Lecture 9: Oblivious and non-oblivious algorithms

Teaching assistant: Salvatore Di Girolamo

Motivational video: https://www.youtube.com/watch?v=qx2dRIQXnbs
How many measurements are needed?

- **Measurements can be expensive!**
 - Yet necessary to reach certain confidence

- **How to determine the minimal number of measurements?**
 - Measure until the confidence interval has a certain acceptable width
 - For example, measure until the 95% CI is within 5% of the mean/median
 - Can be computed analytically assuming normal data
 - Compute iteratively for nonparametric statistics

- **Often heard: “we cannot afford more than a single measurement”**
 - E.g., Gordon Bell runs
 - Well, then one cannot say anything about the variance

 Even 3-4 measurement can provide very tight CI (assuming normality)
 Can also exploit repetitive nature of many applications
Experimental design

I don’t believe you, try other numbers of processes!

Rule 9: Document all varying factors and their levels as well as the complete experimental setup (e.g., software, hardware, techniques) to facilitate reproducibility and provide interpretability.

- We recommend factorial design
- Consider parameters such as node allocation, process-to-node mapping, network or node contention
 - If they cannot be controlled easily, use randomization and model them as random variable
- This is hard in practice and not easy to capture in rules
Time in parallel systems

My simple broadcast takes only one latency!

That’s nonsense!

But I measured it so it must be true!

Measure each operation separately!

t = -MPI_Wtime();
for(i=0; i<1000; i++) {
 MPI_Bcast(...);
}
t += MPI_Wtime();
t /= 1000;
Rule 10: *For parallel time measurements, report all measurement, (optional) synchronization, and summarization techniques.*

- Measure events separately
 - Use high-precision timers
 - Synchronize processes

- Summarize across processes:
 - Min/max (unstable), average, median – depends on use-case
Rule 11: *If possible, show upper performance bounds to facilitate interpretability of the measured results.*

- **Model computer system as k-dimensional space**
 - Each dimension represents a capability
 - *Floating point, Integer, memory bandwidth, cache bandwidth, etc.*
 - Features are typical rates
 - Determine maximum rate for each dimension
 - *E.g., from documentation or benchmarks*

- **Can be used to proof optimality of implementation**
 - If the requirements of the bottleneck dimension are minimal
My most common request was “show me the data”

Rule 12: Plot as much information as needed to interpret the experimental results. Only connect measurements by lines if they indicate trends and the interpolation is valid.
Administrivia

- **Final project presentation: next Monday 12/17 during lecture**
 - Report will be due in January!

 Starting to write early is very helpful --- write – rewrite – rewrite (no joke!)

 - Coordinate your talk! You have 10 minutes (8 talk + 2 Q&A)

 What happened since the intermediate report?

 Focus on the key aspects (time is tight)!

 Try to wrap up – only minor things left for final report.

 Engage the audience 😊

- **Send slides by Sunday night (11:59pm Zurich time) to Salvatore!**

 We will use a single (windows) laptop to avoid delays when switching

 Expect only Windows (powerpoint) or a PDF viewer

 The order of talks will again be randomized for fairness
Review of last lecture(s)

- **Impossibility of wait-free consensus with atomic registers**
 - “perhaps one of the most striking impossibility results in Computer Science” (Herlihy, Shavit)

- **Large-scale locks**
 - Scaling MCS to thousands of nodes with (MPI) RMA

- **Oblivious algorithms**
 - Execution oblivious vs. structural oblivious
 - Why do we care about obliviousness?
 - Strict optimality of work and depth – reduction 😊 – scan 😞
 - Linear scan, tree scan, dissemination scan, surprising work-depth tradeoff $W+D \geq 2n-2$

- **I/O complexity**
 - The red-blue pebble game (four rules: input, output, compute, delete)
 - S partitioning proof
 - Geometric arguments for dense linear algebra – example matrix multiplication

 \[\text{Loomis Whitney inequality: } |V| \leq \sqrt{|V_x| + |V_y| + |V_z|} \text{ (a set is smaller than sqrt of the sum of orthogonal projections)} \]

 - Simple recomputation – trade off I/O for compute
Learning goals for today

- **Strict optimality**
 - Work/depth tradeoffs and bounds
 - Applications of prefix sums
 - *Parallelize seemingly sequential algorithms*

- **Oblivious graph algorithms**
 - Shortest paths
 - Connected components

- **Nonoblivious algorithms**
 - Sums and prefix sums on linked lists
 - Connected components

- **Distributed algorithms**
 - Broadcast in alpha-beta and LogP
DPHPC Overview

- locality
 - caches
 - memory hierarchy
- parallelism
 - vector ISA
 - shared memory
 - distributed memory
- cache coherency
 - memory models
 - locks
 - lock free
 - wait free
 - linearizability
- distributed algorithms
- group communications

- Amdahl's and Gustafson's law
 - memory
 - $\alpha - \beta$
 - PRAM
 - LogP

- I/O complexity
- balance principles I
- Little's Law
- balance principles II
- scheduling
Recap: Work-depth tradeoff in parallel prefix sums

- Obvious question: is there a depth- and work-optimal algorithm?
 - This took years to settle! The answer is surprisingly: no
 - We know, for parallel prefix: \(W + D \geq 2n - 2 \)

Output tree:
- leaves are all inputs, rooted at \(x_n \)
- binary due to binary operation
- \(W = n - 1, D = D_o \)

Input tree:
- rooted at \(x_1 \), leaves are all outputs
- not binary (simultaneous read)
- \(W = n - 1 \)

Ridge can be at most \(D_o \) long!
Now add trees and subtract shared vertices:
\[
(n - 1) + (n - 1) - D_o = 2n - 2 - D_o \leq W
\]
q.e.d.
Work-Depth Tradeoffs and deficiency

“The deficiency of a prefix circuit c is defined as $\text{def}(c) = W_c + D_c - (2n - 2)$”

Latest 2006 result for zero-deficiency construction for $n > F(D + 3) - 1$ ($f(n)$ is inverse)

From Zhu et al.: “Construction of Zero-Deficiency Parallel Prefix Circuits”, 2006
Work- and depth-optimal constructions

- **Work-optimal?**
 - Only sequential! Why?
 - $W = n - 1$, thus $D = 2n - 2 - W = n - 1$ q.e.d.

- **Depth-optimal?**
 - Ladner and Fischer propose a construction for work-efficient circuits with minimal depth $D = \lceil \log_2 n \rceil$, $W \leq 4n$
 - *Simple set of recursive construction rules (too boring for class, check 1980’s paper if needed)*
 - *Has an unbounded fan-out! May thus not be practical*

- **Depth-optimal with bounded fan-out?**
 - Some constructions exist, interesting open problem
 - Nice research topic to define optimal circuits
But why do we care about this prefix sum so much?

- It’s the simplest problem to demonstrate and prove W-D tradeoffs
 - And it’s one of the most important parallel primitives

- Prefix summation as function composition is extremely powerful!
 - Many seemingly sequential problems can be parallelized!

- Simple first example: binary adder – \(s = a + b \) (n-bit numbers)
 - Starting with single-bit (full) adder for bit \(i \)

\[
\begin{align*}
 c_{in,i} &\quad \rightarrow \quad a_i \quad b_i \quad \rightarrow \quad c_{out,i} \\
 c_{in,i} &\quad \rightarrow \quad s_i \\
\end{align*}
\]

Question: what are the functions for \(s_i \) and \(c_{out,i} \)?

\[
\begin{align*}
 s_i &= a_i \text{ xor } b_i \text{ xor } c_{in,i} \\
 c_{out,i} &= a_i \text{ and } b_i \text{ or } c_{in,i} \text{ and } (a_i \text{ xor } b_i)
\end{align*}
\]

Show example 4-bit addition!

Question: what is work and depth?

Example 4-bit ripple carry adder

source: electronics-tutorials.ws
Seems very sequential, can this be parallelized?

- We only want s_i!
 - $c_{out,i} = a_i$ and b_i or $c_{in,i}$ and $(a_i \ XOR \ b_i)$
 - Requires $c_{in,1}, c_{in,2}, \ldots, c_{in,n}$ though \otimes

- Carry bits can be computed with a scan!
 - Model carry bit as state starting with 0
 - Encode state as 1-hot vector: $q_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $q_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 - Each full adder updates the carry bit state according to a_i and b_i
 - State update is now represented by matrix operator, depending on a_i and b_i ($M_{a_ib_i}$):
 $$M_{00} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \quad M_{01} = M_{10} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad M_{11} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$$
 - Operator composition is defined on algebraic ring ($\{0, 1, or, and\}$) – i.e., replace “+” with “and” and “*” with “or”
 - Prefix sum on the states computes now all carry bits in parallel!

- Example: $a=011$, $b=101 \rightarrow M_{11}, M_{10}, M_{01}$
 - Scan computes: $M_{11} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$; $M_{11}M_{10} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$; $M_{11}M_{10}M_{01} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ in parallel
 - All carry states and s_i can now be computed in parallel by multiplying scan result with q_0
Any time a sequential chain can be modeled as function composition!

- Let f_1, \ldots, f_n be an ordered set of functions and $f_0(x) = x$
- Define ordered function compositions: $f_1(x); f_2(f_1(x)); \ldots; f_n(\ldots f_1(x))$
- If we can write function composition $g(x) = f_i(f_{i-1}(x))$ as $g = f_i \circ f_{i-1}$ then we can compute \circ with a prefix sum!

 We saw an example with the adder (M_{ab} were our functions)

Example: linear recurrence $f_i(x) = a_if_{i-1}(x) + b_i$ with $f_0(x)=x$

- Write as matrix form $f_i(x) = \begin{pmatrix} a_i & b_i \\ 0 & 1 \end{pmatrix} f_{i-1}(x)$
- Function composition is now simple matrix multiplication!

 For example: $f_2(x) = \begin{pmatrix} a_2 & b_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 & b_1 \\ 0 & 1 \end{pmatrix} f_0(x) = \begin{pmatrix} a_1a_2 & a_2b_1 + b_2 \\ 0 & 1 \end{pmatrix} (x)$

Most powerful! Homework:

- Parallelize tridiagonal solve (e.g., Thomas' algorithm)
- Parallelize string parsing
Another use for prefix sums: Parallel radix sort

- **Radix sort works bit-by-bit**
 - Sorts k-bit numbers in k iterations
 - In each iteration i stably sort all values by the i-th bit
 - Example, $k=1$:
 - Iteration 0: 101 111 010 011 110 001
 - Iteration 1: 010 110 101 111 011 001
 - Iteration 2: 101 001 010 110 111 011
 - Iteration 3: 001 010 011 101 110 111

- **Now on n processors**
 - Each processor owns single k-bit number, each iteration

    ```
    low = prefix_sum(!bit, sum)
    high = n+1-backwards_prefix_sum(bit, sum)
    new_idx = (bit == 0) : low ? high
    b[new_idx] = a[i]
    swap(a,b)
    ```

 Show one example iteration!

 Question: work and depth?
Oblivious graph algorithms

- Seems paradoxical but isn’t (may just not be most efficient)
 - Use adjacency matrix representation of graph – “compute with all zeros”

Unweighted graph – binary matrix

Weighted graph – general matrix
Algebraic semirings

- A semiring is an algebraic structure that
 - Has two binary operations called “addition” and “multiplication”
 - Addition must be associative \(((a+b)+c = a+(b+c))\) and commutative \(((a+b)=b+a))\) and have an identity element
 - Multiplication must be associative and have an identity element
 - Multiplication distributes over addition \((a*(b+c) = a*b+a*c)\) and multiplication by additive identity annihilates
 - Semirings are denoted by tuples \((S, +, *, 0, 1)\)
 - “Standard” ring of rational numbers: \((\mathbb{R}, +, *, 0, 1)\)
 - Boolean semiring: \((\{0,1\}, \lor, \land, 0, 1)\)
 - Tropical semiring: \((\mathbb{R} \cup \{\infty\}, \min, +, \infty, 0)\) (also called min-plus semiring)
Oblivious shortest path search

- Construct distance matrix from adjacency matrix by replacing all off-diagonal zeros with ∞
- Initialize distance vector d_0 of size n to ∞ everywhere but zero at start vertex
 - E.g., $d_0 = (\infty, 0, \infty, \infty, \infty)^T$
 - Show evolution when multiplied!

- SSSP can be performed with $n+1$ matrix-vector multiplications!
 - Question: total work and depth?
 \[W = O(n^3), \quad D = O(n \log n) \]
 - Question: Is this good? Optimal?
 \[
 Dijkstra = O(|E| + |V| \log |V|)
 \]

- Homework:
 - Define a similar APSP algorithm with
 \[W = O(n^3 \log n), \quad D = O(\log^2 n) \]
Oblivious connected components

- **Question:** How could we compute the transitive closure of a graph?
 - Multiply the matrix $(A + I)$ n times with itself in the Boolean semiring!
 - Why?

 Demonstrate that $(A + I)^2$ has 1s for each path of at most length 1
 By induction show that $(A + I)^k$ has 1s for each path of at most length k

- **What is work and depth of transitive closure?**
 - Repeated squaring! $W = O(n^3 \log n)$ $D = O(\log^2 n)$

- **How to get to connected components from a transitive closure matrix?**
 - Each component needs unique label
 - Create label matrix $L_{ij} = j$ iff $(A_I)^n_{ij} = 1$ and $L_{ij} = \infty$ otherwise
 - For each column (vertex) perform min-reduction to determine its component label!
 - Overall work and depth?
 $W = O(n^3 \log n)$, $D = O(\log^2 n)$
Many if not all graph problems have oblivious or tensor variants!

- Not clear whether they are most efficient
 - Efforts such as GraphBLAS exploit existing BLAS implementations and techniques

- Generalizations to other algorithms possible
 - Can everything be modeled as tensor computations on the right ring?
 - E. Solomonik, TH: “Sparse Tensor Algebra as a Parallel Programming Model”
 - Much of machine learning/deep learning is oblivious

- Many algorithms get non-oblivious though
 - All sparse algorithms are data-dependent!
 - E.g., use sparse graphs for graph algorithms on semirings (if $|E| < |V|^2 / \log |V|$)

 May recover some of the lost efficiency by computing zeros!

- Now moving to non-oblivious 😊
Nonoblivious parallel algorithms

- **Outline:**
 - Reduction on a linked list
 - Prefix sum on a linked list
 - Nonoblivious graph algorithms - connected components
 - Conflict graphs of bounded degree

- **Modeling assumptions:**
 - When talking about work and depth, we assume each loop iteration on a single PE is unit-cost (may contain multiple instructions!)
Reduction on a linked list

- **Given:** n values in linked list, looking for sum of all values

- **Sequential algorithm:**

```c
typedef struct elem {
    struct elem *next;
    int val
} elem;

set S={all elems}
while (S != empty) {
    pick some i ∈ S;
    S = S - i.next;
    i.val += i.next.val;
    i.next = i.next.next;
}
```

A set $I \subseteq S$ is called an **independent set** if no two elements in I are connected!

Are the following sets independent or not?
- {1}
- {1,5}
- {1,5,3}
- {7,6,5}
- {7,6,1}

Class question: What is the maximum size of an independent set of a linked list with n elements?
Parallel reduction on a linked list

- Given: n values in linked list, looking for sum of all values

- Parallel algorithm:

```c
typedef struct elem {
    struct elem *next;
    int val
} elem;

set S={all elems}
while (S != empty) {
    pick independent subset I ∈ S;
    for(each i ∈ I do in parallel) {
        S = S – i.next;
        i.val += i.next.val;
        i.next = i.next.next;
    }
}
```

A subset \(I \subset S \) is called an **independent set** if no two elements in \(I \) are connected!

Basically the same algorithm, just working on independent subsets!

Class question: Assuming picking a maximum \(I \) is free, what are work and depth?

\[
W = n - 1, \quad D = \lceil \log_2 n \rceil
\]

Is this optimal?
How to pick the independent set I?

- That’s now the whole trick!
 - It’s simple if all linked values are consecutive in an array – same as “standard” reduction!

 \[\text{Can compute independent set up-front!} \]

- Irregular linked list though?
 - Idea 1: find the order of elements \rightarrow requires parallel prefix sum, D’oh!
 - Observation: if we pick $|I| > \lambda|V|$ in each iteration, we finish in logarithmic time!

- Symmetry breaking:
 - Assume p processes work on p consecutive nodes
 - How to find the independent set?

 \[\text{They all look the same (well, only the first and last differ, they have no left/right neighbor)} \]

 \[\text{Local decisions cannot be made} \]

- Introduce randomness to create local differences!
 - Each node tosses a coin \rightarrow 0 or 1
 - Let I be the set of nodes such that v drew 1 and $v.next$ drew 0!

 \[\text{Show that } I \text{ is indeed independent!} \]

 \[\text{What is the probability that } v \in I? \quad P(v \in I) = \frac{1}{4} \]
Optimizations

- As the set shrinks, the random selection will get less efficient
 - When p is close to n ($|S|$) then most processors will fail to make useful progress
 - Switch to a different algorithm
- Recursive doubling!

```
for (i=0; i <= \lfloor \log_2 n \rfloor; ++i) {
  for (each elem do in parallel) {
    elem.val += elem.next.val;
    elem.next = elem.next.next;
  }
}
```

- Show execution on our example!
- Algorithm computes prefix sum on the list!

Result at original list head is overall sum

Class question: What are work and depth?

\[W = n \lfloor \log_2 n \rfloor, D = \lfloor \log_2 n \rfloor \]
Didn’t we just see it? Yes, but work-inefficient (if $p \ll n$)! We extend the randomized symmetry-breaking reduction algorithms

- First step: run the reduction algorithm as before
- Second step: reinsert in reverse order of deletion

When reinserting, add the value of their successor
Prefix summation on a linked list

- Didn’t we just see it? Yes, but work-inefficient (if $p \ll n$)!
 We extend the randomized symmetry-breaking reduction algorithms
 - First step: run the reduction algorithm as before
 - Second step: reinsert in reverse order of deletion
 When reinserting, add the value of their successor

- Class question: how to implement this in practice?
 - Either recursion or a stack!
 - Design the algorithm as homework (using a parallel for loop)
Finding connected components as example

A **connected component** of an undirected graph is a subgraph in which any two vertices are connected by a path and no vertex in the subgraph is connected to any vertices outside the subgraph. Each undirected graph \(G = (V,E) \) contains one or multiple (at most \(|V|\)) connected components.

- **Straight forward and cheap to compute sequentially** – question: how?
 - Any traversal algorithm in work \(O(|V| + |E|) \)
 - *Seemingly trivial - becomes very interesting in parallel*
 - Our oblivious semiring-based algorithm was \(W = O(n^3 \log n), D = O(\log^2 n) \)
 - *FAR from work optimality! Question: can we do better by dropping obliviousness?*

- **Let’s start simple** – assuming concurrent read/write is free
 - Arbitrary write wins

- **Concept of supervertices**
 - A supervertex represents a set of vertices in a graph
 1. Initially, each vertex is a (singleton) supervertex
 2. Successively merge neighboring supervertices
 3. When no further merging is possible \(\rightarrow \) each supervertex is a component
 - Question is now only about the merging strategy

A fixpoint algorithm proceeds iteratively and monotonically until it reaches a final state that is not left by iterating further.
Shiloach/Vishkin’s algorithm

Pointer graph/forest:
- Define pointer array P, $P[i]$ is a pointer from i to some other vertex
- We call the graph defined by P (excluding self loops) the pointer graph
- During the algorithm, $P[i]$ forms a forest such that $\forall i: (i, P[i])$ there exists a path from i to $P[i]$ in the original graph!
- Initially, all $P[i] = i$
- The algorithm will run until each forest is a directed star pointing at the (smallest-id) root of the component

Supervertices:
- Initially, each vertex is its own supervertex
- Supervertices induce a graph - S_i and S_j are connected iff $\exists (u, v) \in E$ with $u \in S_i$ and $v \in S_j$
- A supervertex is represented by its tree in P

![Graph with single component](image1.png)

![Possible forest formed by P](image2.png)

![Star formed by P](image3.png)
Shiloach/Vishkin’s algorithm – key components

- **Algorithm proceeds in two operations:**
 - Hook – merge connected supervertices (must be careful to not introduce cycles!)
 - Shortcut – turn trees into stars

 Repeat two steps iteratively until fixpoint is reached!

- **Correctness proofs:**
 - Lemma 1: The shortcut operation converts rooted trees to rooted stars. Proof: obvious
 - Theorem 1: The pointer graph always forms a forest (set of rooted trees). Proof: shortcut doesn’t violate, hook works on rooted stars, connects only to smaller label star, no cycles
Shiloach/Vishkin’s algorithm – key components

- Algorithm proceeds in two operations:
 - Hook – merge connected supervertices (must be careful to not introduce cycles!)
 - Shortcut – turn trees into stars

 \textit{Repeat two steps iteratively until fixpoint is reached!}

- Performance proofs:
 - Lemma 2: The number of iterations of the outer loop is at most $\log_2 n$. Proof: consider connected component, if it has two supervertices before hook, number of supervertices is halved, if no hooking happens, component is done
 - Lemma 2: The number of iterations of the inner loop in shortcut is at most $\log_2 n$. Proof: consider tree of height > 2 at some iteration, the height of the tree halves during that iteration
 - Corollary: Class question: work and depth? $W = O(n^2 \log n)$, $D = O(\log^2 n)$ (assuming conflicts are free!)
Distributed networking basics

- Familiar (non-HPC) network: Internet TCP/IP
 - Common model:

- Class Question: What parameters are needed to model the performance (including pipelining)?
 - Latency, Bandwidth, Injection Rate, Host Overhead
 - What network models do you know and what do they model?
Remember: A Simple Model for Communication

- **Transfer time** $T(s) = \alpha + \beta s$
 - α = startup time (latency)
 - β = cost per byte (bandwidth=$1/\beta$)

- As s increases, bandwidth approaches $1/\beta$ asymptotically
 - Convergence rate depends on α
 - $s_{1/2} = \alpha/\beta$

- Assuming no pipelining (new messages can only be issued from a process after all arrived)
Bandwidth vs. Latency

- $s_{1/2} = \alpha / \beta$ is often used to distinguish bandwidth- and latency-bound messages
 - $s_{1/2}$ is in the order of kilobytes on real systems
Quick Example

- Simplest linear broadcast
 - One process has a data item to be distributed to all processes

- Linearly broadcasting s bytes among P processes:
 - $T(s) = (P - 1) \cdot (\alpha + \beta s) = O(P)$

- Class question: Do you know a faster method to accomplish the same?
k-ary Tree Broadcast

- Origin process is the root of the tree, passes messages to k neighbors which pass them on
 - k=2 -> binary tree

- Class Question: What is the broadcast time in the simple latency/bandwidth model?
 - $T(s) \approx \left[\log_k P \right] \cdot k(\alpha + \beta s)$ (for fixed k)

- Class Question: What is the optimal k?

 - $0 = \frac{k \ln P}{\ln k} \frac{d}{dk} = \frac{\ln P \ln k - \ln P}{\ln^2 k} \rightarrow k = e = 2.71 ...$

 - Independent of $P, \alpha, \beta s$? Really?
Faster Trees?

- Class Question: Can we broadcast faster than in a ternary tree?
 - Yes because each respective root is idle after sending three messages!
 - Those roots could keep sending!
 - Result is a k-nomial tree

 For $k=2$, it’s a binomial tree

- Class Question: What about the runtime?

 $T(s) = \lceil \log_k(P) \rceil \cdot (k - 1) \cdot (\alpha + \beta \cdot s) = \mathcal{O}(\log(P))$

- Class Question: What is the optimal k here?

 $T(s) \frac{d}{dk}$ is monotonically increasing for $k>1$, thus $k_{opt} = 2$

- Class Question: Can we broadcast faster than in a k-nomial tree?

 $\mathcal{O}(\log(P))$ is asymptotically optimal for $s=1$!

 But what about large s?
Very Large Message Broadcast

- **Extreme case (P small, s large): simple pipeline**
 - Split message into segments of size z
 - Send segments from PE i to PE i+1

- **Class Question: What is the runtime?**
 - \(T(s) = (P-2+s/z)(\alpha + \beta z) \)

- **Compare 2-nomial tree with simple pipeline for \(\alpha=10, \beta=1, P=4, s=10^6 \), and \(z=10^5 \)**
 - 2,000,020 vs. 1,200,120

- **Class Question: Can we do better for given \(\alpha, \beta, P, s \)?**
 - Derive by \(z \)
 \[z_{opt} = \sqrt{s\alpha \over (P-2)\beta} \]

- **What is the time for simple pipeline for \(\alpha=10, \beta=1, P=4, s=10^6, z_{opt} \)?**
 - 1,008,964
Lower Bounds

- **Class Question: What is a simple lower bound on the broadcast time?**
 - \(T_{BC} \geq \min\{[\log_2(P)]\alpha, s\beta\} \)

- **How close are the binomial tree for small messages and the pipeline for large messages (approximately)?**
 - Bin. tree is a factor of \(\log_2(P) \) slower in bandwidth
 - Pipeline is a factor of \(P/\log_2(P) \) slower in latency

- **Class Question: What can we do for intermediate message sizes?**
 - Combine pipeline and tree \(\rightarrow \) pipelined tree

- **Class Question: What is the runtime of the pipelined binary tree algorithm?**
 - \(T \approx \left(\frac{s}{z} + [\log_2 P] - 2 \right) \cdot 2 \cdot (\alpha + z\beta) \)

- **Class Question: What is the optimal \(z \)?**
 - \(z_{opt} = \sqrt{\frac{\alpha s}{\beta([\log_2 P] - 2)}} \)
Towards an Optimal Algorithm

- What is the complexity of the pipelined tree with z_{opt} for small s, large P and for large s, constant P?
 - Small messages, large P: $s=1; z=1$ ($s \leq z$), will give $O(\log P)$
 - Large messages, constant P: assume α, β, P constant, will give asymptotically $O(s\beta)$
 - Asymptotically optimal for large P and s but bandwidth is off by a factor of 2! Why?

- Bandwidth-optimal algorithms exist, e.g., Sanders et al. “Full Bandwidth Broadcast, Reduction and Scan with Only Two Trees”. 2007
 - Intuition: in binomial tree, all leaves ($P/2$) only receive data and never send \rightarrow wasted bandwidth
 - Send along two simultaneous binary trees where the leafs of one tree are inner nodes of the other
 - Construction needs to avoid endpoint congestion (makes it complex)
 - Can be improved with linear programming and topology awareness
 - (talk to me if you’re interested)
Open Problems

- **Look for optimal parallel algorithms (even in simple models!)**
 - And then check the more realistic models
 - Useful optimization targets are MPI collective operations
 - *Broadcast/Reduce, Scatter/Gather, Alltoall, Allreduce, Allgather, Scan/Exscan, …*
 - Implementations of those (check current MPI libraries 😊)
 - Useful also in scientific computations
 - *Barnes Hut, linear algebra, FFT, …*

- **Lots of work to do!**
 - Contact me for thesis ideas (or check SPCL) if you like this topic
 - Usually involve optimization (ILP/LP) and clever algorithms (algebra) combined with practical experiments on large-scale machines (10,000+ processors)
The LogP Model

- Defined by four parameters:
 - L: an upper bound on the latency, or delay, incurred in communicating a message containing a word (or small number of words) from its source module to its target module.
 - o: the overhead, defined as the length of time that a processor is engaged in the transmission or reception of each message; during this time, the processor cannot perform other operations.
 - g: the gap, defined as the minimum time interval between consecutive message transmissions or consecutive message receptions at a processor. The reciprocal of g corresponds to the available per-processor communication bandwidth.
 - P: the number of processor/memory modules. We assume unit time for local operations and call it a cycle.
The LogP Model
Simple Examples

- **Sending a single message**
 - \(T = 2o + L \)

- **Ping-Pong Round-Trip**
 - \(T_{\text{RTT}} = 4o + 2L \)

- **Transmitting n messages**
 - \(T(n) = L + (n-1) \cdot \max(g, o) + 2o \)
Simplifications

- **o is bigger than g on some machines**
 - g can be ignored (eliminates max() terms)
 - be careful with multicore!
- **Offloading networks might have very low o**
 - Can be ignored (not yet but hopefully soon)
- **L might be ignored for long message streams**
 - If they are pipelined
- **Account g also for the first message**
 - Eliminates “-1”
Benefits over Latency/Bandwidth Model

- Models pipelining
 - L/g messages can be “in flight”
 - Captures state of the art (cf. TCP windows)

- Models computation/communication overlap
 - Asynchronous algorithms

- Models endpoint congestion/overload
 - Benefits balanced algorithms
Example: Broadcasts

- **Class Question:** What is the LogP running time for a linear broadcast of a single packet?
 - $T_{\text{lin}} = L + (P-2) \cdot \max(o,g) + 2o$

- **Class Question:** Approximate the LogP runtime for a binary-tree broadcast of a single packet?
 - $T_{\text{bin}} \leq \log_2 P \cdot (L + \max(o,g) + 2o)$

- **Class Question:** Approximate the LogP runtime for an k-ary-tree broadcast of a single packet?
 - $T_{k-n} \leq \log_k P \cdot (L + (k-1)\max(o,g) + 2o)$
Example: Broadcasts

- Class Question: Approximate the LogP runtime for a binomial tree broadcast of a single packet (assume L > g!)?
 - $T_{\text{bin}} \leq \log_2 P \cdot (L + 2o)$

- Class Question: Approximate the LogP runtime for a k-nomial tree broadcast of a single packet?
 - $T_{k-n} \leq \log_k P \cdot (L + (k-2)\max(o,g) + 2o)$

- Class Question: What is the optimal k (assume o>g)?
 - Derive by k: $0 = o \cdot \ln(k_{\text{opt}}) - L/k_{\text{opt}} + o$ (solve numerically)

 For larger L, k grows and for larger o, k shrinks

- Models pipelining capability better than simple model!
Example: Broadcasts

- Class Question: Can we do better than k_{opt}-ary binomial broadcast?
 - Problem: fixed k in all stages might not be optimal
 - We can construct a schedule for the optimal broadcast in practical settings
 - First proposed by Karp et al. in “Optimal Broadcast and Summation in the LogP Model”
Example: Optimal Broadcast

- Broadcast to $P-1$ processes
 - Each process who received the value sends it on; each process receives exactly once
Optimal Broadcast Runtime

- This determines the maximum number of PEs (P(t)) that can be reached in time t.
- P(t) can be computed with a generalized Fibonacci recurrence (assuming o>g):
 \[P(t) = \begin{cases} 1 : & t < 2o + L \\ P(t-o) + P(t-L-2o) : & \text{otherwise.} \end{cases} \] (1)
- Which can be bounded by (see [1]):
 \[2 \left\lfloor \frac{t}{L+2o} \right\rfloor \leq P(t) \leq 2 \left\lfloor \frac{t}{o} \right\rfloor \]
- A closed solution is an interesting open problem!

[1]: Hoefler et al.: “Scalable Communication Protocols for Dynamic Sparse Data Exchange” (Lemma 1)
The Bigger Picture

- We learned how to program shared memory systems
 - Coherency & memory models & linearizability
 - Locks as examples for reasoning about correctness and performance
 - List-based sets as examples for lock-free and wait-free algorithms
 - Consensus number
- We learned about general performance properties and parallelism
 - Amdahl’s and Gustafson’s laws
 - Little’s law, Work-span, …
 - Balance principles & scheduling
- We learned how to perform model-based optimizations
 - Distributed memory broadcast example with two models
- What next? MPI? OpenMP? UPC?
 - Next-generation machines “merge” shared and distributed memory concepts → Partitioned Global Address Space (PGAS)

If you’re interested in any aspect of parallel algorithms, programming, systems, or large-scale computing and are looking for a thesis, let us know! (and check our webpage http://spcl.inf.ethz.ch/SeMa)