (Unix) Access Control

A Simplifies ACLs: each file identifies 3 principals:
A Owner (a single user)
A Group (a collection of users, defined elsewhere)
AThe World (everyone, Aot herso i n Lirt

A For each principal, file defines 3 rights:
A Read (or list, if a directory)

A Write (or create a file, if a directory)

A Execute (or traverse, if a directory)

spcl.inf.ethz.ch

ETH:zurich ! e ? 7 _Ax ¥ @spcl_eth

Example

drwx--x--x 9 htor htor 4096 May 9 13:14 pagal
- = 1ls -1 projekte/Llvm/1L1lvm-svn
total 860

drwx--x--x 2 htor htor 4008 Jan 29 15:58 autocont
drwx--%x--x 4 htor htor 4096 Dec 25 13:20 bindings
drwx--x--x 4 htor htor 4098 Jan 29 15:57 cmake
W - 1 htor htor 18401 Dec 25 13:20 CMakelLists.txt
Bl R 1 htor htor 2782 Jan 28 15:57 CODE_OWMERS.TXT
SrWX- - - - - 1 htor htor 658352 Jan 29 15:57

1

htor htor 10048 Dec 25 13:20 CREDITS.TXT
drwxr-xr-x 11 htor htor 4096 Apr 4 11:13 Debug
drwx--x--%x 10 htor htor 4098 Jan 29 15:57 docs
drwx--%x--x 10 htor htor 4096 Dec 25 13:20 examples
drwx--x--x 4 htor htor 4098 Dec 25 13:20 include
drwx--x--x 18 htor htor 4096 Jan 29 15:58 lib

Bl R 1 htor htor 3254 Jan 29 15:57 LICEMSE.TXT
W - 1 htor htor 752 Dec 25 13:20 LLVMBuild.txt

-PW- - - 1 htor htor 1865 Dec 25 13:20 Llvm.spec.in

S P - - - - 1 htor htor 8518 Jan 29 15:58 Makefile

T 1 htor htor 2509 Dec 25 13:20 Makefile.common
T 1 htor htor 120688 Jan 29 15:57 Makefile.config.in
T 1 htor htor 795885 Jan 29 15:57 Makefile.rules
drwx--x--x 4 htor htor 4096 Dec 25 13:21 projects
W - 1 htor htor 687 Jan 29 15:58 README.txt

drwx--x--x 32 htor htor 4096 Dec 25 13:20 runtime
drwx--x--x 27 htor htor 4098 Jan 29 15:57 test
drwx--x--%x 35 htor htor 4008 Dec 25 13:21 tools
drwx--x--%x 11 htor htor 4098 Jan 29 15:57 unittests
drwx--x--x 32 htor htor 4098 Jan 29 15:57 utils

o : spcl.inf.ethz.ch
ETHziirich N TN Y

Full ACLs

A POSIX now supports full ACLS
A Rarely used, interestingly
A setfacl, getfacl, &
A Windows has very powerful ACL support
A Arbitrary groups as principals
A Modification rights
A Delegation rights

spcl.inf.ethz.ch

ETH:zurich s (Y 7 A7 ¥ @spcl_eth

File Types

. : G spcl.inf.ethz.ch
ETHzurich X /‘ﬁ&l W @spcl_eth

Is a directory a file?

A Yesé
A Allocated just like a file on disk

Ve

A Has entries in other directories like a file
é and noé
A Users cand be allowed to read/write to it
Corrupt file system data structures
Bypass security mechanisms
A File system provides special interface
opendir , closedir ,readdir ,seekdir , telldir , etc.

Ve

A

. . : G ; spcl.inf.ethz.ch
ETHzurich) /&&z' 3 @spcl_eth

2

Directory implementation

Ve

A Linear list of (file name, block pointer) pairs
A Simple to program
A Lookup is slow for lots of files (linear scan)
A Hash table i linear list with closed hashing.
A Fast name lookup
A Collisions
A Fixed size
A B-treei name index, leaves are block pointers

A Increasingly common
A Complex to maintain, but scales well

. . , G spcl.inf.ethz.ch
ETHzurich X /‘ﬁ&l W @spcl_eth

2

File types

A Other file types treated fispeci al

A Simple, common cases:
A Executable files
A Directories, symbolic links, other file system data

A Some distinguish between text and binary

’

A Some have many types
AfiDocument o or fimediad types
A Used to select default applications, editors, etc.

spcl.inf.ethz.ch

ETH:zurich s 7 _Ax ¥ @spcl_eth

s o : i - spcl.inf.ethz.ch
ETHzurich) /&&z' 3 @spcl_eth

Unix devices and other file types

A Unix also uses the file namespace for
A Naming I/0 devices (/dev)
A Named pipes (FIFOs)
A Unix domain sockets
A More recently:
A Process control (/proc)
A OS configuration and status (/proc, /sys)

A Plan 9 from Bell Labs
A Evolution of Unix: almost everything is a file

. . spcl.inf.ethz.ch
ETH ziirich TN Y

2

Executable files

A Most OSes recognize binary executables
ASometimes with a fimagic number o (fir
A Will load, dynamically link, and execute in a process
A Other files are sometimes recognized
AE.g. fA#!0 script files in Unix
A#usr) bi n/ pyt hono

A Windows locks files that are currently executed, why?

