
Executing and Debugging MPJ Express Programs using

the Eclipse IDE
Amjad Aziz, Rizwan Hanif, and Aamir Shafi

{amjad.aziz, rizwan.hanif, aamir.shafi}@seecs.edu.pk
14th May, 2010

The video version of this tutorial can be seen at http://www.youtube.com/watch?v=ROXFfUbgY98

Purpose of the Document

The main objective of this document is to show how MPJ Express programs—in the multicore

mode—can be executed and debugged in the Eclipse IDE.

Steps

1. Create a new Java project:

a. Start Eclipse and go to File � New �Java Project. A window with the label “Create a Java

Project” will appear asking for the project name (“MulticoreDebuggerDemo” in our

case). Click on the next button.

b. A new window appears with the label “Java Setting”, which allows adding external JAR

files to the Eclipse project. Select the “Libraries” tab and click on the “Add External

JARs…” button to add the mpj.jar file to the project. The mpj.jar file exists in the lib

subdirectory of the MPJ Express software. Click the “Finish” button towards the bottom

of the window. The new Java project “MulticoreDebuggerDemo” has been successfully

created.

2. Write the source code:

a. Go to File � New � Class and a window appears with the label “Java Class”. Write the

class name “HelloEclipseWorld” in the “Name” textbox and press the “Finish” button.

The HelloEclipseWorld.java class has been created.

b. As a demo, write the following source code:

3. Execute the MPJ Express parallel program in the multicore mode:

import mpi.*;

public class HelloEclipseWorld {

 public static void main(String[] args) throws Exception {

 MPI.Init(args) ;

 int rank = MPI.COMM_WORLD.Rank();

 int size = MPI.COMM_WORLD.Size();

 System.out.println("I am process <"+rank+"> of total <"+

 size+"> processes.");

 MPI.Finalize();

 }

}

a. Goto the “Run” menu and select the “Run Configurations…” menu item. A window with

the label “Create, manage, and run configurations” appears.

b. Double click the “Java application” launch configuration, which is towards the left side of

the window. After this a new launch configuration by the name of “HelloEclipseWorld”

has been created that appears on the right side of the windows. This new window has

several tabs including “Main”, “Arguments”, “JRE” etc. Select the “Arguments” tab and in

the appeared window select the Arguments tab.

c. To execute the MPJ Express HelloEclipseWorld program, we need to specify “-jar

${MPJ_HOME}/lib/starter.jar“ arguments to the VM. But before specifying these

arguments in the VM arguments textbox, first set the “MPJ_HOME” environment variable

if it does not exist already.

d. To specify the “MPJ_HOME” variable, click on the “Variables…” button below the VM

arguments textbox. A window appears with the title “Select Variable”. If the MPJ_HOME

variable exists, select it. Otherwise, click on the “Edit Variables…” button that triggers a

new window. Click the “New” button on this window and set the value of “MPJ_HOME”

variable to the root directory (for example D:\mpj-v0_36) of the MPJ Express software.

Click the “OK” button when done.

e. A window with the label “Create, manage, and run configurations” should be visible

now. Click the “Run” button to execute the parallel MPJ Express program. Output of the

program should appear in the console that typically appears near the bottom of the IDE.

A user may change the total number of MPJ Express processes by using the switch “-np”

in the VM arguments textbox. For example, to run the same program on four processing

cores, add the “-np 4” to VM arguments.

4. Debug the MPJ Express parallel program in the multicore mode:

a. Goto the “Run” menu and select the “Run Configurations…” menu item. A window with

the label “Create, manage, and run configurations” appears. Select the

“HelloEclipseWorld” launch configuration.

b. Click the “Arguments” tab and add the string “-

agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=8000” to the VM

arguments textbox. The Eclipse debugger would attach itself with the port specified in

this string—the value is 8000 by default and can be changed. Click on “Apply” button

and press the “Close” button.

c. Open the “Debug” perspective of the Eclipse IDE and introduce breakpoints in the

HelloEclipseWorld program.

d. Goto the “Run” menu and select the “Run Configurations…” menu item. A window with

the label “Create, manage, and run configurations” appears. Click the “Run” button to

execute the parallel program. The following output will appear on the console:

e. Goto the “Run” menu and select the “Debug Configurations…” menu item. A window

with the label “Create, manage, and run configurations” appears. Double click the

MPJ Express (0.36) is started in the multicore configuration
Listening for transport dt_socket at address: 8000.

“Remote Java Application” launch configuration to create the “HelloEclipseWorld (1)”

instance—if it does not exist already. The default port for this instance is 8000 but can

be changed if required. Click the “Debug” button.

f. The execution starts but all MPJ Express processes (or threads) hang their execution on

the first breakpoint. Now the user can manage the execution of their program by

selecting the “Debug” tab in the “Debug” perspective. Under the “HelloEclipseWorld (1)

[Remote Java Application]” label, there will be an option corresponding to the main

thread. In addition there will be other threads that are equal to the number of processes

started by the user by specifying the “-np” switch. Execution of these threads can be

controlled by using various debugging options provided by Eclipse IDE.

