ETHzürich

Langwen Huang, Torsten Hoefler

Compressing Multidimensional Weather and Climate Data into Neural Networks

Background: Climate Change

A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNER

Production and Consumption of Weather & Climate Data

Most weather & climate data are stored as multidimensional arrays.

The data archive is growing **exponentially** in ECMWF! [1]

Production and Consumption of Weather & Climate Data

Simulation

Access pattern is often strided or even random

Compression with a Neural Representation Approach

Multidimensional Data

Neural Representation

5

Neural Network Structure

Neural Network Structure

Decompression / Inference

- On-demand decompression
- Fully utilize GPUs

Neural Network Structure

Compression / Training

8

Comparison with Existing Methods

Method	Compression Ratio	Comp. Speed	Decompression Continuous Access	Decompression Random Access
ZFP [2]	< 10 x			
TTHRESH [3]	< 300 x			
SZ3 [4]	< 400 x			
NN (Ours)	300 x – 3,000 x			

State and and

State States - W

Contraction ----

State States - II

Start Landsone

Evaluation: Case Study

Geopotential at 500hPa, 2016 Oct 5th

Geopotential (m²/s²)

Evaluation: Case Study

Geopotential at 500hPa, 2016 Oct 5th NN (1,150x) State of the state

and average values without introducing significant artifacts

Evaluation: Case Study

Evaluation: Case Study Geopotential at 500hPa, 2016 Oct 5th Reference (1x) NN (1,150x) SZ3 (358x) Struggles to capture the extreme values in a small area like a hurricane center 46,000 56,000 58,000 20,000 54,000 **Hurricane Matthew** Geopotential (m²/s²) 57,000 55,000 55,500 56,000 56,500 57,500 58,000

Geopotential (m²/s²)

18

Applications

Store More Data

Applications

Applications

			Discarded	Stored	
	Dataset 3	C.R.	Weighted RMSE error (test set)		
Ste			Z at 500 hPa (m²/s²)	T at 850 hPa (K)	
	Original	1 x	632.9	2.906	
	NN Compressed	198 x	637.3 (+0.7%)	2.944 (+1.3%)	
	SZ3 Compressed	71 x	650.6 (+2.8%)	2.985 (+2.7%)	
Со	Dataset 4				
	Original	1 x	688.8	2.834	
	NN Compressed	790 x	697.3 (+1.2%)	2.888 (+1.9%)	
	SZ3 Compressed	106 x	702.9 (+2.0%)	2.887 (+1.9%)	

Summary

Electric and the second second

Reference

- [1] "ECMWF's Vision for Big Data, AI and Cloud Computing," 2019.
- [2] Lindstrom, Peter. 'Fixed-Rate Compressed Floating-Point Arrays'. *IEEE Transactions on Visualization and Computer Graphics* 20, no. 12 (2014): 2674–83.
- [3] Ballester-Ripoll, Rafael, Peter Lindstrom, and Renato Pajarola. 'TTHRESH: Tensor Compression for Multidimensional Visual Data'. *IEEE Transactions on Visualization and Computer Graphics* 26, no. 9 (2019): 2891–2903.
- [4] Liang, Xin, Kai Zhao, Sheng Di, Sihuan Li, Robert Underwood, Ali M. Gok, Jiannan Tian, et al. 'SZ3: A Modular Framework for Composing Prediction-Based Error-Bounded Lossy Compressors'. *IEEE Transactions on Big Data*, 2022.

Thank you!

More of SPCL's research:

... or <u>spcl.ethz.ch</u>

