SALVATORE DI GIROLAMO <DIGIROLS@INF.ETHZ.CH>

DPHPC: Balance Principles & SIMD

Recitation session
Deriving a Balance Principle

- **Concept of balance:** a computation running on some machine is efficient if the compute-time dominates the I/O time. [Kung, 1986]

- **Deriving a balance principle:**
 - Algorithmically analyze the parallelism
 - Algorithmically analyze the I/O behavior (i.e., number of memory transfers)
 - Combine these two analyses with a cost model for an abstract machine.

- **Goal:** say precisely and analytically how
 - Changes to the architecture might affect the scaling of a computation
 - Identify what classes of computation might execute efficiently on a given architecture

b) Assume a single-core system with an LRU data cache, a peak performance of \(\pi = 4 \) single precision floating point operations/cycle, and a memory bandwidth of \(\beta = 8 \) bytes/cycle.

- What is the ridge point in the roofline point of the above described system? (2pt)

- Consider the following function operating on a matrix \(A \) of \(n^2 \) floats. \(A \) is stored in row-major order. Assume that the cache size \(\gamma \) is much smaller than \(n \) (\(\gamma \ll n \)) and that a cache block has size equal to 8 floats (a float is 8 bytes). No elements of \(A \) are initially in cache (i.e., cold cache). What is the operational intensity of the following code? Is it compute or memory bound on this system? Justify your answer. (4pt)

```c
void foo(float A[n][n]){
    for (int j=0; j<n; j++){
        for (int i=1; i<n; i++){
            A[0][j] = A[0][j] + A[i][j];
        }
    }
}
```
c) Assume a program with an operational intensity of $I = \Theta(\sqrt{\gamma})$ that is balanced with respect to a given architecture (single-core). If the peak performance (π) doubles every 2 years and the memory bandwidth (β) doubles every 4 years, with which yearly rate does the cache size need to increase in order to keep the balance? (4pt)
Vectorizing the Vandermonde Matrix Determinant Computation

\[
\begin{bmatrix}
1 & 1 & \cdots & 1 \\
x_1 & x_2 & \cdots & x_N \\
x_1^2 & x_2^2 & \cdots & x_N^2 \\
x_1^{N-1} & x_2^{N-1} & \cdots & x_N^{N-1}
\end{bmatrix}
\]

\[V_n = \prod_{1 \leq i < j \leq n} (x_j - x_i)\]