
spcl.ethz.ch
@spcl_eth
@spcl

MARCIN CHRAPEK, MIKHAIL KHALILOV, TORSTEN HOEFLER

HEAR: Homomorphically Encrypted Allreduce

@spcl_eth
@spcl

spcl.ethz.ch

2

Allreduce

0 1 2 P-1

0 1 2 P-1

Aggregation function
𝑣! = 𝑣" ⋆ 𝑣# ⋆ 𝑣$ ⋆ …	⋆ 𝑣%&#

…

communicator	𝕊

𝑣! 𝑣" 𝑣# 𝑣$%"

𝑣& 𝑣& 𝑣& 𝑣&…

@spcl_eth
@spcl

spcl.ethz.ch

0 1 P-1𝑣& 𝑣& 𝑣&…0 15.6 13.0 1 2 315.6 13.0 15.6 13.0 15.6 13.0

MPI_SUM
𝑤! = 𝑤" +𝑤# + 𝑤$ +𝑤'

3

Stochastic gradient descent (SGD)

0 1 P-1…𝑣! 𝑣" 𝑣$%"0 4.1 4.5 1 5.0 1.3 2 2.4 6.1 3 4.1 1.1

@spcl_eth
@spcl

spcl.ethz.ch

4

Dominance of Allreduce

92% of common HPC
applications use Allreduce

Up to 30% of all core hours
spent in Allreduce

@spcl_eth
@spcl

spcl.ethz.ch

5

Non-accelerated Allreduce

ü Lower latency (3-18x)
ü Higher performance (1.5-5.5x)

ü Lower bandwidth usage (2x)
ü Lower power usage
ü Lower contention

Security achieved using end-to-end encryption

Security?

In-network computed Allreduce

@spcl_eth
@spcl

spcl.ethz.ch

6

“Security is essential to achieving the
anticipated benefits of HPC […]”

“HPC […] environment is very different from
ordinary IT. As such, security solutions must
be tailored to the HPC system’s
requirements[…]”

“HPC users may consider security valuable
only to the extent that it does not
significantly slow down the HPC system.”

@spcl_eth
@spcl

spcl.ethz.ch

7

But how?
A: Confidential computing (CC)
Compute operator does not know the

data their system evaluates

Trusted Execution Environments (TEEs)
Black box creating isolated, secure

environment protecting sensitive data
and code from outside parties.

SGX, TDX, SEV SNP, etc.

Homomorphic Encryption (HE)

𝐸 𝑥 ⋆ 𝑦 = 𝐸(𝑥) ⋆ 𝐸(𝑦)

Scaling issues (context switch, sharing keys)
Increased latency (encryption, decryption)
Requires considerable hardware changes

Q: But how can we reduce if data
is needed in plain for processing?

𝑥 =	plaintext / message
𝐸 𝑥 = ciphertext

@spcl_eth
@spcl

spcl.ethz.ch

8

Encryption challenges

Ciphertext at most 2x plaintext
𝑙𝑒𝑛 𝐸 𝑥 < 2𝑙𝑒𝑛(𝑥)

R1 Unlimited operation count
 Unlimited number of operations
without refreshing the ciphertext.

R2

Efficient implementation
Encryption, decryption, and

homomorphic operations need to be
performant.

R3
Multiple operation types supported
We want most of the common MPI

operations not just one.

R4

State of the art homomorphic
encryption not fulfilling these

@spcl_eth
@spcl

spcl.ethz.ch

9

Idea
Introduce a symmetric scheme
based on ring noise scrambling

𝐸 𝑥 = 𝑥 ⋆ noise
𝐷 𝑥 = 𝑥 ⋆ noise!"

HEAR the idea
The adversary does not know

where on the ring we are

Reduction happens without
any changes to the hardware

The operations are performant

This means N2 communication
and storing N keys.
Can we do better?No loss of information

No increased bandwidth usage

Data with noise

Example integer summation

All ranks need to know the
keys of other ranks

@spcl_eth
@spcl

spcl.ethz.ch

10

Key generation

0 1 2 3

𝑘# 𝑘# 𝑘# 𝑘#

𝑘$%

𝑘"% 𝑘$%,	𝑘&% 𝑘$%, 𝑘'% 𝑘$%
𝑘"% 𝑘&% 𝑘'%

Rank 0
1. generates a compound key 𝑘#

2. shares them securely with all other
ranks (end-to-end encryption).

Step 1

Scalable O(1) state.

state

Each rank 𝒊
1. generates local starting key 𝑘(%

2. securely obtains the starting key
of ranks 0 and the next rank.

Step 2
All ranks

Agree upon a pseudorandom
function (PRF) 𝐹)(𝑥) such as

AES.

Step 3

@spcl_eth
@spcl

spcl.ethz.ch

𝑐(
11

Encryption

0

4

1

5

2

2

3

4

1 3 9 3

2 15 8 7

4 bit values

𝑥(

Encryption in two PRF executions and two primitive operations.

Encrypt each element 𝑗 of vector 𝑥(to ciphertext 𝑐(using one of the
schemes HEAR defines. E.g., for integers:

Step 4

𝑐([𝑗] 	= =
𝑥(𝑗 + noise([𝑗], 	 𝑖 = 𝑃 − 1
𝑥(𝑗 + noise([𝑗] − noise(*"[𝑗], 	 otherwise

noise(

noise(is a PRF evaluation
with node’s i starting key and
the compound key as inputs

@spcl_eth
@spcl

spcl.ethz.ch

12

Reduction

0

𝑐(

0

4

1

5

2

2

3

4

1 3 9 3

2 15 8 7

4 bit values

𝑥(

MPI_SUM

Reduction not requiring any
changes in hardware or increasing

complexity.
Cancelling property

enabling faster decryption

Reduce 𝑐(in network. E.g., for integers: 𝑐+ = ∑(,$-!" 𝑐(

Step 5

noise(

@spcl_eth
@spcl

spcl.ethz.ch

13

Decryption

0

0

1

0

2

0

3

0

1 1 1 1

15 15 15𝑥+

𝑐+

Decryption using one PRF evaluation, and one primitive operation.

4 bit values

Decrypt using simple primitives. E.g., for integers:
𝑥! 𝑗 = 𝑐! 𝑗 − noise"[𝑗]

Step 6

noise"

15

@spcl_eth
@spcl

spcl.ethz.ch

14

LD_PRELOAD=libhear.so

Application

libhear (PMPI)

MPI implementation

• Small C++ middleware
• MPI implementation independent

In-network compute

Latency
for small
messages
(e.g., 16B)

Throughput
for large

messages
(e.g., 16MB)

LD_PRELOAD libhear while running the MPI job. E.g.,:

LD_PRELOAD=libhear.so mpirun -np 2 ./test

No recompilation or change of code.

https://github.com/spcl/libhear

Get libhear and compile it
Step 1 Step 2

libhear is
open-source

https://github.com/spcl/libhear

@spcl_eth
@spcl

spcl.ethz.ch

15

Naïve implementation

𝑥(

𝑐(

Generate 𝑎 ← noise(− noise(*"

copy

𝑐(← 𝑐(+ 𝑎Calculate

Integer summation 100Gbps Aries Interconnect on PizDaint

@spcl_eth
@spcl

spcl.ethz.ch

16

Performance optimizations

Throughputs suitable for next
generation of networks

(400-800Gbit/s)

𝐹)! 𝑘(
% + 𝑘# + 𝑗

• Hash function evaluation
• Parallelizable primitive

operations

@spcl_eth
@spcl

spcl.ethz.ch

17

Further throughput optimizations

𝑥(

𝑐(

Generate 𝑎 ← 𝐹)! 𝑘(
% + 𝑘# + 𝑗 − 𝐹)! 𝑘(*"

% + 𝑘# + 𝑗

copy

𝑐(← 𝑐(+ 𝑎Calculate

…

Memory pool

Decrypt
time

block

0

1

2

dec

enc Iallred

enc Iallred

enc Iallred

dec

enc

dec

Iallred

enc

Overlap communication
with computation

MPI_Iallreduce

dec

Iallred

enc

Memory pool avoids dynamic allocation using malloc and
alleviates the cost of memory pinning for RDMA.

Encrypt

@spcl_eth
@spcl

spcl.ethz.ch

18

Optimal pipeline block size

19.2%

@spcl_eth
@spcl

spcl.ethz.ch

19

Scalability

Consistently staying
within ~10%

Consistently staying
within ~25%

@spcl_eth
@spcl

spcl.ethz.ch

20

Applications

DNNs have the most challenging
communication patterns.

@spcl_eth
@spcl

spcl.ethz.ch

21

Conclusions More of SPCL’s research:

… or spcl.ethz.ch

150+ Talksyoutube.com/@spcl

twitter.com/spcl_eth 1.2K+ Followers

github.com/spcl 2K+ Stars

https://github.com/spcl/libhear

spcl.inf.ethz.ch
https://github.com/spcl/libhear

@spcl_eth
@spcl

spcl.ethz.ch

22

Floating point operations

Create the ring of values on the exponent and
introduce some noise to the mantissa via

multiplication.

Assume noise 𝑓 and the following format of a
floating number:

𝑥 = (−1)'	×	𝑚	×	2(

𝑐 = 𝑥	⨂	f	= −1 '!)'" 	× 𝑚*	×	𝑚+ 	×	2(!)("

Average probability of a guess for FP32 is
3.57×10%, with reference probability of a

guess equal to 2.38×10%, giving minor
advantage to the attacker.

@spcl_eth
@spcl

spcl.ethz.ch

23

Security requirements

Untrusted network

A set 𝕊	with 𝑃 processes
storing a secure state

The adversaries are
stronger versions of

passive attackers.

Each element is a separate
plaintext we want to secure

Trying to obtain keys

