Roofline model (Williams et al. 2008)

Resources in a processor that bound performance:
- peak performance [flops/cycle]
- memory bandwidth [bytes/cycle]
- <others>

Platform model

- Bandwidth β [bytes/cycle]
- care fully measured
 - raw bandwidth from manual is unattainable (maybe 60% is)
 - Stream benchmark may be conservative

Algorithm model (n is the input size)

Operational intensity $I(n) = \frac{W(n)}{Q(n)} = \frac{\text{number of flops (cost)}}{\text{number of bytes transferred between memory and cache}}$

$Q(n)$: assumes empty cache; best measured with performance counters

Notes

- In general, Q and hence W/Q depend on the cache size m [bytes].
 - For some functions the optimal achievable W/Q is known:
 - FFT/sorting: $O(\log(m))$
 - Matrix multiplication: $O(\sqrt{m})$

Bound based on β?
- assume program as operational intensity of x ops/byte
 - it can get only β bytes/cycle
 - hence: performance $\leq \gamma \leq \beta x$
 - in log scale: $\log_2(\gamma) \leq \log_2(\beta) + \log_2(x)$
 - line with slope 1: $\gamma = \beta x$

Variations
- vector instructions: peak bound goes up (e.g., 4 times for AVX)
- multiple cores: peak bound goes up (p times for p cores)
- program has uneven mix adds/mults: peak bound comes down
 - (note: now this bound is program specific)
- accesses with little spatial locality: operational intensity decreases (because entire cache blocks are loaded)
Roofline Measurements

- Tool developed in our group
 (G. Ofenbeck, R. Steinmann, V. Caparros-Cabezas, D. Spampinato)
 http://www.spiral.net/software/roofline.html
- Example plots follow
- Get (non-asymptotic) bounds on I:
 - daxpy: \(y = \alpha x + y \)
 - dgemv: \(y = Ax + y \)
 - dgemm: \(C = AB + C \)
 - FFT

Roofline Measurements

Core i7 Sandy Bridge, 6 cores
Code: Intel MKL, sequential
Cold cache

What happens when we go to parallel code?
Roofline Measurements

Core i7 Sandy Bridge, 6 cores
Code: Intel MKL, parallel
Cold cache

What happens when we go to warm cache?

Roofline Measurements

Core i7 Sandy Bridge, 6 cores
Code: Intel MKL, sequential
Warm cache
Roofline Measurements

```
Core i7 Sandy Bridge, 6 cores
Code: Various MMM
Cold cache
```

Summary

- Roofline plots distinguish between memory and compute bound
- Can be used on paper
- Measurements difficult (performance counters) but doable
- Interesting insights: *use in your project!*

© Markus Püschel

Computer Science
References

- Samuel Williams, Andrew Waterman, David Patterson
 Roofline: an insightful visual performance model for multicore architectures
 Communications ACM 55(6): 121-130 (2012)

- Georg Ofenbeck, Ruedi Steinmann, Victoria Caparros, Daniele G. Spampinato and Markus Püschel
 Applying the Roofline Model

- Victoria Caparros and Markus Püschel
 Extending the Roofline Model: Bottleneck Analysis with Microarchitectural Constraints