Salvatore Di Girolamo <digirols@inf.ethz.ch>

DPHPC: Balance Principles & Scheduling

Recitation session
Deriving a Balance Principle

- **Concept of balance**: a computation running on some machine is efficient if the compute-time dominates the I/O time. [Kung, 1986]

- **Deriving a balance principle**:
 - Algorithmically analyze the parallelism
 - Algorithmically analyze the I/O behavior (i.e., number of memory transfers)
 - Combine these two analyses with a cost model for an abstract machine.

- **Goal: say precisely and analytically how**
 - Changes to the architecture might affect the scaling of a computation
 - Identify what classes of computation might execute efficiently on a given architecture

The DAG Model

Strand: chain of serially executed instructions.

Strands are partially ordered with **dependencies**

Spawn nodes have two successors

Sync nodes are where the control flow merges
The DAG Model

Given an input size n:

- The **work** $W(n)$ is the total number of strands.
 - $W(n) = 13$
- The **depth** $D(n)$ is the length of the critical path (measured in number of strands).
 - Defines the minimum execution time of the computation
 - $D(n) = 8$

The ratio $\frac{W(n)}{D(n)}$ measures the average available parallelism
Analyzing I/Os

- We use the classical external memory model
- Two level memory
 - One large & slow
 - The other small & fast (capacity: \(Z \) words)

 It can be an automatic cache or a software-controlled scratchpad
- Work operations can be performed only on data in fast memory
- Slow <-> Fast memory transfers occur in blocks of \(L \) words
- \(Q_{Z,L}(n) \) is the number of \(L \)-sized transfers between slow and fast memory for an input of size \(n \)

\[
W(n) = \text{work (total ops)}
\]
\[
D(n) = \text{depth}
\]

Goal is to optimize the computational intensity:
\[
\frac{W(n)}{Q_{Z,L}(n) \cdot L}
\]
Architecture-Specific Cost Model

- We need to introduce the time
 - This depends on the specific architecture
- p cores
- Each core can deliver C_0 operations per unit time
- The time to transfer $m \cdot L$ words is:
 - $\alpha + m \cdot L/\beta$
 - α is the latency
 - β is the bandwidth in units of words per time

- The best possible compute time is (Brent’s theorem):
 $$ T_{\text{comp}}(n; p, C_0) = \left(D(n) + \frac{W(n)}{p} \right) \cdot \frac{1}{C_0} $$
Architecture-Specific Cost Model

- \(Q_{Z,L}(n) \) is for the sequential case
- We need to move to the parallel case \(Q_{p;Z,L}(n) \)
 - We can bound \(Q_{p;Z,L}(n) \) in terms of \(Q_{Z,L}(n) \)
 - *Blelloch et al, 2009, need to select a specific scheduler*
- Compute it directly

Assumptions:
- the latency is accounted for each node in the critical path
- all the \(Q_{p;Z,L}(n) \) are aggregated and pipelined by the memory system
 - *Hence they are delivered at the peak bandwidth*

- We can estimate the memory cost as:

\[
T_{\text{mem}}(n; p, Z, L, \alpha, \beta) = \alpha \cdot D(n) + \frac{Q_{p;Z,L}(n) \cdot L}{\beta}
\]
The Balance Principle

- The balance principle follows by imposing $T_{mem} \leq T_{comp}$

$$T_{mem}(n; p, Z, L, \alpha, \beta) = \alpha \cdot D(n) + \frac{Q_{p; Z, L}(n) \cdot L}{\beta}$$

$$T_{comp}(n; p, C_0) = \left(D(n) + \frac{W(n)}{p} \right) \cdot \frac{1}{C_0}$$

$$\frac{pC_0}{\beta} \left(1 + \frac{\alpha\beta/L}{Q/D} \right) \leq \frac{W}{QL} \left(1 + \frac{p}{W/D} \right)$$

balance \quad \text{Little’s} \quad \text{intensity} \quad \text{Amdahl’s} \quad \text{peak floating-point performance}
Scheduling

```c
int fib (int n) {
    if (n<2) return (n);
    else {
        int x,y;
        x = spawn fib(n-1);
        y = fib(n-2);
        sync;
        return (x+y);
    }
}
```

Node: Sequence of instructions without call, spawn, sync, return
Edge: Dependency

The DAG unfolds dynamically:

5 threads
Scheduling

The DAG unfolds dynamically:

5 threads
Greedy Scheduler

- **Idea:** Do as much as possible in every step
- **Definition:** A node is ready if all predecessors have been executed
Greedy Scheduler

- **Idea:** Do as much as possible in every step
- **Definition:** A node is ready if all predecessors have been executed
- **Complete step:**
 - \(\geq p \) nodes are ready
 - run any \(p \)
Greedy Scheduler

- **Idea**: Do as much as possible in every step
- **Definition**: A node is ready if all predecessors have been executed
- **Complete step**:
 - $\geq p$ nodes are ready
 - run any p
- **Incomplete step**:
 - $< p$ nodes ready
 - run all

![Diagram of Greedy Scheduler with $p = 3$]
Greedy Scheduler

Maintain thread pool of live threads, each is ready or not

- Initial: Root thread in thread pool, all processors idle
- At the beginning of each step each processor is idle or has a thread T to work on
 - If idle
 - Get ready thread from pool
 - If has thread T
 - Case 0: T has another instruction to execute
 execute it
 - Case 1: thread T spawns thread S
 return T to pool, continue with S
 - Case 2: T stalls
 return T to pool, then idle
 - Case 3: T dies
 if parent of T has no living children, continue with the parent, otherwise idle
Work Stealing Scheduler

- Each processor maintains a “ready deque:” deque of threads ready for execution; bottom is manipulated as a stack

threads can be removed

thread being executed

ready deque

threads can be added or removed (stack discipline)
Work Stealing Scheduler
Work Stealing Scheduler
Work Stealing Scheduler

Return
Work Stealing Scheduler
When a processor runs out of work, it steals a task from the top of a random victim’s deque.
Work Stealing Scheduler
Work Stealing Scheduler
Work Stealing Scheduler

Each processor maintains a ready deque, bottom treated as stack

- **Initial:** Root thread in deque of a random processor
- **Deque not empty:**
 - Processor takes thread T from bottom and starts working
 - T spawns S: Put T on stack, continue with S
 - T stalls: Take next thread from stack
 - T dies: Take next thread from stack
 - If T enables a stalled thread S, S is put on the stack of T’s processor
- **Deque empty:**
 - Steal thread from the top of a random (uniformly) processor’s deque
Parallel Depth First Scheduler

Based on the following insight:

- Important (sequential) programs have already been highly tuned to get a good cache performance on a single core
- Small working set
- Good spatial and temporal reuse

Why the speedup is not that different?

Low miss/instruction ratio => High Operational Intensity