
© Torsten Hoefler and Markus Püschel
Computer Science

Design of Parallel and High-Performance
Computing
Fall 2018
Lecture: Scheduling

Instructor: Torsten Hoefler & Markus Püschel

TA: Salvatore Di Girolamo

Overview

 DAGs again: An example

 Scheduling

 Greedy

 Work stealing

 Cilk

 Background material:

 Blumofe, Leiserson:
Scheduling Multithreaded Computations by Work Stealing
Journal ACM, 46(5), 1999

http://dl.acm.org/citation.cfm?id=324234


© Torsten Hoefler and Markus Püschel
Computer Science

Example: Fibonacci Numbers

int fib (int n) { 
if (n<2) return (n); 
else { 
int x,y; 
x = spawn fib(n-1); // can execute in

// parallel with parent 
y = fib(n-2); 
sync; 
return (x+y); 

} 
} 

Stupid way of computing (why?)
But good example

Example: Fibonacci Numbers

int fib (int n) { 
if (n<2) return (n); 
else { 
int x,y; 
x = spawn fib(n-1);
y = fib(n-2); 
sync; 
return (x+y); 

} 
} 

4

3

2

2

1 1 0

1 0

The DAG unfolds dynamically:

Node: Sequence of instructions without call, spawn, sync, return
Edge: Dependency

5 threads

spawn call



© Torsten Hoefler and Markus Püschel
Computer Science

Example: Fibonacci Numbers

4

3

2

2

1 1 0

1 0

Graphs obtained this way are called nested parallel (or fully strict):
• Every thread has one incoming edge (the spawn edge)
• Every join edge from a thread is connected to the parent thread

spawn

join
thread

Assuming every node has unit time:
W = 17, D = 7

How to Schedule on p Processors?

thread



© Torsten Hoefler and Markus Püschel
Computer Science

Greedy Scheduler

 Idea: Do as much as possible in every step

Greedy Scheduler

 Idea: Do as much as possible in every step

 Definition: A node is ready if all 
predecessors have been executed

executed



© Torsten Hoefler and Markus Püschel
Computer Science

Greedy Scheduler

 Idea: Do as much as possible in every step

 Definition: A node is ready if all 
predecessors have been executed

 Complete step: 

 ≥ p nodes are ready

 run any p

executed

ready

p = 3

Greedy Scheduler

 Idea: Do as much as possible in every step

 Definition: A node is ready if all 
predecessors have been executed

 Complete step: 

 ≥ p nodes are ready

 run any p

 Incomplete step:

 < p nodes ready

 run all

 How good is this theoretically?
(blackboard)

executed

ready

p = 3



© Torsten Hoefler and Markus Püschel
Computer Science

Greedy Scheduler: Sketch
Maintain thread pool of live threads, each is ready or not

 Initial: Root thread in thread pool, all processors idle

 At the beginning of each step each processor is idle or has a thread T to 
work on

 If idle

 Get ready thread from pool

 If has thread T

 Case 0: T has another instruction to execute
execute it

 Case 1: thread T spawns thread S
return T to pool, continue with S

 Case 2: T stalls
return T to pool, then idle

 Case 3: T dies
if parent of T has no living children, continue with the parent, otherwise idle

Greedy Scheduler: Problems

 Centralized

 Overhead

 Work stealing scheduler:

 thread pool distributed

 all processors do only useful work and operate locally as long as there is 
work to do

 Good asymptotic behavior, good practical behavior

 Implemented in Cilk runtime system



© Torsten Hoefler and Markus Püschel
Computer Science

Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready 
for execution; bottom is manipulated as a stack

spawn

call

call

spawn

spawn

call

processor

ready deque

threads can be added
or removed

(stack discipline)

threads can be removed

thread being executed

Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready 
for execution; bottom is manipulated as a stack

spawn

call

call

spawn

call

spawn

call

spawn

call

spawn

call

call

spawn

call

call

call



© Torsten Hoefler and Markus Püschel
Computer Science

Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready 
for execution; bottom is manipulated as a stack

spawn

call

call

spawn

call

spawn

call

spawn

call

spawn

call

call

spawn

callcall

spawn

spawn

Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready 
for execution; bottom is manipulated as a stack

spawn

call

call

spawn

call

spawn

call

spawn

call

spawn

call

call

spawn

callcall
spawn

call spawn spawn
spawnspawn

call



© Torsten Hoefler and Markus Püschel
Computer Science

Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready 
for execution; bottom is manipulated as a stack

spawn

call

call

spawn

call

spawn

call

spawn

call

spawn

call

call

spawn

callcall
spawn

spawnspawn
call

return

Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready 
for execution; bottom is manipulated as a stack

spawn

call

call

spawn

spawn

call

spawn

call

spawn

call

call

spawn

callcall
spawn

spawnspawn
call



© Torsten Hoefler and Markus Püschel
Computer Science

Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready 
for execution; bottom is manipulated as a stack

 Steal from the top of a randomly selected processor

spawn

call

call

spawn

call

spawn

call

spawn

call

call

spawn

callcall
spawn

spawnspawn
call

steal

Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready 
for execution; bottom is manipulated as a stack

 Steal from the top of a randomly selected processor

spawn

call

call

spawn

call

spawn

call

spawn

call

call

spawn

callcall
spawn

spawnspawn
call

steal



© Torsten Hoefler and Markus Püschel
Computer Science

Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready 
for execution; bottom is manipulated as a stack

spawn

call

call
spawn

call

spawn

call

spawn

call

call

spawn

callcall
spawn

spawnspawn
call

Work Stealing Scheduler: Sketch

Each processor maintains a ready deque, bottom treated as stack

 Initial: Root thread in deque of a random processor

 Deque not empty:

 Processor takes thread T from bottom and starts working

 T spawns S: Put T on stack, continue with S

 T stalls: Take next thread from stack

 T dies: Take next thread from stack

 If T enables a stalled thread S, S is put on the stack of T’s processor

 Deque empty: 

 Steal thread from the top of a random (uniformly) processor’s deque

 Theoretical performance? (blackboard)



© Torsten Hoefler and Markus Püschel
Computer Science

Cilk

 Extension of C/C++

 Compiler and runtime system

 Developed at MIT, now distributed by Intel

 Cilk home at Intel

http://software.intel.com/en-us/articles/intel-cilk-plus/

