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ABSTRACT
Measuring and reporting performance of parallel computers con-
stitutes the basis for scientific advancement of high-performance
computing (HPC). Most scientific reports show performance im-
provements of new techniques and are thus obliged to ensure repro-
ducibility or at least interpretability. Our investigation of a strati-
fied sample of 120 papers across three top conferences in the field
shows that the state of the practice is lacking. For example, it is of-
ten unclear if reported improvements are deterministic or observed
by chance. In addition to distilling best practices from existing
work, we propose statistically sound analysis and reporting tech-
niques and simple guidelines for experimental design in parallel
computing and codify them in a portable benchmarking library. We
aim to improve the standards of reporting research results and initi-
ate a discussion in the HPC field. A wide adoption of our minimal
set of rules will lead to better interpretability of performance results
and improve the scientific culture in HPC.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity measures, per-
formance measures
Keywords
Benchmarking, parallel computing, statistics, data analysis

1. INTRODUCTION
Correctly designing insightful experiments to measure and report

performance numbers is a challenging task. Yet, there is surpris-
ingly little agreement on standard techniques for measuring, report-
ing, and interpreting computer performance. For example, com-
mon questions such as “How many iterations do I have to run per
measurement?”, “How many measurements should I run?”, “Once
I have all data, how do I summarize it into a single number?”, or
“How do I measure time in a parallel system?” are usually an-
swered based on intuition. While we believe that an expert’s intu-
ition is most often correct, there are cases where it fails and invali-
dates expensive experiments or even misleads us. Bailey [3] illus-
trates this in several common but misleading data reporting patterns
that he and his colleagues have observed in practice.
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Reproducing experiments is one of the main principles of the sci-
entific method. It is well known that the performance of a computer
program depends on the application, the input, the compiler, the
runtime environment, the machine, and the measurement method-
ology [20, 43]. If a single one of these aspects of experimental de-
sign is not appropriately motivated and described, presented results
can hardly be reproduced and may even be misleading or incorrect.

The complexity and uniqueness of many supercomputers makes
reproducibility a hard task. For example, it is practically impossi-
ble to recreate most hero-runs that utilize the world’s largest ma-
chines because these machines are often unique and their software
configurations changes regularly. We introduce the notion of in-
terpretability, which is weaker than reproducibility. We call an ex-
periment interpretable if it provides enough information to allow
scientists to understand the experiment, draw own conclusions, as-
sess their certainty, and possibly generalize results. In other words,
interpretable experiments support sound conclusions and convey
precise information among scientists. Obviously, every scientific
paper should be interpretable; unfortunately, many are not.

For example, reporting that an High-Performance Linpack
(HPL) run on 64 nodes (N=314k) of the Piz Daint system during
normal operation (cf. Section 4.1.2) achieved 77.38 Tflop/s is hard
to interpret. If we add that the theoretical peak is 94.5 Tflop/s, it
becomes clearer, the benchmark achieves 81.8% of peak perfor-
mance. But is this true for every run or a typical run? Figure 1
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Figure 1: Distribution of completion times for 50 HPL runs.

provides a much more interpretable and informative representation
of the collected runtimes of 50 executions. It shows that the varia-
tion is up to 20% and the slowest run was only 61.2 Tflop/s.

Our HPL example demonstrates that one of the most important
aspects of ensuring interpretability is the sound analysis of the mea-
surement data. Furthermore, the hardness of reproducing experi-
ments makes an informative presentation of the collected data es-
sential, especially if the performance results were nondeterminis-
tic. Potential sources of nondeterminism, or noise, can be the sys-
tem (e.g., network background tra�c, task scheduling, interrupts,
job placement in the batch system), the application (e.g., load bal-



ConfA ConfB ConfC Tot 3

Experimental Design 2011 2012 2013 2014 2011 2012 2013 2014 2011 2012 2013 2014

Hardware
Processor Model / Accelerator √√• √√ √ √√•√ √ √√ √•√••√√√√√ •√√√√√√√•√ √•√• •√•√√ •√√√√√√√√√ √ √√ •√√ √ √√ √ √√••√ √•••√√•√√√ √√•√ √√√√• •√√√√√•√√ • √√√√√√√• (79/95)

RAM Size / Type / Bus Infos √ • •√√ √ √• ••√ • √ •√ •√• •√• •√√ √√ √√ √√ •√ √ √ •• √••• • √ • √√• √• • • • (26/95)

NIC Model / Network Infos √ • √ √ √•√ √ √√ •√••√ √ • √√√√√ •√ √•√• • •√√ •√ √ √√√√√ √√√√•√√ √ √√√√√√√•• √••• • √ √• √ • •√√√√ •√√ •√√√√√√√√• (60/95)

Software
Compiler Version / Flags √ • √ √ •√ √√√√ •√•• √ •√√√ √√ •√ • • • • • √ √• √ √√ •• •••√ • √ √ •√ √ √• √• √√• √ •√ √√ √ • (35/95)

Kernel / Libraries Version • √• √ •√•• √ • •√ √• • • • √ • √ √√ √ •√√√√ •• ••• • √√ •√ • •√ • • √ • (20/95)

Filesystem / Storage • • √√ • •• √√ • √ •√ • •√• • •√ √ √ •√ √ •• ••• • • • • • • • (12/95)

Configuration
Software and Input √• √ √√ √ √√•√√√√√ • ••√√√√ •√√√ •√ √• • • • √ •√√ √ √√ √√√•√ √√ √√ ••√ ••• √•√ √ √ •√ √√ • • √• • √ √ √√• (48/95)

Measurement Setup √ •√ √ √ • √ √• •• √ • √√√ √•√ √•√• • • √ • √√ √√ √√ √ √√√•√ √ √•• ••• • • √ • • √• • • (30/95)

Code Available Online • √ • • •• √ •√ • • • • • • √ • √ •• ••• • • √ • • • • √ • (7/95)
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Data Analysis

Results

Mean √√• √ √√• √ √√ • •• √ • √√√ √•√ √•√•√•√•√√ •√√√ √√√√√ √√√√√•√ √ √ ••√ ••• • √ •√√√ √√• •√ √ •√ • √√ √√√• (51/95)

Best /Worst Performance • • √ • •• √√ • √ • • •√• • • √ √• •• ••• • •√ • • √ • • √√√√ • (13/95)

Rank Based Statistics • • √ • •• • √ • • • • • • √ √• •• ••• • • √• √• √• • √ √ • (9/95)

Measure of Variation • • • ••√ √ • √ √ •√ √• • • • √ • √ √ • √ •• ••• •√ • √ • √• √ √• • √ √ • (17/95)

Table 1: Summary of the results of our literature survey. We report all data to support readers in drawing their own conclusions1;
dots mark not applicable papers. Experimental design results are summarized for all 10 papers of each year in a horizontal box plot
showing the distribution of the numbers of 3 per paper ranging from 0 (left) to 9 (right); whiskers mark the min/max range.

ancing, cache misses, managed memory, JIT compilation), or the
environment (e.g., other applications causing interference, or even
the application’s stack layout [43]). On many systems, such noise
is small and its influence can be measured using simple statistical
techniques but sometimes, noise can cause significant degradation
of program execution [26,47]. Yet, most research publications em-
ploy simplistic approaches to report nondeterministic results.

We show in a literature review study that most papers from a
representative sample of three leading conferences only use sim-
ple summarized performance metrics without specifying varia-
tion; many papers do not even mention the exact method how the
data was summarized and are thus neither reproducible nor inter-
pretable. In an attempt to improve the state of the practice, we
propose simple ground rules and associated statistical techniques
to design experiments, measure and summarize data, and report re-
sults in parallel computing and related disciplines. Some of these
rules go beyond the state of the art while others are obvious to some
readers. Yet, we consider it useful to explicitly state and collect
them into a single document that can be used to define some quali-
tative level of interpretability. Our guidelines are intended to assist
researchers, reviewers, and readers in designing, conducting, and
evaluating empirical studies. Editorial boards and program com-
mittees may use this as a basis for developing guidelines for re-
viewers to establish policies for empirical studies.

2. STATE OF THE PRACTICE
1 We start our analysis by assessing the state of the practice in

HPC research using a stratified random sample from the proceed-
ings of the leading conferences ACM HPDC, ACM/IEEE Super-
computing (SC), and ACM PPoPP of the years 2011, 2012, 2013,
and 2014. We picked 10 random papers from each conference year
out of the total number of papers at HPDC (22, 23, 20, 21), SC (74,
100, 91, 83), PPoPP (26, 26, 26, 28), covering between 10% and
50% of the population. We only considered peer-reviewed tech-
nical papers and did not include invited talks, panels, workshops,
or tutorials in this population. From here on, we anonymize the
conferences as ConfA, ConfB, ConfC and we omit references to
specific papers because our main focus lies on improving the dis-
cipline in our field, not to finger-point at specific venues or pre-
vious work. Papers that did not report performance numbers of
real-world experiments (e.g., simulations, floating point error anal-
yses, or theoretical works) are treated as not applicable; we had a
1The raw data can be found on the LibSciBench webpage.

total of 25/120 (20%) not applicable papers.
The results of our study are shown in Table 1. The upper part

of the table describes our analysis of each paper’s documentation
regarding its experimental design (setup). We di↵erentiate three
major classes for describing hardware: compute, memory, and net-
work; three major classes for describing software: compiler, run-
time, and storage; and three major classes for describing bench-
marks: input and software, measurement setup, and source code.
We analyzed each paper and report our subjective opinion if the
data provided in each class would support an unquestionable inter-
pretation (or even reproduction) of the results using the symbol 3.
If a paper was not applicable, we marked all results as (·). When we
determined that the interpretability of an experiment is not depend-
ing on details of a specific class (e.g., a shared memory experiment
does not need to describe the network), we mark the class also with
3. The lower part of the table summarizes each paper’s data anal-
ysis methods which we discuss in detail in Section 3.

In general, most papers report details about the hardware but fail
to describe the software environment. We find that the average
paper’s results are hard to interpret and easy to question because
measurement and reporting methods are often not well described.
While the median scores of ConfA and ConfC seem to be improv-
ing over the years, there is no statistically significant evidence for
this. Our general impression is that the state of the art is poor; hard
to interpret experiments are a serious problem for the scientific ad-
vancement of a field.

We note that this is not limited to HPC, as many researchers iden-
tify similar shortcomings in other fields (cf. [20,32,36]). For exam-
ple, at the leading languages and compilers conference PLDI’11,
39 out of 42 papers reporting execution times did not mention un-
certainty [58]. Manolescu et. al [39] show that out of 78 accepted
papers at a leading database conference SIGMOD’08, 54 partici-
pated in a repeatability experiment and only 44 could be (partially)
repeated independently. Zannier, Melnik, and Maurer [64] con-
clude that the quantity of empirical software engineering research
at the leading conference ICSE is increasing but that soundness of
empirical evaluations can be improved. Other experimental fields
outside of computer science are also a↵ected, for example Alt-
man [1] comments on the suboptimal state of the art in medicine.

If supercomputing benchmarking and performance analysis is to
be taken seriously, the community needs to agree on a common
set of standards for measuring, reporting, and interpreting perfor-
mance results.



2.1 Common Best/Worst Practices
During our analysis, we identified several frequent problems.

This first discussion aims to establish a set of common sense rules
that experimenters should consider to improve the interpretability
of their results. We discuss experimental design and reporting in
more detail in Section 4.

2.1.1 Use Speedup with Care
Speedup often leads to confusion because the base case is not

always clear. In its most basic form, speedup is used to compare
two systems, for example, if system A is s times as fast as system
B, then the speedup s = TA

TB
, where TX is the respective execution

time on system X. The relative gain of system A over system B can
be reported as � = s � 1; if, for example, system A is 20% faster
than system B for s = 1.2.

In parallel computing, speedup is usually used to compare the
gain of using more than one processor. Here, it is often unclear
if the comparison is performed with respect to the best possible
serial implementation or the potentially worse parallel implemen-
tation executed on a single processor. Stating the comparison target
clearly is important because better serial algorithms that cannot be
parallelized e�ciently often exist.

Furthermore, speedup itself is a rather meaningless measure be-
cause it will typically be higher on slow processors and/or less op-
timized codes (e.g., [41]). Thus, while speedup can be used as a
dimensionless metric for the scaling of a single algorithm on a sin-
gle computer, it cannot be used to compare di↵erent algorithms or
di↵erent computers. In order to provide insights into the results,
the performance of the single-processor case must be stated in ab-
solute terms. We generally suggest that speedup should only be
used in exceptional cases as it can almost always be replaced by
lower bounds on execution time (e.g., an “ideal scaling” line in a
plot cf. Figure 7(b)). We found 39 papers reporting speedups and
15 (38%) of them did not include the absolute performance of the
base case.
Rule 1: When publishing parallel speedup, report if the base
case is a single parallel process or best serial execution, as well
as the absolute execution performance of the base case.

A simple generalization of this rule implies that one should never
report ratios without absolute values.

2.1.2 Report Units Unambiguously
We observed a general sloppiness in reporting results, for ex-

ample, the long-standing confusion if MFLOPs indicates a rate
or a count still remains. We recommend following the sugges-
tions made by the PARKBENCH committee [23, 46] and denote
the number of floating point operations as flop (singular and plu-
ral), the floating point rate as flop/s, Bytes with B, and Bits with b.
More confusion stems from the use of base-2 or base-10 number
qualifiers. Here we suggest to either follow the IEC 60027-2 stan-
dard and denote binary qualifiers using the “i“ prefixes such as MiB
for Mebibytes or clarify the base. We found that the majority of the
papers report confusing or incorrect metrics; we only consider two
of the 95 papers fully unambiguous.

2.1.3 Do not Cherry-pick
It is important for interpretability that all results are presented,

even the ones that do not show the desired e↵ect. We briefly discuss
two forms of subset-selection that should be avoided:

Use the whole node Scaling experiments should always utilize
all available resources. For example, a multithreaded application
should be run on all available cores even if it stops scaling.

Use the whole benchmark/application If an application opti-

mization is the center of a study then one should consider the whole
application runtime and not only kernels. Furthermore, if existing
benchmark suites are used, all benchmarks should be run. If not,
then a reason should be presented (e.g., a compiler transformation
for C code cannot transform all NAS benchmarks).
Rule 2: Specify the reason for only reporting subsets of standard
benchmarks or applications or not using all system resources.

In general, one should compare to standard benchmarks or other
papers where possible to increase interpretability. A corollary of
this rule is to report all results, not just the best.

3. ANALYZING EXPERIMENTAL DATA
Many of the research publications analyzed in Section 2 are not

reproducible and hardly interpretable. Even worse, without pro-
viding information about the variability in the measurements, re-
ported results may be well in the statistical noise. We believe that
sloppy data analysis and missing statistical background constitutes
a big part of the problem. Thus, we now discuss various techniques
to analyze measurement data such that sound conclusions can be
based on them.

3.1 Summarizing Results
Performance data is often collected from multiple measurements

with di↵erent configurations. Summarizing these results can be
important because a single number, such as “our system runs twice
as fast”, is easiest to understand. Unfortunately, even leading re-
searchers commonly make mistakes when summarizing data [2].
Thus, researchers need to be careful and precise about the tech-
niques used to summarize results. We now provide an overview of
di↵erent algebraic and statistical summary methods and how they
should and should not be applied.

A major di↵erentiating factor for summarizing is whether the
results are deterministic or of a statistical nature. Deterministic
measurements (e.g., flop count) can be summarized with simple al-
gebraic methods while nondeterministic measurements (e.g., run-
time) requires statistical techniques.

3.1.1 Algebraic Summaries of Deterministic Data
Algebraic summaries should only be used if there is no vari-

ance in the result measurements. Such deterministic measurements
could be the number of instructions (e.g., flop or load/store) to com-
pute a specific problem or, in certain (uncommon) scenarios, also
execution times.

Summarizing costs Execution time is often the best metric
for accessing computer performance because it has an undebatable
meaning [53]. Other metrics that have a direct semantic, such as
energy consumption, purchasing cost, or number of instructions,
fall in the same category that we call costs. Costs typically have an
atomic unit such as seconds, watts, dollars, or flop and their influ-
ence is linear. This enables statements such as “system A is twice
as fast as system B”. In the standard case where all measurements
are weighted equally use the arithmetic mean to summarize costs:
x̄ = 1

n
Pn

i=1 xi.
Summarizing rates Cost metrics are often used to derive other

measures such as flop/s, flop/watt, or flop/inst, to express cost rates.
In this case, the arithmetic mean must not be used as it leads to the
wrong conclusions [19, 38]. In general, if the denominator has the
primary semantic meaning, the harmonic mean provides correct
results: x̄(h) = nPn

i=1 1/xi
. If the absolute counts (e.g., flops and sec-

onds) are available we recommend using the arithmetic mean for
both before computing the rate.
Rule 3: Use the arithmetic mean only for summarizing costs.
Use the harmonic mean for summarizing rates.



Summarizing ratios Both costs and rates have units. How-
ever, it is sometimes beneficial to argue in unit-less terms such
as speedup ratios or percentage of system peak (cf. Section 5.1).
In general, ratios should never be averaged as such an average
is meaningless. If a summary is needed then compute the correct
mean of the costs or rates of the measurement before the normal-
ization [53].

The geometric mean x̄(g) = n
p
⇧n

i=1 xi has been suggested for ra-
tios. It is always lower than or equal to the arithmetic mean and
always higher than or equal to the harmonic mean [22] and is thus
often interpreted as the “more honest” mean. But in general, the
geometric mean has no simple interpretation and should thus be
used with greatest care. It can be interpreted as a log-normalized
average as we describe in the next section. If in exceptional situa-
tions, for example, the cost measures are not available, normalized
results have to be averaged, then they should be averaged using the
geometric mean [19] because it provides better results but is strictly
seen still incorrect [53].

In our review, 51 out of 95 applicable papers use summarizing
to present results. Only four of these specify the exact averaging
method. Numerous papers reported averages of either rates or ra-
tios without specifying how they summarize, leaving it up to the
reader to guess. Only one paper correctly specifies the use of the
harmonic mean. Two papers report that they use the geometric
mean, both without a good reason.
Rule 4: Avoid summarizing ratios; summarize the costs or rates
that the ratios base on instead. Only if these are not available
use the geometric mean for summarizing ratios.

HPL example Let us assume we ran an HPL benchmark that
needs 100 Gflop three times and measured the execution times
(10, 100, 40) seconds. The arithmetic mean of the execution times
is 50s, indicating an average floating point rate of 2 Gflop/s, which
would be the observed rate for a consecutive run of all three bench-
marks. The arithmetic mean of the three rates would be 4.5 Gflop/s,
which would not be a good average measure as it focuses on an in-
dividual run. The harmonic mean of the rates returns the correct 2
Gflop/s. Assuming the peak floating point rate is 10 Gflop/s, the
three experiments would run at relative rates of (1, 0.1, 0.25) and
the geometric mean would be 0.29, indicating an (incorrect) e�-
ciency of 2.9 Gflop/s. Note that we present this example purely for
illustrative purposes, such nondeterministic measurements would
need to be analyzed statistically as we explain in the next section.

3.1.2 Statistics of Normally Distributed Data
It has been recognized that performance varies significantly on

today’s supercomputers [63]. In fact, this problem is so severe
that several large procurements specified upper bounds on perfor-
mance variations as part of the vendor’s deliverables. In such non-
deterministic systems, a single number often does not represent the
actual performance well and interpretable reporting requires some
measure of spread or stability of the results. The most general issue
is to determine the statistical method to use. We di↵erentiate be-
tween parametric and nonparametric techniques. If the distribution
function is known, parametric techniques are most powerful, how-
ever, if the function is unknown, nonparametric techniques should
be used. Some real-world measurements are normally distributed
in which case analysis can be improved.

Restrictions Most of the statistics described in this section can
only be used if measurements are independent samples of a normal
distribution. Furthermore, these statistics assume that the arith-
metic mean is the correct measure, thus, they cannot directly be
applied to rates or ratios.

Standard deviation A simple measure of the spread of nor-

mally distributed samples xi is the sample standard deviation s =p
(
Pn

i=1(xi � x̄)2)/(n � 1). It has the same unit as the (arithmetic)
mean2 and can be directly compared. It can be computed incremen-
tally (online) through the sample variance s2

n = (n�2)/(n�1)s2
n�1+

(xn � x̄n�1)/n and the required sample mean x̄n can be computed
online using x̄n = x̄n�1 + (xn � x̄n�1)/n. We note that these schemes
can be numerically unstable and more complex stable schemes may
need to be employed for large numbers of samples.

Coe�cient of Variation The coe�cient of variation is a related
dimensionless metric that represents the stability of a set of nor-
mally distributed measurement results: CoV = s/x̄. It has been
demonstrated as a good measure for the performance consistency
of a system over longer periods of time [34, 52].

Confidence intervals of the mean The arithmetic mean can
be a good summary if the result is used to predict the sum of a
set of measurements (e.g., the execution time of a number of loop
iterations). However, x̄ is computed from a sample of the data and
may not represent the true mean well. Confidence Intervals (CIs)
are a tool to provide a range of values that include the true mean
with a given probability depending on the estimation procedure. To
determine a CI, we select a confidence value 1�↵ (typically 0.99,
0.95, or 0.9) and find two probabilistic bounds, b1 < x̄ < b2 around
x̄ such that Pr[b1  µ  b2] =1�↵. Here, µ is the true mean.

We assume that the exact standard deviation is unknown and we
only have the mean and deviation of the samples. Thus, our calcula-
tion bases on Student’s t distribution with n�1 degrees of freedom,
returning the CI: [x̄�t(n�1,↵/2)s/

p
n, x̄+t(n�1,↵/2)s/

p
n] where

t(n � 1, p) can be obtained from a table and converges towards the
standard normal distribution for large n.

CIs are often misunderstood; they do neither provide a probabil-
ity that any of the sample data or data of future experiments lies
within the CI nor that the mean of future experiments lies within
the interval. Instead, CIs provide a measure of reliability of the
experiment. For example, a 95% CI is interpreted as a 95% prob-
ability that the observed CI contains the true mean. The CI repre-
sents a frequentist view with a fixed true mean and variable (ran-
dom) bounds while the so called 95% credible interval provides a
Bayesian view with fixed bounds and a variable mean which esti-
mates that the mean is with a 95% chance in the interval. We do not
discuss credible intervals here because they require assumptions on
the prior distribution of the mean. Most of the papers in our survey
report nondeterministic data but only 15 mention some measure of
variance (we also counted common statements like “the observed
variance was low”). Only two out of 95 papers report confidence
intervals around the mean.
Rule 5: Report if the measurement values are deterministic. For
nondeterministic data, report confidence intervals of the mea-
surement.

If the data is nearly deterministic, then the reporting can be
summarized, for example: We collected measurements until the
99% confidence interval was within 5% of our reported means.

Testing for Normality and Normalization.
Multiple tests can be used for checking if a dataset is normally

distributed. Razali and Wah [48] showed empirically that the
Shapiro-Wilk test [51] is most powerful, yet, it may be mislead-
ing for large sample sizes. We thus suggest to check the test result
with a Q-Q plot or an analysis specific to the used statistics.

Log-normalization Many nondeterministic measurements that
are always positive are skewed to the right and have a long tail fol-
lowing a so called log-normal distribution. Such measurements can

2if not otherwise stated, mean refers to arithmetic mean



be normalized by transforming each observation logarithmically.
Such distributions are typically summarized with the log-average,
which is identical to the geometric mean: x̄(g) = exp

h
1
n
Pn

i=1 ln xi

i
.

Normalization If the data is not normally distributed, it can
be normalized by averaging intervals of length k until the result
is normal (following the Central Limit Theorem (CLT)). However,
this technique loses precision, as one cannot make any statements
about the individual measurements, and it is not guaranteed that any
realistic k will su�ce for normalization. Normalization is demon-
strated in Figure 2: The top-left part shows the density function

a) Original b) Log Norm c) Norm K=100 d) Norm K=1000

0

5

10

15

0

10

20

0

10

20

30

0
10
20
30
40

2 3 4 5 6 0.8 1.2 1.6 1.8 1.9 2.0 1.8
0

1.8
5

1.9
0

1.9
5

Latency (us)

De
ns

ity

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●●
●●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●
●●
●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●
●●●●
●●●●●●●
●●●
●●●●
●
●●●
●
●
●
●●
●

●●

●●●●
●●●
●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●
●●●
●●
●●●●●●
●●●●
●●
●

●●●●●
●

●

a) Original b) Log Norm c) Norm K=100 d) Norm K=1000

2
3
4
5
6

0.8

1.2

1.6

1.8

1.9

2.0

1.80

1.85

1.90

1.95

ï�  0  2 ï�  0  2 ï� ï�  0  2  4 ï�  0  2
Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

Figure 2: Normalization of 1M ping-pong samples on Piz Dora.

of a ping-pong latency benchmark with 64B on Piz Dora (cf. Sec-
tion 4.1.2). Below this, we show a Q-Q plot which can be used
to visually inspect the data for normality. It shows the relation
between the quantiles of a standard normal distribution and the
observed distribution; if the two should agree after linearly trans-
forming the values, the points should lie on a straight line. Thus,
the closer the plotted quantile relation is to a straight line, the more
normal the distribution is. The remaining three plots in the top part
of the figure show various normalization strategies with the corre-
sponding Q-Q plots in the lower part.

Large number of samples and the mean The mean is a
summed metric and thus, its distribution asymptotically converges
towards a normal distribution (CLT). Thus, for large enough sam-
ple sizes, one can assume normality for most mean-based metrics.
However, “large enough” depends on the details of the distribution.
Our experiments (Figure 2) and other authors [12] show that the
30-40 samples as indicated in some textbooks [38] are not su�-
cient. We recommend attempting to normalize the samples until a
test of the resulting distribution indicates normality or use the non-
parametric techniques described in the next section.
Rule 6: Do not assume normality of collected data (e.g., based
on the number of samples) without diagnostic checking.

Two papers in our survey use confidence intervals around the mean
but authors do not seem to test the data for normality. The top of
Figure 3 demonstrates how assuming normality can lead to wrong
conclusions: the CI around the mean is tiny while the mean does
not represent the distribution well.

3.1.3 Statistics of Non-normally Distributed Data
Normal distributions are often observed in natural and social sci-

ences where independent sources of errors can add to and remove
from the true quantity. However, normal distributions are only
rarely observed when measuring computer performance, where

most system e↵ects lead to increased execution times. Sources of
error are scheduling, congestion, cache misses etc., typically lead-
ing to multi-modal distributions that are heavily skewed to the right.

Restrictions Nonparametric metrics, such as the median or
other percentiles, do not assume a specific distribution and are
most robust. However, these measures also require independent
and identically distributed (iid) measurements.

Median and quartiles The median of n measurements is the
measurement at position (or rank) n/2 after sorting all data. The
median is also called the 50th percentile denoted as x(50%). The
lower and upper quartiles, or equivalently the 25th and 75th per-
centile, are at rank n/4 and 3n/4. Rank measures are more robust
with regards to outliers but do not consider (include) all measured
values and are harder to interpret mathematically. The quartiles
provide information about the spread of the data and the skew. Dif-
ferent percentiles can be reported with an obvious interpretation.
For example, saying that the 99th percentile of measured execution
times is less than 3 seconds means that at least 99% of all measure-
ment results took at most 3 seconds.

Confidence intervals of the median The width of any CI de-
pends on the variability and the number of measurements. In con-
trast to CIs around the mean that assume a normal distribution, one
cannot calculate standard errors. However, nonparametric CIs can
be computed and have a similar interpretation. These CIs may be
asymmetric if the modeled distribution is asymmetric.

Le Boudec [9] shows that the 1�↵ CI ranges from the measure-
ment at rank
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where z(p) repre-

sents the normal distribution that can be found in tables (e.g., [9,
App. A]). For example, for a 95% CI, z(0.025) = 1.96. We note
that one cannot compute exact CIs because it only considers mea-
sured values as ranks and the resulting bounds can be slightly wider
than necessary (in practice, this e↵ect is usually negligible). Confi-
dence intervals for other percentiles can be computed similarly [9].

On Removing Outliers.
Outliers can impact calculations of statistical measures such as

mean or standard deviation. There is no rigorous mathematical def-
inition which values should be seen as an outlier and such a defi-
nition would always depend on the context. We suggest to avoid
removal of outliers and instead use robust measures such as per-
centiles. However, if outliers must be removed (e.g., if the mean is
the required measure, cf. Section 3.1.2) then we recommend using
Tukey’s method which classifies values that are outside the interval
[x(25%)�1.5(x(75%)� x(25%)), x(75%)+1.5(x(75%)� x(25%))]. We remark
that one can increase Tukey’s constant 1.5 in order to be more con-
servative. In any case, one should report the number of removed
outliers for each experiment.

3.2 Comparing Statistical Data
We know how to derive estimates for the mean and median and

CIs for the reliability of our experiments for each. However, due
to the statistical nature of the measurements, special care needs to
be taken when comparing values because di↵erences in median or
mean may not be statistically significant.

The simplest method is to compare confidence intervals. If 1�↵
confidence intervals do not overlap, then one can be 1�↵ confident
that there is a statistically significant di↵erence. The converse is
not true, i.e., overlapping confidence intervals may still allow the
di↵erence to be statistically significant.

3.2.1 Comparing the Mean
To compare two means with one varying variable, one could use

the t-test to compare two experiments or the one-factor analysis of



variance (ANOVA) which generalizes the t-test to k experiments.
Both require iid data from normal distributions with similar stan-
dard deviations. ANOVA can also be used to compare multiple
factors but this is rare in performance measurements: typically, one
compares the e↵ect of an optimization or system on various appli-
cations. The default null hypothesis assumes equality of all means
and must be rejected to show statistical significance.

ANOVA considers k groups of n measurements each and com-
putes the F test statistic as F = egv/igv where egv =

Pn
i=1 n(x̄i �

x̄)2/(k � 1) represents the inter-group variability and igv =Pk
i=1
Pn

j=1(xi j � x̄i)2/(nk � k) represents the intra-group variability.
The value x̄ represents the overall sample mean of the measure-
ments and x̄i the sample mean of the ith group. The computed F
ratio needs to exceed Fcrit(k� 1, nk� k,↵) to reject the null hypoth-
esis. None of our investigated papers uses statistical arguments to
compare results.

3.2.2 Comparing the Median
The nonparametric Kruskal-Wallis one-way ANOVA test [35]

can be used to test if the medians of experiments following non-
normal distributions with one varying factor di↵er significantly.
The null hypothesis is that all medians are the same. If no two
measurements have exactly the same value, we can compute H =
12/(kn(kn+1))

Pk
i=1 nr̄i�3(kn+1) with r̄i =

Pn
i=0 ri j/n and ri j being

the rank of observation j from group i among all observations. For
large n, the significance can be assessed by comparing with a tab-
ulated �2(k � 1,↵) distribution. Kruskal and Wallis provide tables
for n < 5 [35]. None of the 95 analyzed papers compared medi-
ans in a statistically sound way. Figure 3 shows two distributions
with significantly di↵erent medians at a 95% confidence level even
though many of the 1M measurements overlap.
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Figure 3: Significance of latency results on two systems.

E↵ect Size It has been shown that the tests described above can
provide incorrect results for small e↵ects [29,37,55]. Thus, we rec-
ommend using the e↵ect size instead. The e↵ect size expresses the
di↵erences between estimated means in two experiments relative to
the standard deviation of the measurements: E = (X̄i � X̄ j)/

p
igv.

We refer to Coe [13] for a more extensive treatment.
Rule 7: Compare nondeterministic data in a statistically sound
way, e.g., using non-overlapping confidence intervals or ANOVA.

3.2.3 Quantile Regression
Quantile regression [33] is a powerful method for modeling the

e↵ect of varying a factor on arbitrary quantiles (which includes the
median). It is a nonparametric measure that can be used to look
at extrema. For example, for latency-critical applications, the 99th

percentile is often more important than the mean. Oliveira et al.
show that quantile regression can lead to deep insights into mea-
surement data [16]. Quantile regression (QR) allows us to compare
the e↵ect across various ranks and is thus most useful if the e↵ect
appears at a certain percentile. Typically, quantile regression re-
sults are plotted with the quantiles on the x-axis, while the mean
would present a single value with a confidence interval.

Quantile regression can be e�ciently computed using linear pro-
gramming [33], which is supported by many statistics tools. Fig-
ure 4 shows how the di↵erent quantiles of the latency of the Pilatus
and Piz Dora systems. Piz Dora is used as the base for compari-
son and the “Intercept” shows latency as function of the percentiles
(dots with 95% confidence level) and the mean with a 95% confi-
dence interval (straight and dotted lines). The lower part shows a
similar quantile plot with the di↵erence to the Dora system. The
di↵erence of the means is 0.108µs. The interesting observation in
the QR plot is that low percentiles are significantly slower on Piz
Dora than on Pilatus while high percentiles are faster. So for bad-
case latency-critical applications Pilatus would win even though
median and mean indicate the opposite (statistically significant).

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●
●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1.
6
1.
7
1.
8
1.
9
2.
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Quantiles

Piz Dora (intercept)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

0.
0

0.
1

0.
2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Quantiles

Pilatus (difference to Piz Dora)

Figure 4: Quantile regression comparison of the latencies com-
paring Pilatus (base case or intercept) with Piz Dora.

Rule 8: Carefully investigate if measures of central tendency
such as mean or median are useful to report. Some problems,
such as worst-case latency, may require other percentiles.

4. EXPERIMENTAL DESIGN
Good experimental design is imperative for empirical sciences.

Thus, several books describe general techniques to design repro-
ducible (and thus interpretable) experiments. We recommend fac-
torial design to compare the influence of multiple factors, each at
various di↵erent levels, on the measured performance. This allows
experimenters to study the e↵ect of each factor as well as interac-
tions between factors. We refer to standard textbooks [6,10,42] for
a description of such basic experimental design techniques.

Here, we describe specifics of benchmarking on parallel systems
that are not covered in the general techniques. Specifically, we dis-
cuss how to ensure interpretability, measure and collect data, con-
trolling the experimental setup, and rules for data analysis. We
focus on measuring intervals (e.g., time, energy, cost, or vari-
ous counts) of applications or microbenchmarks. Other techniques
such as tracing or profiling are outside the scope of this paper.

4.1 Designing Interpretable Measurements
The major goal of experimental design for scientific work is to

ensure reproducibility or at least interpretability. This requires that



all significant setup parameters are carefully selected and clearly
documented. The setup determines the elements that are varying
experimental factors and the fixed environment. The evaluate col-
laboratory [7] collects common patterns of non-reproducibility in
computer science research. We believe that it is impossible to de-
sign a complete set of rules because these will always be limited
to the particular research context; here, we discuss common issues
specific to parallel computing.

4.1.1 Measurement Environment
It is often desired to set up a fixed environment with as little

variation as possible in order to focus on a specific factor. For ex-
ample, when conducting scalability experiments, one would like
to only vary the number of CPUs while keeping other parameters
constant. In general, the experimenter needs to consider parameters
such as the allocation of nodes, process-to-node mappings, network
or on-node interference, and other system e↵ects that can possibly
influence the outcome of the experiment. Fixing each of these pa-
rameters may or may not be possible, depending on the setup of the
experimental system. If controlling a certain parameter is not pos-
sible then we suggest randomization following standard textbook
procedures. For example, Hunold et al. [27] randomly change the
execution order within a call to the job launcher. Such random
experiments require to model the randomized parameter as a non-
deterministic element.

4.1.2 Documenting the Setup
Reproducing experiments in HPC is notoriously hard because

hardware is often specialized and impossible to access for the ma-
jority of scientists. Most fixed parameters, such as software, oper-
ating system versions, and compiler flags, that need to be reported
are obvious. However, others, such as exact specifications of ran-
domized inputs or even sharing complete random datasets may be
forgotten easily. The common lack of system access makes it im-
portant that the hardware is described in a way that allows scientists
to draw conclusions about the setting. For example, details of the
network (topology, latency, and bandwidth), the connection bus of
accelerators (e.g., PCIe), or the main memory bandwidth need to be
specified. This enables simple but insightful back of the envelope
comparisons even if the exact setting cannot be reproduced. Fur-
thermore, batch system allocation policies (e.g., packed or scattered
node layout) can play an important role for performance and need
to be mentioned. These are just some examples and good reporting
needs to be designed on a case-by-case basis.

We observed how several authors assumed that mentioning a
well-known system such as NERSC’s Hopper or ORNL’s Titan is
su�cient to describe the experimental setup. This is bad practice
for several reasons: (1) regular software upgrades on these sys-
tems likely change performance observations, (2) it may be impos-
sible for other scientists to determine the exact system parameters,
and (3) implicit assumptions (e.g., that IBM Blue Gene systems are
noise-free) are not always understood by all readers.

Warmup Some programs (especially communication systems)
establish their working state on demand. Thus, to measure the
expected time, the first measurement iteration should be excluded
from the average computation. It will not a↵ect the median or other
ranks if enough measurements are taken to reach a tight CI.

Warm vs. cold cache It is important to consider the state of the
system when the measurement is performed. One of the most criti-
cal states regarding performance is the cache. If small benchmarks
are performed repeatedly, then their data may be in cache and thus
accelerate computations. This may or may not be representative
for the intended use of the code. Whaley and Castaldo [59] show

the impact of cache on measurements of linear algebra codes and
discuss how to flush caches.

Our experimental setup Each node of Piz Daint (Cray XC30)
has an 8-core Intel Xeon E5-2670 CPU with 32 GiB DDR3-1600
RAM, an NVIDIA Tesla K20X with 6 GiB GDDR5 RAM, and uses
Cray’s Programming Environment version 5.1.29. Each node of Piz
Dora (Cray XC40) has two 12-core Intel Xeon E5-2690 v3 CPUs
with 64 GiB DDR4-1600 RAM and uses Cray’s Programming En-
vironment version 5.2.40. Both systems are interconnected by
Cray’s Aries interconnect in a Dragonfly topology. Pilatus has two
8-core Intel Xeon 5-2670 CPUs with 64 GiB DDR3-1600 RAM
per node, is connected with an InfiniBand FDR fat tree topology,
and runs MVAPICH2 version 1.9. All ping-pong results use two
processes on di↵erent compute nodes. For HPL we chose di↵er-
ent allocations for each experiment; all other experiments were re-
peated in the same allocation. Allocated nodes were chosen by the
batch system (slurm 14.03.7). The filesystem configuration does
not influence our results. All codes are compiled with gcc version
4.8.2 using -O3.

4.2 How to Measure
After deciding on the factor(s) to investigate and fixing the envi-

ronment parameters, researchers need to determine the levels (val-
ues) of each factor. For example, for a scalability study, they need
to choose the numbers of processes to run the experiment with.
This again depends on the desired use of the results. It is well
known that several implementations perform better with 2k, k 2 N
processes than with 2k + 1 processes, cf. Figure 5. It needs to be
determined if the experiment should only show performance for
powers-of-two process counts or the general case. This also ap-
plies to other special cases for arbitrary application inputs.
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Figure 5: 1,000 MPI_Reduce runs for di↵erent process counts.

Weak and Strong Scaling Papers should always indicate if ex-
periments are using strong scaling (constant problem size) or weak
scaling (problem size grows with the number of processes). Fur-
thermore, the function for weak scaling should be specified. Most
commonly, the input size is scaled linearly with the number of
processes. However, for non-work conserving algorithms, linear
scaling can be misleading and more appropriate functions should
be used. Also, when scaling multi-dimensional domains, papers
need to document which dimensions are scaled because, depending
on the domain decomposition, this could cause significant perfor-
mance di↵erences (e.g., if not all dimensions are distributed).

Adaptive Level Refinement Our example demonstrates that the
levels of each factor must be selected carefully. With certain as-
sumptions on the parameters, one could use adaptive refinement to
measure levels where the uncertainty is highest, similar to active
learning [50]. SKaMPI [49] uses this approach assuming parame-
ters are linear.



Rule 9: Document all varying factors and their levels as well as
the complete experimental setup (e.g., software, hardware, tech-
niques) to facilitate reproducibility and provide interpretability.

This rule is more generic as the experimental design and reporting
needs to be tailored to the specific experiment. Ideally, researchers
release the source code used for the experiment or at least the input
data and their generators.

4.2.1 Measuring Time in Parallel Systems
After factors and levels have been decided, one needs to choose

a measurement mechanism. We only describe time and assume that
other mechanisms (e.g., energy) require similar considerations. We
distinguish between two types of measurements: (1) full bench-
marks which are executed multiple times in a controlled environ-
ment and (2) kernel benchmarks where parts of applications are
measured during execution. Full benchmarks (e.g., microbench-
marks) can be started synchronously while kernel benchmarks are
executed by the application control flow. Whaley and Castaldo [59]
discuss common issues when timing serial systems; we extend the
discussion to parallel systems.

Measurement perturbances Measuring run times induces
overheads for reading the timer, and so researchers need to ensure
that the timer overhead is only a small fraction (we suggest <5%)
of the measurement interval. Furthermore, researchers need to en-
sure that the timer’s precision is su�cient to measure the interval
(we suggest 10x higher). Microbenchmarks can be fully controlled
and multiple iterations can be measured in a single interval, thus,
timer overhead and precision is less important. For kernel bench-
marks, timer precision and overhead limit the smallest measurable
interval. It is important to consider the impact of system noise in
the experimental design where small perturbations in one process
can propagate to other processes.

Measuring multiple events Microbenchmarks can simply be
adapted to measure multiple events if the timer resolution or over-
head are not su�cient. This means to measure time for k executions
and compute the sample mean x̄k = T/k and repeat this experiment
n times and compute statistics over n samples. However, this loses
resolution in the analysis: one can no longer compute the confi-
dence interval for a single event. Furthermore, rank measures such
as percentiles and median can only be computed for blocks of k
measurements. Thus, we recommend measuring single events to
allow the computation of confidence intervals and exact ranks.

Parallel time Most of today’s parallel systems are asynchronous
and do not have a common clock source. Furthermore, clock drift
between processes could impact measurements and network la-
tency variations make time synchronization tricky [25].

Many evaluations use an (MPI or OpenMP) barrier to synchro-
nize processes for time measurement. This may be unreliable be-
cause neither MPI nor OpenMP provides timing guarantees for
their barrier calls. While a barrier commonly synchronizes pro-
cesses enough, we recommend checking the implementation. For
accurate time synchronization, we propose to use the simple delay
window scheme [25,62]. In this scheme, a master synchronizes the
clocks of all processes and broadcasts a common start time for the
operation. The start time is su�ciently far in the future that the
broadcast will arrive before the time itself. Each process then waits
until this time and the operation starts synchronously.

Summarize times across processes After measuring n events
on P processes the question arises how to summarize the nP values.
This depends on the purpose of the summary; sometimes a simple
minimum or maximum across the processes seems su�cient. We
recommend avoiding such non-robust measures. Instead, we rec-
ommend performing an ANOVA test to determine if the timings of

di↵erent processes are significantly di↵erent. If the test indicates
no significant di↵erence, then all values can be considered from
the same population. Otherwise, more detailed investigations may
be necessary in order to choose a suitable summary. Common sum-
maries across processes are maximum or median. Figure 6 shows
the measured timings of 1,000 reductions with 64 processes on the
Piz Daint system with a significant di↵erence for some processes.
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Figure 6: Variation across 64 processes in MPI_Reduce.

Rule 10: For parallel time measurements, report all measure-
ment, (optional) synchronization, and summarization techniques.

For example, we plot the maximum across processes for the
reduction time in Figure 5 to assess worst-case performance.

4.2.2 Number of Measurements
Measurements on supercomputers can be expensive, especially if

they require the full machine. Thus, careful planning of the number
of needed measurements is needed. At the same time, one needs
to guarantee enough measurements in order to make statistically
sound conclusions. We have seen that the CI is a good measure for
the confidence in the results. We now show how the CI can be used
to compute the number of measurements needed to achieve a speci-
fied error certainty in the result. The error certainty is expressed by
two values: (1) the confidence level 1�↵ which we know from CIs,
and (2) the allowed error level 1�e relative to the mean or median.

Normally distributed data For a normal distribution, one can
compute the number of required measurements based on previous
measurements. The acceptable error 1�e (e.g., 10%) defines the
confidence interval [x̄ � ex̄, x̄ + ex̄]. A simple manipulation of the
CI equations (cf. Section 3.1.2) results in n =

⇣
s·t(n�1,↵/2)

ex̄

⌘2
.

Non-normally distributed data If the distribution is unknown,
one cannot easily compute the required number of measurements
analytically. However, it is possible to check if a given set of mea-
surements satisfies the required accuracy. Thus, we recommend
recomputing the 1�↵ CI (cf. Section 3.1.3) after each ni = i · k,
i 2 N measurements and stop the measurement once the required
interval is reached. We recommend choosing k based on the cost
of the experiment, e.g., k = 1 for expensive runs. Furthermore.
we note that n > 5 measurements are needed to assess confidence
intervals nonparametrically.

5. REPORTING RESULTS
Correctly communicating experimental results is at least as im-

portant as rigorous measurements. The communication should fa-
cilitate two purposes: (1) provide insight and intuition of the be-
havior of the system (interpretability) and (2) enable reproduction
by the community.

5.1 Simple Bounds Modeling
Ullmann [57] argues that experiments alone have limited value

as a validation for research because experiments are limited to spe-
cific and often small sets of variants and can thus not represent the
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Figure 7: Time and speedup bounds models for parallel scaling and di↵erent plot types. Experiments for (a) and (b) were repeated
ten times each and the 95% CI was within 5% of the mean. Plot (c) shows the latency of 106 64B ping-pong experiments on Piz Dora.

general case. Conversely, analytic performance models are most
general but maybe inaccurate because they have to ignore many de-
tails of the system. We suggest to combine simple analytic or semi-
analytic modeling with rigorous measurements in order to put the
results into perspective [24]. For example, a simple but powerful
form of modeling is to consider the achieved performance relative
to an upper bound. Historically, this is done relative to the achiev-
able peak floating point performance [23]. Recently, floating point
performance has become less important and other system parame-
ters, such as memory or network bandwidth limit performance.

In general, we can model any computer system’s capabilities
as a k-dimensional space where each dimensions represents one
particular functionality or feature of the machine. We denote a
specific machine model by � = (p1, p2, . . . , pk). Features are
typically expressed as rates and each pi represents the maximum
achievable performance of that feature on the machine. We as-
sume that achieved performance of each feature can be measured,
for example, an application’s floating point rate or memory band-
width. Thus, an application measurement can be represented as
⌧ = (r1, r2, . . . , rk) and ri  pi. An application’s performance can
now be expressed in terms of the peak rates as a dimensionless
metric P = (r1/p1, r2/p2, . . . , rk/pk).

Such a normalized view has several advantages, for example, it
is easy to determine which (set of) feature(s) is a likely bottleneck.
The application’s requirements vector can be used to determine the
balancedness of a machine for a specific program or a set of pro-
grams. It can even be employed to proof optimality of a given
implementation if (1) r j/pj is close to one and (2) one can show
that the application cannot be solved with less operations of the
jth feature. It is advisable to limit the set of features to the most
significant ones, typical features are memory bandwidth and float-
ing point rates as popularized by the roofline model (k = 2) [60].
Sometimes, analytical upper bounds for � are far from reality (the
vendor-specified numbers are only guarantees to not be exceeded).
In these cases, one can parametrize the pi using carefully crafted
and statistically sound microbenchmarks.

For parallel codes, one could model the scalability as a feature,
however, this requires special care. We distinguish three cases of
bounds models with growing complexity:

Ideal linear speedup The simplest upper performance bound
is that p processes cannot speed up calculations more than p times
(ideal scaling). Super-linear scaling which has been observed in
practice is an indication of suboptimal resource use for small p.

Serial overheads (Amdahl’s law) If the fraction of parallelized
code b is known, then one can show a tighter upper bound based on
Amdahl’s law. Here, the speedup is limited to (b + (1 � b)/p)�1.

Parallel overheads Some parallel operations cause overheads
that grow with the number of processes, for example, a reduction

operation cannot execute faster than ⌦(log p). If the parallelization
overheads are known, then one can specify a tighter upper bound
which can be combined with Amdahl’s law. Figure 7 shows scal-
ing results from calculating digits of Pi on Piz Daint. The code
is fully parallel until the execution of a single reduction; the base
case takes 20ms of which 0.2ms is caused by a serial initializa-
tion (b=0.01). The three lines show the bounds for ideal speedup,
serial overheads, and parallel overheads. The parallel overheads
assume the following (empirical) piecewise model for the final re-
duction: f (p  8) = 10ns, f (8 < p  16) = 0.1ms · log2(p),
f (p > 16) = 0.17ms · log2(p) (the three pieces can be explained by
Piz Daint’s architecture). The parallel overhead bounds model ex-
plains nearly all the scaling observed and provides highest insight.
Rule 11: If possible, show upper performance bounds to facili-
tate interpretability of the measured results.

5.2 Graphing Results
“Use a picture. It’s worth a thousand words.” (1911). Indeed,

there are many guidelines and textbooks for graphing information
exist [18, 56]. Here, we focus on graphing techniques that we find
useful to communicate measurement results in parallel comput-
ing. Producing interpretable and informative graphics is an art that
needs to be adapted to each specific case. For example, the choice
between line-plots, histograms, boxplots, and violin plots depends
on the number of levels and factors to show. Here, we show some
general guidelines for advanced plotting techniques.

Box plots An example box plot is shown in the left side of Fig-
ure 7(c). Box plots [40] o↵er a rich set statistical information for
arbitrary distributions: the box indicates the 25% (lower border)
and the 75% (upper border) percentile. The middle bar denotes the
median (50% percentile). The optional whiskers can plot di↵er-
ent metrics such as min and max observations, various percentiles
(90%, 99%), or the lowest observation in the 1.5 inter-quartile-
range (IQR) (cf. outliers). Thus, the semantics of the whiskers must
be specified. Furthermore, notched boxplots indicate a range of
statistical significance, similar to a confidence interval around the
median (typically 95%). Thus, non-overlapping notches indicate
significant di↵erences.

Histograms and violin plots Histograms show the complete
distribution of data. Similarly, violin plots, as shown in the middle
of Figure 7(c), depict the density distribution for all observations.
They also typically show the median as well as the quartiles, similar
to the boxplot. Violin plots contain thus more information than
box plots but require more horizontal space to enable interpretation.
Box plots and violin plots can also be combined in a single plot as
shown in the right part of Figure 7(c).

Plotting summary statistics Summary statistics such as mean



and median can be plotted in di↵erent ways, for example, geomet-
ric and arithmetic mean can be added to box and violin plots as
shown in Figure 7(c). Typically means are plotted as points or bar
charts. Points should only be connected if they indicate a trend
and values between two points are expected to follow the line (e.g.,
scaling with process counts). Otherwise, bar charts may be more
appropriate. We recommend reviewing Crowl [14] for a discussion
of common mistakes when plotting summary statistics in parallel
computing.

Plotting CIs Confidence intervals should be included in plots at
each of the measurement points. In cases where the CI is extremely
narrow and would only clutter the graphs, it should be omitted and
reported in the text. Another possibility could be to plot di↵erent
confidence intervals for di↵erent measurement and mark them in
the legend (e.g., (*) for 90%, (**) for 95%, or (***) for 99%) as
similar to p-values by Hunold et al. [27] (Figure 7).
Rule 12: Plot as much information as needed to interpret the
experimental results. Only connect measurements by lines if they
indicate trends and the interpolation is valid.

This rule does not require to always plot confidence intervals or
other notions of spread/error. If these are always below a bound
and would clutter the graph, they can simply be stated in the
describing text or figure caption.

6. LibSciBench
To facilitate the adoption of statistically sound measurements of

parallel computations, we develop a C library called LibSciBench
that automates many of the guidelines and processes described in
this paper. A performance measurement library is more flexible
than existing benchmark suites. It can be linked to any application
to either measure execution times or it can be used as a building
block for a new benchmark suite. The library seamlessly integrates
with MPI and OpenMP applications and can easily be extended to
new models of parallelism.

Timers LibSciBench o↵ers high-resolution timers for many ar-
chitectures (currently x86, x86-64, PowerPC, and Sparc). The li-
brary automatically reports the timer resolution and overhead on
the target architecture. Furthermore, its integrated low-overhead
data collection mechanism monitors the runtime overhead and pro-
vides warnings if it exceeds a certain level. LibSciBench has sup-
port for arbitrary PAPI counters.

Synchronization LibSciBench o↵ers a window-based synchro-
nization mechanism for OpenMP and MPI to synchronize pro-
cesses based on real-time.

Data Analysis LibSciBench’s low-overhead data collection
mechanism produces datasets that can be read directly with estab-
lished statistical tools such as GNU R. LibSciBench o↵ers several
R scripts to check for normality, compute CIs, perform ANOVA
tests, and quantile regression. Furthermore, LibSciBench’s R
scripts support the generation of Q-Q plots, box plots, violin plots,
and mixed plots.

7. RELATED WORK
Many e↵orts have focused on high-level issues such as a good se-

lection of representative problems or programs for (parallel) com-
puters [5, 46]; many of these are mentioned in our paper. Here,
we provide a wider view. For example, Hockney [23] provides
an overview of parallel computer benchmarking without consider-
ing detailed statistical techniques. Bailey provides common guide-
lines for reporting benchmarks in technical computing [4], follow-
ing his humorous summary of the state of the art [3]. Several works
(e.g., [21,27,49]) describe how to measure the performance of MPI

functions accurately. Pakin defines various languages for perfor-
mance testing and reproducibility [44, 45]. Other fields of experi-
mental computer science struggle with similar issues and designed
basic rules specific to their environment (e.g., [8, 32]). Stodden et
al. [54] advocate a broad culture change to foster reproducibility in
computational science. Hunold et al. show that the state of the art in
the MPI community lacks [11]. They also discuss reproducibility
of parallel computing research and suggest to adopt Drummond’s
“scientific replicability” [28]. We go quite a bit further and and sim-
ply advocate clear documentation to ensure interpretability. While
many of these e↵orts have established valuable state of the prac-
tice, they did not come to a general consensus, and we so believe
that it will be prohibitively hard to generate a complete checklist
for experimental design in HPC.

We provide minimal guidelines for experimental design and fo-
cus on the more constrained topic of interpretable benchmarking
where it seems easier to agree on a common set of techniques.
More general guidelines (not specific to HPC) have been collected
in the books of Lilja [38] and Jain [30]. However, some of their
recommended data collection and reporting practices do not nec-
essarily apply to HPC. More advanced statistical techniques such
as bootstrap [15, 17] are beyond the scope of our work. A more
general overview of experimental design and the scientific method
is provided by Kirkup [31] or Wilson [61], respectively.

8. CONCLUSIONS
We present our first attempt to specify ground rules and guide-

lines for interpretable benchmarking of parallel systems. We intend
to establish a minimal base for improving the quality in the field
and hope to initiate a wider debate before the HPC community can
adapt definitive guidelines. We do not suggest that our guidelines
are complete, nor that they will solve all the problems associated
with empirical research in parallel computing. However, this pa-
per could serve as a reference for minimal quality in conducting
and reporting experiments in parallel computing if all guidelines
are followed carefully. For example, authors could ensure readers
that they follow all rules and guidelines stated in this paper.

Exact reproduction of experiments on large parallel computers is
close to impossible. Thus, we introduce the notion of interpretabil-
ity which is a weaker form of reproducibility where a scientist can
make his own conclusions or use the results in a similar setting. En-
suring interpretability requires to report as much information about
nondeterministic measurements as needed for a statistically sound
interpretation of the results. To facilitate the collection and report-
ing of interpretable data, we provide a portable and flexible mea-
surement and data-analytics library that can be easily adapted to
many experimental settings. Our library-based approach integrated
with mature statistical analysis tools such as R saves time and im-
proves the interpretability of benchmark results.

We feel strongly that, as a community, adopting these basic rules
will both improve the quality of our research, and also the extent to
which it can serve as a sound basis for future work.
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