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Abstract

Large Language Models (LLMs) are revolutionizing various domains, yet verifying
their answers remains a significant challenge, especially for intricate open-ended
tasks such as consolidation, summarization, and extraction of knowledge. In this
work, we propose CHECKEMBED: an accurate, scalable, and simple LLM verifi-
cation approach. CHECKEMBED is driven by a straightforward yet powerful idea:
in order to compare LLM solutions to one another or to the ground-truth (GT),
compare their corresponding answer-level embeddings obtained with a model such
as GPT Text Embedding Large. This reduces a complex textual answer to a single
embedding, facilitating straightforward, fast, and meaningful verification. We
develop a comprehensive verification pipeline implementing the CHECKEMBED
methodology. The CHECKEMBED pipeline also comes with metrics for assessing
the truthfulness of the LLM answers, such as embedding heatmaps and their sum-
maries. We show how to use these metrics for deploying practical engines that
decide whether an LLM answer is satisfactory or not. We apply the pipeline to
real-world document analysis tasks, including term extraction and document sum-
marization, showcasing significant improvements in accuracy, cost-effectiveness,
and runtime performance compared to existing token-, sentence-, and fact-level
schemes such as BERTScore or SelfCheckGPT.

Website & code: https://github.com/spcl/CheckEmbed

1 Introduction

Large Language Models (LLMs) [34, 60] are transforming the world. One particular ongoing
challenge in the LLM design is hallucination detection [13, 35, 58] and the corresponding overall
verification of LLM answers [6, 39]. Numerous works tried to address this issue, focusing on –
for example – grounding knowledge or explainability, and even giving rise to questions regarding
methodology and epistemology of artificial intelligence (AI) in general [10].

Recent verification methods and their building blocks, such as SelfCheckGPT [32] and
BERTScore [57], focus on individual fact checking and token- as well as sentence-level analy-
sis. For example, SelfCheckGPT, albeit introduced recently, is an established mechanism for LLM
verification. As one of its methods, it uses BERTScore to compare LLM answers. In BERTScore,
one first obtains contextual embeddings of all words in two compared sentences, computes cosine
similarity scores between all pairs of embeddings from two sentences, and then greedily matches
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each token from one sentence to the most similar token in the other sentence. Weighted averages of
these matchings are used to obtain precision, recall, and the final F1 score that enables comparing
different sentences.

However, the problem of verifying LLM answers to more complex tasks, such as open-ended
document analyses, still poses a challenge. As an example of such a task, consider extracting legal
terms and their definitions from a document. The difficulty of verifying the answers to such a task
is due to the inherent lack of structure, even assuming one has the ground-truth answer. Namely,
the output of such a request would be a potentially long list of definitions. To verify this answer,
one needs to verify that each term is listed and appropriately defined. Harnessing existing methods
such as SelfCheckGPT or BERTScore is not scalable, because their token-, sentence-, and fact-based
approaches scale poorly with growing task size. Moreover, we observe that while two different LLM
answers can comprise of very different sets of sentences, their meaning could indeed be very similar.
This aspect is not well reflected by sentence- and token-level schemes.

In this work, we propose CHECKEMBED: an approach for simple, scalable, and accurate verification
of LLM solutions to such tasks (contribution 1). The key idea behind CHECKEMBED is to obtain
and compare embeddings of full LLM answers, or their sizeable chunks, instead of focusing on
individual sentences, facts, or tokens. CHECKEMBED relies on the fact that modern embedding
models are highly capable; for example, they can be based on powerful Decoder-only LLMs [19].
Thus, they provide high-dimensional embeddings that can faithfully reflect the meaning of the
embedded text. To motivate this idea and assumption, consider Figure 1. In this figure, we illustrate
two very different passages of text that still describe the same concept, and two very similar passages
of text that describe two very different concepts. Interestingly, the cosine similarities as proposed in
CHECKEMBED between the embeddings of two different and two similar passages are – respectively
– low and very high, supporting the key idea behind CHECKEMBED. Contrarily, BERTScore and
SelfCheckGPT give scores that do not match the similarity of the passages.

 CheckEmbed
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Assesses different 

replies as less related
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The modern art sculpture stands proudly in the 
center of the gallery, its sleek surfaces marked 
by daring, abstract forms. Each curve and angle 
reaches out like a futuristic appendage, finished 
in a glossy, metallic sheen. The base, solid and 
unyielding, anchors this contemporary marvel to 
its pedestal, commanding attention. A play of 
light and shadow dances across its surfaces, a 
testament to the artist's innovative vision. 
Echoes of the artist's thoughts and emotions 
resonate through the room, giving the sculpture 
an aura of cutting-edge creativity and profound 
expression.

Huddled beneath the towering pines of the ancient forest, the cozy 
cottage stands as a sanctuary of warmth and tranquility. Its walls, 
gracefully aged with stones interwoven by tendrils of ivy, speak of 
timeless elegance and history. The path that leads to its inviting 
wooden door is a testament to countless footsteps of those who 
sought its comforting embrace. From within, the soft, golden light of 
countless candles spills forth, casting a mesmerizing glow that 
seems to breathe life into the very walls. Inside, the atmosphere is 
a haven of rustic splendor; every corner of the cottage whispers 
quiet contentment. The scent of pine and wax melds seamlessly, 
wrapping you in a fragrant hug. Wooden beams stretch across the 
ceiling, an enduring testament to the cottage's sturdy 
craftsmanship. Beneath, intricately woven rugs cushion your steps, 
adding to the feeling of homely comfort. Plush furnishings beckon 
you to sink into their embrace, while the candlelight's gentle flicker 
plays upon the walls, painting shadows that dance to silent 
melodies. This candle-lit haven in the woods is more than a retreat; 
it is a timeless refuge where one can find solace and connection in 
the heart of nature.
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The ancient oak tree stands proudly in the heart 
of the forest, its gnarled bark etched with the 
passage of centuries.  Each towering branch 
stretches out like a giant, wooden arm, clothed 
in a dense canopy of vibrant green leaves. The 
roots, thick and twisted, delve deep into the 
earth, anchoring this majestic titan firmly in 
place. A tapestry of moss and lichen covers the 
trunk, a testament to its longstanding presence. 
Echoes of whispered winds and the rustle of 
leaves seem to tell the stories of countless 
seasons gone by, giving the oak an aura of 
timeless wisdom and resilience.

Nestled deep within the whispering woods, the cozy cottage emits a 
warm, inviting glow from its candle-lit windows. Ivy embraces its 
stone walls, and a winding path leads to a sturdy wooden door. The 
interior offers a snug retreat, filled with soft furnishings, the flicker of 
candle flames dancing on the walls, and the scent of pine wafting 
through the air. Rustic charm abounds, with wooden beams 
overhead and plush, hand-woven rugs underfoot, creating an 
ambiance of serene seclusion and timeless comfort.

Figure 1: We show two sets of two LLM replies each: Replies explaining different concepts using
similar wording (left) and ones explaining similar concepts using different wording (right); the queries
used to generate these replies can be found in the Appendix. While BERTscore and SelfCheckGPT
assess the semantically unrelated replies as more related than the related ones (because these two
baselines have been designed to mostly target the verification of individual sentences or facts),
CHECKEMBED correctly differentiates between semantically related and unrelated replies. We use
ChatGPT-4o with temperature = 1.0 for replies and gpt-embedding-large for embeddings.

We design and implement a comprehensive verification pipeline based on CHECKEMBED
(contribution 2). The pipeline uses the notion of “stability” of the LLM answer, introduced by
SelfCheckGPT, for the verification of the considered tasks. The idea behind “stability” is to prompt
an LLM to reply to a given question several times. If the LLM repeatedly outputs the same solution,
it means that it has high confidence in its answer and the hallucination risk is low (i.e., high stability
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of the LLM answers). Contrarily, if there is a large variance in the LLM answers (i.e., low stability of
the LLM answers), the risk of hallucinations is high. In CHECKEMBED, we harness this approach for
comparing embeddings of whole LLM answers, or their sizeable chunks, pairwise to one another,
and to the potential ground-truth (GT), if available. Using such answer-level embeddings enables
extracting the meaning of a given whole reply and to compare it effectively to others and to GT. We
show that this strategy is effective and results in embeddings that are close to each other with respect
to different distance metrics in cases where the LLM gives correct answers, and with embeddings
that are far away, if the LLM is uncertain of the answer or the answer is not of high quality.

As a part of the CHECKEMBED pipeline, we offer assessment metrics that illustrate both how each of
the LLM answers compares to any other answer and to the potential GT, and succinct summaries. The
former is provided in the form of embedding heatmaps. The latter are statistical summaries that can
be used as user-specified thresholds to drive decision engines in practical deployments on whether a
given LLM answer is good enough and can be accepted, or not and thus has to be re-generated.

We apply our verification pipeline that implements the CHECKEMBED idea to several real-world
use cases in document analysis, namely extracting terms and definitions as well as summarizing
documents (contribution 3). In addition to the high accuracy, a large advantage of this approach is
its speed and simplicity: all one has to do is to embed the LLM answers and compare them to one
another using cosine similarity or other vector distance measures.

Our evaluation and analysis illustrate high advantages in accuracy and runtimes (contribution 4).
When the ground-truth is available, CHECKEMBED offers closely matching scores for LLM answers.
Specifically, we obtain very high scores for high-quality LLM answers and low scores when the
LLM answer is a mismatch. This provides an advantage over comparison baselines that often provide
mismatching scores.

2 The CHECKEMBED Design & Pipeline
We now describe the design, the processing and the evaluation of the CHECKEMBED pipeline, which
is summarized in Figure 2.
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Figure 2: Overview of the CHECKEMBED pipeline (left) and comparison between BERTScore,
SelfCheckGPT, and CHECKEMBED (right).

The CHECKEMBED pipeline for verification of LLM’s responses consists of the following key parts.
First, a user sends a question to the LLM 1 providing all the essential input data. The pipeline
enables batching these questions, i.e., it is possible to send multiple questions in the same pipeline
and they pass through each of the next stages individually. Next, the pipeline prompts the LLM

several times 2 with the same question ; this number (k) is a user parameter. Each reply has
no prior knowledge of the previous answer guaranteeing that there is no bias. k introduces a tradeoff:
more responses (higher k) means more compute time and cost (more tokens used), but also a better
check of correctness. However, as we show in Section 4, CHECKEMBED enables high level of
confidence in its verification outcome even when k is low. The next stage of the pipeline is the
embedding of the answers 3 . Each reply is embedded, using a pre-specified embedding model
(another user input). The potential ground-truth answer is also embedded. In the final stage, the
embeddings of the replies are compared pairwise 4 . We use established metrics, most importantly
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the cosine similarity; we also experiment with Pearson correlation. Other measures are possible as
the pipeline enables seamless integration. The pairwise similarity scores of embeddings are grouped
into a (symmetric) heatmap matrix, which is summarized using a selected measure in order to provide
a simple threshold number that can be used to drive decision making in practical deployments.

3 Scalability Analysis

We provide a brief scalability analysis showing why CHECKEMBED is fundamentally faster than
BERTScore and SelfCheckGPT. We denote the number of answers requested from the LLM with
k. We assume the same dimensionality of all used embeddings and that computing a score of
two embeddings is negligible and takes O(1) time (e.g., Numpy supports highly efficient Pearson
correlation and cosine similarity). Without loss of generality, we also assume that a single reply
or the ground-truth contain s sentences, and each sentence contains t tokens. When comparing the
baselines, we consider counts of two most compute intense operations within the pipeline: the number
of embeddings to be constructed and the number of similarity operations to be conducted.

In CHECKEMBED, there are k embeddings in total to construct, and O(k2) similarity operations to
be conducted.

Next, one can apply BERTScore straightforwardly to two passages treated as long sentences, each
such passage consists of st tokens. This means O((st)2) = O(s2t2) embedding comparisons have to
be performed for any two passages (for each pair of compared sentences, one compares every pair of
individual tokens/words), resulting in a total of O(k2s2t2) embedding comparisons as this is done
for O(k2) pairs of LLM answers, and a total of O(k2) embedding constructions.

Finally, SelfCheckGPT assesses a given LLM reply by comparing it to all sample replies collected. To
simplify the following derivations, assume that in an individual comparison of two LLM replies, these
replies consist of s1 and s2 sentences, respectively. Now, for each such comparison, SelfCheckGPT
uses BERTScore, where the two input passages x and y to BERTScore consist of s1s2 sentences
each, i.e., both passage x and passage y contain all the sentences from its corresponding LLM reply,
repeated as many times as the number of sentences in the other LLM reply (this is condicted to
enable comparing all sentences from each reply pairwise). This gives (using the above BERTScore
formulae) O(ks2) embedding constructions (there are k LLM replies) and O(ks2s2t2) = O(ks4t2)
embedding comparisons.

4 Evaluation

We now show the advantages of CHECKEMBED over the state of the art.

Comparison Baselines We compare CHECKEMBED to two key baselines, SelfCheckGPT (a modern
verification pipeline that harnesses the stability of LLM replies as its main method) and BERTScore
(representing embedding based schemes for assessing similarity of text passages).

Considered Models We vary the language models used for both generating replies and for creating
embeddings. First, when prompting the LLM to obtain a reply, we explore GPT-3.5, GPT-4, and
GPT-4o. Second, when embedding LLM replies, we experiment with different embedding models,
namely Salesforce/SFR-Embedding-Mistral (SFR) [33], intfloat/e5-mistral-7b-instruct (E5) [47, 48],
Alibaba-NLP/gte-Qwen1.5-7B-instruct (GTE) [22], and GPT Text Embedding Large (GPT) [63].
For BERTScore and SelfCheckGPT, we use the best possible models available for these baselines
(i.e., microsoft/deberta-xlarge-mnli [12] and roberta-large [25]). We use the default embedding sizes
(listed in the Appendix A.2).

Considered Similarity Measures We consider both cosine similarity and the Pearson correlation
score. However, these two follow the same accuracy patterns, and we only show the data for the
cosine similarity.

4.1 Distinguishing Similar and Different Text Passages Faithfully

We start the evaluation by extending the motivating example from Figure 1. Specifically, we analyze
whether a given verification method is able to clearly distinguish two passages of text that (1) look
similar, but come with very different meanings (“Different replies”, see the left side of Figure 1 for an
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Figure 3: Analysis of distinguishing similar and different LLM replies (the “Generic” dataset),
details explained in Section 4.1. CHECKEMBED is highly effective at appropriately recognizing the
similarities and differences in the meaning of the verified text passages. This can be seen from little
or no overlap between groups of data points corresponding to scores for – respectively – similar and
different LLM replies, regardless of the model used. Contrarily, there is a significant overlap between
these groups of data points for both BERTScore and SelfCheckGPT, indicating that these baselines
perform worse in distinguishing such replies effectively.
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Figure 4: Analysis of distinguishing similar and different LLM replies (the “Precise” dataset),
details explained in Section 4.1. CHECKEMBED is effective at appropriately recognizing the similari-
ties and differences in the meaning of the verified text passages. This can be seen from moderate to
no overlap between groups of data points corresponding to scores for – respectively – similar and
different LLM replies, regardless of the model used. Contrarily, there is a large overlap between
these groups of data points for both BERTScore and SelfCheckGPT, indicating that these baselines
perform worse in distinguishing such replies effectively.

example), as well as (2) look different, but have similar or identical meanings (“Similar replies”, see
the right side of Figure 1 for an example). The used prompts can be found in the Appendix A.1. The
prompt sizes used for these two groups are in the range of 25–250 and 100–200 tokens, respectively.
To broaden the analysis, we further consider two subtypes of such passages: “Generic” and “Precise”.
The former are brief while the latter are rich in detailed information (e.g., “Vintage bike” vs. “Old,
rusted bicycle leaning against a weathered fence”). We illustrate the results for these two subtypes in
Figures 3 and 4, respectively.

Importantly, CHECKEMBED comes with no (or very minor) overlap of scores for similar and different
replies. Similar replies come with consistently high similarity scores, while different replies have
consistently lower similarity scores. Thus, the key takeaway is that CHECKEMBED is highly effective
at appropriately recognizing the similarities and differences in the meaning of the considered text
passages, regardless of their length and style, and also regardless of the harnessed generative and
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Figure 5: Analysis of the verification of LLM answers (GPT-3.5), details explained in Section 4.2.
We compare to BERTScore; SelfCheckGPT comes with significantly higher runtimes (detailed in
Section 4.4) and less competitive scores as it does not focus on open-ended answer-level analysis.
The results form a heatmap of the CHECKEMBED’s, or BERTScore’s, cosine similarity between
all LLM replies, and between each reply and the human expert prepared ground-truth (GT). Rows
correspond to two representative legal documents, that come with – respectively – high and low LLM
confidence in its replies. Embedding model used in both rows: GPT Text Embedding Large.

embedding models. Contrarily, both BERTScore and SelfCheckGPT have high overlaps for these
passages; thus, CHECKEMBED improves upon the state of the art.

An interesting feature of CHECKEMBED is that, while it does distinguish similar and different
passages very effectively, it gives relatively high scores to the different passages; these scores are
usually higher than the BERTScore or SelfCheckGPT scores for similar passages. Despite this, it is
still straightforward to distinguish between answers implying similar or different passages, because
the CHECKEMBED scores for similar passages are consistently very high (e.g., with means higher
than 0.9 for SFR or E5).

Interestingly, GPT-4-turbo generates replies that are ‘the most difficult to distinguish”, i.e., it comes
with visible (still very low) overlap between similar and different ones, across all embedding models.
Contrarily, GPT-4o comes with no overlap whatsoever, while GPT-3.5 has very minor overlap.
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0.99 0.99 0.98 1.00 0.98 0.99 0.99 0.98 0.99 0.99 0.93
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0.78 0.79 1.00 0.78 0.87 0.72 0.75 0.79 0.74 0.73 0.26

0.90 0.90 0.78 1.00 0.85 0.81 0.92 0.80 0.90 0.86 0.30

0.87 0.84 0.87 0.85 1.00 0.82 0.82 0.84 0.81 0.80 0.29
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0.89 0.87 0.74 0.90 0.81 0.85 0.97 0.75 1.00 0.83 0.29

0.88 0.88 0.73 0.86 0.80 0.77 0.84 0.83 0.83 1.00 0.31
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0.51 0.51 0.51 0.95 0.96 0.49 0.51 0.96 1.00 0.51 0.42
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Figure 6: Analysis of the verification of LLM answers (GPT-4), details explained in Section 4.2.
We compare to BERTScore; SelfCheckGPT comes with significantly higher runtimes (detailed in
Section 4.4) and less competitive scores as it does not focus on open-ended answer-level analysis.
The results form a heatmap of the CHECKEMBED’s, or BERTScore’s, cosine similarity between
all LLM replies, and between each reply and the human expert prepared ground-truth (GT). Rows
correspond to two representative legal documents, that come with – respectively – high and low LLM
confidence in its replies. Embedding model used in both rows: GPT Text Embedding Large.

4.2 Verifying LLM Answers Effectively

Next, we illustrate how CHECKEMBED enables effective verification of LLM answers. As a use case,
we consider extracting terms and their definitions from legal documents; the used data is real and it
comes from an in-house legal analytics project. In this use case, a prompt to the LLM consists of
the contents of a legal document (e.g., an NDA), as well as a request to extract respective terms and
their definitions. The prompts can also be found in the Appendix A.1. The prompt sizes used in this
task are in the range of 25–600 tokens (we split the documents into chunks as whole documents are
often very long and come with total token counts that significantly exceed the recommended maximal
sizes for the input of the used embedding models). CHECKEMBED asks the LLM to generate 10
replies (k = 10). We illustrate the results in Figures 5 (for GPT-3.5) and 6 (for GPT-4). Each figure
shows the cosine similarity between all respective LLM replies, and also between each reply and the
ground-truth (GT) reply that has been prepared by a human expert.
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The results illustrate that whenever CHECKEMBED has very high confidence in its answer (top rows
in Figures 5 and 6), which is visible by consistently having very high similarities between different
replies, it corresponds to very high similarity scores between the LLM replies and the ground-truth.
This is the case for all the considered models. Other baselines show mixed results for individual
replies, and low similarities between their replies and GT. It shows that, whenever CHECKEMBED
has high confidence it the LLM replies, there is high likelihood that these replies are close to the
corresponding GT.

In the bottom rows of both figures, we provide example results where CHECKEMBED indicates low
or mixed LLM’s confidence. While many scores are still relatively high (e.g., 0.85), many are much
lower (e.g., 0.5). We manually verified that these particularly low individual scores correspond to
LLM replies of very low quality (e.g., only a single term with its definition has been extracted). The
low scores overall indicate model’s low confidence, which is further supported by corresponding
low similarity scores to GT. Here, BERTScore also has low confidence – overall, its scores are much
lower than those of CHECKEMBED, but its relative drop in similarity to GT is similarly as low as that
of CHECKEMBED.

Note that the results in the heatmaps directly correspond to the results from Section 4.1 and Figures 3
and 4 in that very high CHECKEMBED scores (e.g., 0.9) indicate high confidence while scores that
are lower (e.g., 0.75) – but still higher than BERTScore – consistently mean low LLM’s confidence.
This indicates that whenever using such baselines together, one may want to consider rescaling the
results accordingly.

A useful simple CHECKEMBED measure that indicates the low quality of the LLM answer is a
selected summarization measure for a heatmap, for example mean or a matrix norm combined with a
standard deviation (std). Whenever the mean is very high (e.g., >0.9) and the std is low (e.g., <0.05),
the answer is of high quality with very high likelihood. Otherwise, one may want to investigate a
given situation in more detail. For example, for GPT-3.5 in the top row (example 0), the LLM is very
certain of what the answer is; the mean is 0.93 with very low std of 0.06; BERTScore seems to imply
hallucinations with low scores and even more importantly, an std of 0.27.

4.3 Detecting Fine-Grained Hallucinations

While CHECKEMBED is primarily targeted at verification of open-ended tasks, we also investigate
whether CHECKEMBED can be used to detect small fine-grained hallucinations, such as mistakes
in individual facts. The results are in Figure 7 and 8 and the used prompts can be found in the
Appendix A.1. The task analyzed is summarizing scientific and legal articles. For each article
considered, we generate a summary with no errors (labeled as “ground truth”), and we also ask the
LLM to summarize these documents, while forcing deliberate small fact-level mistakes, from 0 to
10 mistakes per summary. CHECKEMBED is able to recognize when samples contains no errors, as
illustrated by very large scores for GT. Moreover, interestingly, it can also recognize hallucinations
after introducing a single error, as visible by no overlap between the GT and the consecutive data
points. Finally, we can observe that the amount of low-confidence scores is somewhat increasing
with the growing number of introduced errors. However, this increase only starts to be distinctive
beyond 5 errors. The trends for BERTScore and SelfCheckGPT are similar, which illustrates that
these baselines perform well for their intended use case.
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Figure 8: Analysis of fine-grained hallucination verification of LLM answers (GPT-4o) when
summarizing legal documents, details explained in Section 4.3.

4.4 Lowering Runtimes

Finally, we investigate the running times of all the considered base-
lines. Example results are in Figure 9. The numbers correspond to
the total runtime required to construct 100 embeddings and to compute
similarity scores between all embedding pairs. We show runtimes for
CHECKEMBED for different embedding models used. Overall, CHECK-
EMBED comes with much smaller runtimes, even >30× faster than
BERTScore. The somewhat larger runtime of the GPT based CHECKEM-
BED is caused by the OpenAI API calls. Note, however, that the best avail-
able bidirectional embedding models that can be used with BERTScore
and SelfCheckGPT are much smaller than the models used by CHECK-
EMBED (e.g., microsoft/deberta-xlarge-mnli has 750M parameters while
Salesforce/SFR-Embedding-Mistral and intfloat/e5-mistral-7b-instruct
have ≈7B parameters). This further showcases the high performance of
CHECKEMBED, rooted in its simplicity: all that is required to compute
is a single embedding of a textual answer or its chunk.

5

This Work

Figure 9: Compari-
son of running times
of CHECKEMBED
and other baselines

5 Related Work

Trustworthy AI is a broad research area focusing on the transparency, fairness, and reliability
of AI systems. Efforts in this field aim to develop frameworks and guidelines that ensure AI
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systems are trustworthy and align with human values [26, 43]. Initiatives like differential privacy [3],
fairness constraints in machine learning models [16], and transparent reporting of AI capabilities and
limitations [23] are prominent in this context. These approaches strive to build AI systems that are
not only effective, but also ethically sound and socially acceptable.

Explainable AI (XAI) [28] is another critical area of research with the goal of making AI systems
more transparent and interpretable to users. Several works have developed methods to enhance
explainability in AI systems [29, 59]. For instance, self-explaining models that generate explanations
alongside predictions have been explored to improve user trust and understanding [14, 30]. Other
approaches include post-hoc explanation methods, which provide insights into model decisions after
predictions are made, thus facilitating better human-AI interaction [18, 45]. These advancements
are crucial for deploying AI in sensitive areas where understanding the rationale behind decisions is
imperative.

The rise of AI has also prompted methodological and epistemological inquiries. Researchers are
examining the foundational questions regarding how AI systems generate knowledge and the implica-
tions of these processes [10]. Discussions in this domain focus on the nature of machine learning [40],
the validity of AI-generated knowledge [31], and the ethical considerations surrounding AI deploy-
ment [21, 37]. These inquiries are essential for framing the theoretical underpinnings of AI and
addressing concerns related to bias, fairness, and accountability in AI systems.

The problem of hallucinations in LLMs has gathered significant attention [1, 13, 15, 39, 58]. Chrysos-
tomou et al. [9] find that hallucinations are less prevalent in pruned LLM for summarization tasks,
which they attribute to an increased dependence on the original source. Various methods on de-
tecting hallucation have been proposed, including SelfCheckGPT [32], fact checking [8, 55] and
others [41, 42, 54]. Another focus is the reduction of hallucinations. Ever [17] dynamically veri-
fies generated content against evidence during the generation process. Zhang et al. [56] propose
the use of the human user and knowledge bases to align their knowledge to let the LLM answer
truthfully. One of the goals of Retrieval Augemented Generation (RAG) [61] has been hallucination
reduction by fetching relevant information for the LLM context. Benchmark efforts have also been
proposed [20, 44, 62].

LLM-based agents represent a burgeoning area [51], where LLMs are utilized as autonomous agents
to perform complex tasks. These agents leverage the generative capabilities of LLMs to interact
with users, perform tasks, and make decisions, often resorting to different prompt engineering tech-
niques [4, 5, 27, 36, 49, 50, 53]. Recent studies focus on enhancing the autonomy and effectiveness
of these agents by improving their ability to understand and respond to nuanced user inputs [2]. Tech-
niques such as fine-tuning on specific tasks [7] and incorporating external knowledge sources [11, 24]
are employed to enhance the performance of LLM-based agents in real-world applications.

Finally, evaluating LLMs is an ongoing challenge given their complexity and the diverse range of
tasks they can perform [34, 60]. Traditional evaluation metrics often fall short in capturing the full
spectrum of LLM capabilities. Hence, researchers are developing new benchmarks and evaluation
frameworks that better reflect real-world use cases [6]. These include task-specific evaluations,
user-centric assessments [46], and adversarial testing [38, 52] to ensure that LLMs perform reliably
across different scenarios and are resilient to manipulation.

6 Conclusion

Large Language Models (LLMs) are revolutionizing various domains, yet effective verification for
open-ended tasks remains a significant challenge. Established methods, which focus on token- and
sentence-level analysis, fall short in scalability and effectiveness. Addressing this gap is crucial as
applications of LLMs expand, necessitating robust mechanisms to ensure the accuracy and reliability
of their outputs.

To this end, we introduce CHECKEMBED, a scalable approach to LLM verification. CHECKEMBED
leverages the effectiveness of answer-level embeddings to compare LLM answers with one another
and the potential ground-truth. By transforming complex textual answers into individual embeddings
using modern decoder-only based models like GPT Text Embedding Large, CHECKEMBED makes
the verification process simple, accurate, and scalable. This straightforward methodology integrates
seamlessly with modern data analytics infrastructure, highlighting its practical applicability and ease
of deployment.
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CHECKEMBED comes with a comprehensive verification pipeline that includes metrics and tools
for assessing the veracity of LLM answers, such as heatmaps of similarites between embeddings
of answers, the ground-truth, and statistical summaries. These tools provide detailed insights into
the quality of LLM outputs and facilitate practical decision-making in real-world deployments. The
simplicity of our approach allows for the extension of these metrics to various other applications,
further enhancing its utility and flexibility.

Our pipeline has been tested on document analysis tasks, including term extraction. The results
demonstrated significant improvements in accuracy and runtime performance compared to existing
methods such as BERTScore [57] and SelfCheckGPT [32]. These findings underscore the potential
of CHECKEMBED to transform LLM verification in industrial settings, ensuring that LLM outputs
are both reliable and scalable.
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A Appendix / supplemental material

A.1 Prompts

Table 1: Prompt template used for the query generation of the “similar description” use case. A list
of “Generic” and “Precise” topics is used to replace ### HERE ### with an actual topic. The aim is
to generate two passages of text that look different, but are the same content-wise.

### INSTRUCTION ###

Hello. Please generate two passages of text. They should both describe the same thing (### HERE
###). However, these two passages should differ VASTLY in their length, style.
I want you to give an answer using the following format:
<formatting>
### DESCRIPTION 1 ###
the actual description here...
### DESCRIPTION 2 ###
the actual description here...
</formatting>

### ANSWER ###

Table 2: Prompt template used for the query generation of the “different description” use case. A list
of different topics is used to replace ### HERE 1 ### and ### HERE 2 ### with two actual topics.
The aim is to generate two passages of text that seem alike, but are completely different content-wise.

### INSTRUCTION ###

Hello. Please generate two passages of text. They should describe two different things:
1. ### HERE 1 ###
2. ### HERE 2 ###

However, these two passages should have the same length and style.
I want you to give an answer using the following format:
<formatting>
### DESCRIPTION 1 ###
the actual description here...
### DESCRIPTION 2 ###
the actual description here...
</formatting>

### ANSWER ###
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Table 3: Prompt template used to “extract respective terms and their definitions” from chunks of
legal documentation. Given the complexity of the task, we provide the concrete format as well as an
in-context example. [### REPLACE WITH CONTEXT ###] gets replaced by a text chunk from the
legal definitions dataset.

### INSTRUCTION ###

You are a lawyer.

### QUESTION ###

Based on the provided context extract all the legal definitions. Answer using the following
formatting.
<formatting>
Term.Definition
Term.Definition
...
</formatting>
<example>
[...]
### CONTEXT ###

Preliminary Note
The Stock Purchase Agreement sets forth the basic terms of the purchase and sale of the pre-
ferred stock to the investors (such as the purchase price, closing date, conditions to closing) and
identifies the other financing documents. Generally this agreement does not set forth either (1)
the characteristics of the stock being sold (which are defined in the Certificate of Incorporation)
or (2) the relationship among the parties after the closing, such as registration rights, rights of
first refusal and co-sale and voting arrangements (these matters often implicate persons other
than just the Company and the investors in this round of financing and are usually embodied in
separate agreements to which those others persons are parties, or in some cases in the Certificate
of Incorporation). The main items of negotiation in the Stock Purchase Agreement are therefore
the price and number of shares being sold, the representations and warranties that the Company
must make to the investors and the closing conditions for the transaction.
SERIES A PREFERRED STOCK PURCHASE AGREEMENT
THIS SERIES A PREFERRED STOCK PURCHASE AGREEMENT (this “Agreement”), is made
as of [], 20[], by and among [______], a Delaware corporation (the “Company”), and the investors
listed on Exhibit A attached to this Agreement (each a “Purchaser” and together the “Purchasers”).
The parties hereby agree as follows:

### ANSWER ###

Agreement. THIS SERIES A PREFERRED STOCK PURCHASE AGREEMENT
Company. Delaware corporation
Purchaser. Company or the investors listed on Exhibit A
Purchasers. Company and the investors listed on Exhibit A together
</example>

### CONTEXT ###

[###REPLACE WITH CONTEXT###]

### ANSWER ###
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Table 4: Prompt template used for the ground-truth generation query of the “hallucination test” use
case. A list of mostly scientific topic is used to replace ### TOPIC ###.

### INSTRUCTION ###

Hello. Please generate a passage of text that talks about (### TOPIC ###).

Please, use the following format for answering:
<formatting>
### PASSAGE ###
The passage here....
</formatting>

Table 5: Prompt template used for the hallucination generation query of the “hallucination test ”
use case. A list of mostly scientific topic is used to replace ### TOPIC ###. ### NUMBER ###
is replaced according to an user-specified range of numbers. ### ERRORS ### is used during the
hallucination generation process, but is removed from the sample output before the embeddings are
created.

### INSTRUCTION ###

Hello. Please generate ### NUMBER ### completely false information (fact hallucinations) on
(### TOPIC ###).
Then insert the errors inside a passage of text that talks about (### TOPIC ###).
You should convince a reader that the false information are actually correct ones.

Please, use the following format for answering:

<formatting>
### ERRORS ###
List of fact hallucinations to be later included in the passage...
### PASSAGE ###
The passage here....
</formatting>
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A.2 Embedding Length and Parameter Size

Table 6: Embedding length and number of parameters for each model used during the evaluation.
Model Name Length #Parameters
GPT Text Embedding Large 3072 not public
Salesforce/SFR-Embedding-Mistral 4096 7.11B
intfloat/e5-mistral-7b-instruct 4096 7.11B
Alibaba-NLP/gte-Qwen1.5-7B-instruct 4096 7.72B
microsoft/deberta-xlarge-mnli 1024 750M
roberta-large 1024 355M

A.3 Compute Resources

Running the pipeline for the dataset of legal definitions for three LLMs (GPT-3.5, GPT-4 and GPT-4o
as well as the baselines SelfCheckGPT and BERTScore) on a single NVIDIA Tesla V100-PCIE-32GB
GPU took roughly 90 minutes. That dataset was used to create the heatmap figures 5 and 6. The
pipeline for the datasets with similar and different descriptions, used for the violin plots, was executed
on the same hardware in around 80 minutes.
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