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Abstract

Retrieval Augmented Generation (RAG) enhances the abilities of Large Language
Models (LLMs) by enabling the retrieval of documents into the LLM context to
provide more accurate and relevant responses. Existing RAG solutions do not
focus on queries that may require fetching multiple documents with substantially
different contents. Such queries occur frequently, but are challenging because the
embeddings of these documents may be distant in the embedding space, making it
hard to retrieve them all. This paper introduces Multi-Head RAG (MRAG), a novel
scheme designed to address this gap with a simple yet powerful idea: leveraging
activations of Transformer’s multi-head attention layer, instead of the decoder
layer, as keys for fetching multi-aspect documents. The driving motivation is that
different attention heads can learn to capture different data aspects. Harnessing the
corresponding activations results in embeddings that represent various facets of
data items and queries, improving the retrieval accuracy for complex queries. We
provide an evaluation methodology and metrics, synthetic datasets, and real-world
use cases to demonstrate MRAG’s effectiveness, showing improvements of up
to 20% in relevance over standard RAG baselines. MRAG can be seamlessly
integrated with existing RAG frameworks and benchmarking tools like RAGAS as
well as different classes of data stores.

Website & code: https://github.com/spcl/MRAG

1 Introduction
Large Language Models (LLMs) transformed many machine learning tasks using in-context learning
abilities. They achieved such accuracy by leveraging an increasing number of parameters, which
in recent models have grown to hundreds of billions, making LLM training expensive in terms of
both time and resources. It also comes with the danger of leaking confidential data into model
weights [28, 33, 40]. Additionally, continuous training through fine-tuning is necessary to keep LLMs
up-to-date. Even using the newest data, LLMs display an ongoing problem of hallucinations [13,
38, 44] by providing factually incorrect information. Retrieval Augmented Generation (RAG) was
proposed [11, 18] in order to address these issues as well as others and make LLMs more trustworthy.

The key idea behind RAG is to enhance the generative model’s capabilities by integrating a retrieval
system that can fetch relevant documents or passages from a large corpus of data. In this setting, when
a query is received, the retrieval system first identifies and retrieves pertinent information, which is fed
into the generative model’s context for a more accurate and relevant response. Instead of the model
storing information within its weights, RAG effectively leverages external knowledge, reducing
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hallucinations (by grounding the LLM reply in reliable sources), and ensuring that responses contain
up-to-date knowledge (e.g., by accessing the Internet), all without requiring expensive training.

More specifically, there are two main stages in a RAG pipeline: data preparation and query execution.
During data preparation, one constructs a vector database (DB) populated with embeddings and their
corresponding data items such as documents. During query execution, one constructs an embedding
of that query and retrieves data items in the store with similar embeddings.

Intense recent research efforts have been put into RAG [10, 12, 14, 20, 25, 41, 45]. On one hand,
different RAG designs have been proposed, for example RAPTOR [31], Self-RAG [2], Chain-of-
Note [42], and many others [1, 6, 7, 23, 35, 39, 43]. In general, these schemes focus on making the
retrieved data more accurate and relevant to the query. On the other hand, there have also been efforts
into benchmarking and datasets for RAG evaluation [4, 8, 21, 36].

Despite all these advances, we observe that no existing RAG scheme or evaluation methodology
explicitly targets an important class of problems that come with a high degree of multi-aspectuality.
These are problems that require combining several (potentially many) significantly different aspects in
a single query. As a simple illustrative example of such a query, consider the question “What car did
Alexander the Great drive?”, and assume that the queried model has not been trained on history. When
using RAG, to answer this question accurately, one would retrieve two documents, one describing
Alexander the Great and one outlining the history of car manufacturing. However, the embeddings
of these two documents could be far away from each other in the embedding space. At the same
time, such queries are common in different industry settings, as indicated by extensive discussions
with our industry collaborators. Imagine a chemical processing plant experiencing an equipment
accident. One could use an LLM to find the accident cause, which might require the retrieval of
multiple, potentially confidential documents to provide the necessary context. These documents could
be related to different aspects, for example psychological profiles of workers (“Was the accident
due to mismanaging a worker?”), equipment purchase records (“Was some equipment part too
old?”), maintenance (“Was some equipment part rusty?”), weather (“Was there a particularly strong
thunderstorm at the accident time that could have caused dangerous power spikes in the grid?”), or
even microclimate (“Was it too humid for an extended period of time in the production hall?”). As
we illustrate in Section 4, such problems pose challenges for existing RAG schemes and have been
unaddressed by modern RAG benchmarking pipelines.
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Figure 1: An overview of the decoder architecture, and a
comparison of how standard RAG and Multi-Head RAG
embeddings are generated.

In this work, we propose Multi-Head RAG (MRAG): a
scheme that addresses the above problem. Common prac-
tice in modern RAG designs is the use of embeddings
based on last-layer decoder block activations. Our key
idea is to use instead the activations of the multi-head
attention part of the decoder block as embeddings. The
Transformer architecture can be seen as a pipeline with
many (e.g., 96 for GPT-3 [5]) blocks, where a single block
consists of an attention module and a feed-forward mod-
ule. Each individual attention module is multi-headed: it
consists of multiple parts called heads that learn differ-
ent sets of weight matrices; see Figure 1 for an overview.
It is conjectured that these different heads could capture
different aspects of the processed data. We use this as a
driving design feature that facilitates capturing the poten-
tial multi-aspectuality of the data without increasing space
requirements compared to standard RAG (contribution 1).

Such multi-aspect embeddings are then directly used for
both data items and query representation. Considering
multi-aspectuality explicitly comes with challenges. For
example, how to assess the effectiveness of a RAG solution in retrieving data that indeed does
cover multiple aspects of a given domain. For this, we establish an evaluation methodology as
well as a full data construction and query processing pipeline that implements the multi-aspect
embedding idea (contribution 2). Our datasets facilitate broad evaluation by considering both
fully-automatically generated, synthetic data and analyzing specific industry use cases that show
the benefits of MRAG (contribution 3). Our evaluation illustrates the benefits in the relevance
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of retrieved documents, for example 20% over a modern RAG baseline for fetching multi-aspect
Wikipedia articles (contribution 4). We also show how MRAG and its benchmarking principles can
be seamlessly integrated with both existing RAG solutions and benchmarking frameworks such as
RAGAS (contribution 5). MRAG’s code is publicly available2.

2 The MRAG Formulation & Pipeline
We now present in detail the mathematical underpinning of MRAG and its corresponding pipeline.

Decoder Formulation We first introduce formally the decoder architecture. We omit, for clarity,
unnecessary details such as layer normalizations. The input is a text chunk that consists of n tokens.
The output of an attention head h for the ith token xi is defined as [32] headh(xi) =

∑
j wijv

h
j ,

where wij = softmax
((

qh
i

)T
kh
j

)
, qh

i = Wh
qxi, kh

j = Wh
kxj , vh

j = Wh
vxj . Here, Wh

q ,W
h
k ,W

h
v

are, respectively, learnable query, key, and value projections associated with head h, and xj is the
vector embedding of the jth token xj . These outputs get combined to form the output of the ith
multi-head attention block as multi-head(xi) = Wo concat(head1(xi), . . . , head

h(xi))
T , where

matrix Wo is the linear layer that combines the outcomes of all the attention heads. This step is then
followed by the Transformer feed-forward layer.

Standard RAG Formulation Assume a sequence of n tokens as the input text chunk. The embed-
ding for that chunk is obtained as the activation vector after the feed-forward decoder layer for the
last nth token of this chunk, i.e., feed-forward(multi-head(xn)), generated in the last decoder block.

Multi-Head RAG Formulation The key idea behind MRAG is simple: instead of the single acti-
vation vector generated by the last feed-forward decoder layer for the last token, we harness the H
separate activation vectors generated by the last attention layer for the last token, before processing
it via Wo. This can be formulated as a set of embeddings S = {ek∀k} where ek = headk(xn),
which is simply the set of all outputs from the attention heads on the last token xn of the input. As
processing with multiple heads does not change the size of the output vector, S has the same space
requirements as standard RAG. However, because we capture the separate embeddings before their
mixing with Wo, we conjecture that it gives more information about what the different parts of the
input attend to, facilitating capturing multi-aspectuality.

Naming We use the terms “single-aspect embedding” and “multi-aspect embedding” to refer to,
respectively, a small embedding extracted from a single attention head and a collection of all single-
aspect embeddings extracted from an attention layer.

2.1 Overview of the Multi-Head RAG Pipeline
We now describe how the above embedding model fits the RAG pipeline. Figure 2 shows a summary
of the design. The MRAG pipeline consists of two main parts, dedicated to data preparation A and
query execution B . Both parts heavily use the data store D (vector DB).

2.1.1 Data Preparation

During data preparation A , we populate a data store D with multi-aspect MRAG text embeddings
and their corresponding documents or text chunks (MRAG is orthogonal to the type of data

being embedded, and while we primarily use chunking of documents in order to reflect modern
RAG pipelines, one can also embed whole documents or even other types of data). We create the
multi-aspect embedding of each text chunk using a selected decoder-based embedding model
C (this part is detailed in Section 2.2). The user of the pipeline can plug in their model C of choice
as well as use their input data. We also offer a dedicated synthetic data generator that can be used
to construct multi-aspect input documents (we detail this part in Section 3) for evaluation purposes.

MRAG stores data differently than standard RAG, where a single embedding points to a single
text chunk . For MRAG, each multi-aspect embedding consists of h single-aspect embeddings ,
each pointing to the original text chunk . So the data store D contains h embedding spaces, each
capturing a different aspect of the text. This crucial feature allows MRAG to compare query and
text chunks in multiple embedding spaces that capture multiple aspects of the data.

2https://github.com/spcl/MRAG
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Figure 2: Overview of the MRAG pipeline, consisting of two parts: data preparation A and query execution B . The embedding model C and the
data store D are used by both parts. The data store D contains text embeddings linking to text chunks reflecting three different aspects
(cyan, magenta, yellow). Blocks marked by a star are a novelty of this work.

2.1.2 Query Execution

During query execution B , we first generate a multi-aspect embedding of the input query , using
the selected embedding model C (details in Section 2.2). Then, we find the nearest multi-aspect
embeddings and their corresponding text chunks in the data store D using a special multi-aspect
retrieval strategy (detailed in Section 2.3). Finally, the retrieved data can optionally be assessed

with novel metrics regarding how well it corresponds to the multi-aspect requirements (detailed
in Section 3). As with the data preparation A stage, the query execution B stage is flexible, and the
user can plug in their models C / of choice and use their own queries . We also offer a dedicated
synthetic query generator that can be used to construct multi-aspect input queries (detailed in
Section 3) for evaluation purposes.

2.2 Constructing Multi-Aspect Embeddings
MRAG can leverage any embedding model with multi-head attention support to construct the multi-
aspect embeddings for a given input text. In this work, we consider two embedding models from the
MTEB leaderboard [15] as potential candidates. Specifically, the SFR-Embedding-Model [24] and
the e5-mistral-7b-instruct [34], both based on the Mistral 7B architecture with 32 decoder blocks and
32 attention heads per multi-head attention.

While our approach allows for extracting and using the multi-aspect embeddings from any decoder
block, and from different layers within a block, we found that multi-aspect embeddings extracted from
the last multi-head attention worked best in our experimental setting. We provide further discussion
on the carried out experiments in Section 4.

2.3 Retrieval Strategies for Multi-Aspect Data
A retrieval strategy determines how we select the closest text chunks from the DB given a multi-aspect
embedding of the user query. In general, the MRAG retrieval strategy consists of three steps. First,
during data preparation, we assign importance scores to all h embedding spaces. Intuitively, these
scores capture the fact that different spaces (and the corresponding heads) may be more or less
relevant for the used data. Then, during query execution, MRAG starts by applying the traditional
RAG retrieval separately for each embedding space. This returns a list of c closest text chunks for
each embedding space (a total of h lists). Here, we use a special voting strategy to pick overall top k
out of all hc chunks, using the pre-computed importance scores.
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Algorithm 1 Importance scores for heads.

for each head hi do
ai ← 0; bi ← 0
count_ai ← 0; count_bi ← 0
for each embedding eij in hi do
ai ← ai + ||eij ||
count_ai ← count_ai + 1
for each embedding eih do
bi ← bi + cosine-distance(eij , eih)
count_bi ← count_bi + 1

end for
end for
ai ← ai/count_ai; bi ← bi/count_bi
si ← ai · bi

end for

Algorithm 1 details the construction of impor-
tance scores. It is a heuristic based on extensive
empirical evaluation; it gives high-quality results
across the tested datasets and tasks. Intuitively,
the score si of a given head hi consists of two
parts, ai and bi. ai is the average of L2 norms
of all embeddings in the vector space i; it repre-
sents how important a given head is: the larger
the norms, the more attention was given to this at-
tention head. bi is the average of cosine distances
between all (or a randomly sampled subset, if the
user wants to reduce pre-compute time) embed-
dings in vector space i. Intuitively, bi is a proxy
for measuring the “spread” of vector space i: the
larger bi, the larger the average angle between
different embeddings in this space is. Deriving si
as a product ai · bi ensures that we reward heads
with high average attention and high average spread, but simultaneously penalize heads with lower
average attention or with low average spread (both ai and bi are appropriately scaled).

The used voting strategy combines the constructed lists of text chunks from individual embedding
spaces into a single list of top k chunks. The strategy is very simple (the corresponding Algorithm 2
is in the Appendix). Each text chunk from a list i of the vector space i has a certain position on
this list, we denote this position with p. We obtain a weight for this chunk as si · 2−p; si is the
previously defined importance score of the space i. Multiplying si with 2−p exponentially lowers
the significance of less relevant text chunks. Finally, all chunks from all lists are sorted using their
weights and the top k chunks form the final list.

2.3.1 Integration with Data Stores

MRAG can be seamlessly used with different classes of data stores C and nearest neighbor (NN)
search approaches. It can be combined with both the exact and the approximate NN to find the
matching (embedding, chunk)-pairs. These two parts of the broader RAG processing pipeline are
orthogonal to MRAG.

3 Multi-Aspect Datasets, Queries, and Metrics
To assess how well MRAG performs on multi-aspect queries, and to compare it to modern RAG
schemes, we need (1) datasets of documents that capture multi-aspectuality, (2) queries to the LLM
that touch upon multi-aspectuality and require retrieving documents from the multi-aspect dataset,
and (3) metrics that assess how well a RAG scheme retrieves such multi-aspect data. We now describe
these three elements. In Section 4, we also briefly discuss real-world data and queries used.

Multi-Aspect Dataset Generation We first select conceptually different categories of documents.
We primarily focus on publicly available Wikipedia articles and select 25 categories (e.g., countries,
board games, historical swords, shipwrecks, etc.). For each category, we sample 50 documents. The
first part of the document (overview) is used as a text chunk to be embedded. We enforce that each
overview must have at least 800 characters, matching commonly used chunk sizes in RAG schemes.

Multi-Aspect Query Generation We also require queries that touch upon a given number of n
aspects. For example, a query with 10 aspects must contain a question about 10 different documents
from 10 different categories. We create such queries by selecting n categories, sampling a document
from each selected category (ensuring there are no duplicates overall), and then generating a story
that combines these documents, using an LLM (GPT-3.5 Turbo). We construct 25 queries with 1, 5,
10, 15 and 20 aspects (125 queries in total). An example multi-aspect query sent to the LLM that
requires retrieving 10 documents from 10 different categories, is pictured in the top part of Figure 3.

Metrics We also design novel metrics to assess how well a given RAG scheme supports multi-
aspectuality. For a query Q, a used retrieval strategy S (detailed in Section 2.3), and n documents
from n categories to retrieve, Qrel denotes the ideal set of documents that should be retrieved for Q.
Then, S(Q,n) is the set of the actually retrieved documents. We define the Retrieval Success Ratio
as Ξ(Q,n) = |S(Q,n)∩Qrel|

|Qrel| , i.e., the ratio of successfully retrieved relevant documents. Moreover,
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In a realm where the digital realm merged with reality, the phenomenon of Twitch Plays Pokémon captivated the masses, blurring the lines between player and spectator, much like the elusive 
concept of Money Illusion that tricked minds into perceiving value where none truly existed. And in the midst of it all, a strategic dance unfolded on the board of Camelot, where tactics intertwined 
with skill in a timeless battle of wits.

Amidst the vast expanse of the cosmos, the majestic Kongō-class battlecruisers sailed through the stars, their presence a testament to both honor and sacrifice in the raging tides of war. Their 
legacy echoed through the ages, much like the volumes of knowledge meticulously preserved in ancient libraries, each page a treasure trove of insights waiting to be discovered.

In a realm where the echoes of music intertwined with the whispers of ancient battles, a curious scholar, named Luc Montagnier, delved into the mysteries of a peculiar instrument known as the 
Theremin. As he studied its ethereal melodies that seemed to bridge the gap between reality and the unknown, memories of the enigmatic disappearance of the esteemed mayor Celso Daniel 
haunted his thoughts.

5 SRAG:     MRAG:

Example Prompt

SRAG: Standard RAGLegend: MRAG: Multi-Head RAG (this work) Document matchDocument ID Category match Repeated category match No match

Meanwhile, in a land where dreams took flight on the wings of imagination, children gathered to watch the fantastical tale of "James and the Giant Peach" unfold on the silver screen. The 
whimsical story transported them to a world beyond their own, much like the desert planet of Arrakis in the epic novel "Dune," where the precious spice held the key to power and destiny.

And so, the scholar pondered these diverse threads of existence, seeking to unravel the intricate tapestry that connected Luc Montagnier to the Theremin, Celso Daniel to the mysteries of power, 
and the timeless saga of Dune to the strategic depths of Camelot. In this weaving of tales, each article found its place, like pieces of a puzzle coming together to reveal a grand design hidden 
within the annals of history.

Given a story, retrieve relevant documents that provide contextual information about topics brought up in the story.

4 SRAG:     MRAG:

1 SRAG:     MRAG:

Ground Truth

Luc Montagnier
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James and the Giant Peach 
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DocumentID Category
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The Most Mysterious Song on the Internet
Theremin
The Dry Salvages (novella)
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Sci-fi Novels
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8
2

Document Category Match

Standard RAG (SRAG)

Retrieval Success Ratio (Document Match):
Retrieval Success Ratio (Category Match):

2/10

3/10

Weighted Retrieval Success Ratio (2:1): 0.23

Theremin
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Luc Montagnier
The Decameron
Dune (novel)
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Cool Runnings
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5
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Document Category

Multi-Head RAG (MRAG)

Retrieval Success Ratio (Document Match):
Retrieval Success Ratio (Category Match):
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Weighted Retrieval Success Ratio (2:1): 0.56
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7 SRAG:     MRAG:

2 SRAG:     MRAG:

9 SRAG:     MRAG:8 SRAG:     MRAG:

Match

1
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Figure 3: An example query used to evaluate different RAG strategies. We mention the documents to be fetched in the text and then assess the
success ratio of different RAG strategies in finding these documents and their categories. We mark exact document matches , category matches

, documents that match a category multiple times , and text segments with no matching document . Finally, we show the weighted success
ratio for each strategy, taking a 2:1 weighting (prioritizing the exact article matches).

there is a case when a RAG scheme does not retrieve the exact desired document, but it still retrieves
successfully some other document from the same category. To consider such cases, we use another
measure, the Category Retrieval Success Ratio or Ξc. It has the same form as Ξ(Q,n) above, with
one difference: S(Q,n) is now the set of all the retrieved documents that belong to categories of
the ideal desired documents. Finally, to combine these two metrics, we use the Weighted Retrieval
Success Ratio Ξw as Ξw = w·Ξ+Ξc

w+1 . By varying w, the user can adjust the importance of exact
document matches and category matches. An example of using these metrics to assess how well
MRAG and Standard RAG capture multi-aspectuality is pictured in the bottom part of Figure 3.

4 Evaluation
We now illustrate the advantages of MRAG over the state of the art.

Comparison Baselines We compare MRAG to two main baselines: Standard RAG and Split RAG.
The first represents a modern RAG pipeline in which each document uses the activations of the
last decoder layer as its embedding. The second is a blend between Standard RAG and MRAG.
Specifically, it splits the activation of the last decoder layer in the same way as MRAG and applies
a voting strategy. The purpose of Split RAG is to show that MRAG’s benefits come from using the
multi-head output as embedding and not merely using multiple embedding spaces. Additionally, we
consider Fusion RAG [29], an optional mechanism that we harness to further enhance the benefits of
MRAG at the cost of additional tokens (detailed in Section 4.2).

We use queries and metrics introduced in Section 3. We use the weighted retrieval success ratio
with 2:1 weighting, which considers category matches as relevant but prioritizes the exact document
matches. Figure 3 shows an example query and metrics usage. Each query requires retrieving
a specific number of documents and the corresponding non-overlapping categories which define
the ground truth. We fetch the top k documents from a database, where k is the “total number of
documents fetched for a tested RAG scheme” (including potentially mismatches). Among these k
documents, we search for matches with the ground truth.

Samples & Summaries Each data point in our plots corresponds to 25 queries. We present the data
using standard boxplots to showcase the distribution. Our primary focus is on the average retrieval
performance among those 25 queries.

6



Figure 4: Retrieval success ratio over 25 queries between MRAG and Standard RAG, where each query includes 10 different aspects. The
upper part presents exact document matches while the lower part presents category only matches (we explain the metrics used in Section 3).
A histogram is presented for a specific sample to showcase the detailed distribution among the 25 queries (the number of documents fetched for
each query is 30).

Figure 5: Relative retrieval improvement of MRAG over Standard RAG across queries with different numbers of aspects and different
embedding models (SFR in the left side, e5 in the right side).

4.1 Analysis of Results
We start from the query example in Figure 3 and show first the absolute retrieval performance of
MRAG over Standard RAG in Figure 4. We fix the number of aspects present in the queries to 10,
and vary the total number of retrieved documents from 10 to 30. MRAG consistently outperforms
Standard RAG (> 10% increase in the retrieval success ratio on average for exact document matches).
Moreover, the retrieval performance increase is even more significant on category matches (> 25%
increase in the retrieval success ratio on average). The performance increase is further detailed in the
histograms on the right side. Here, for a specific number of documents fetched, MRAG’s histogram
indicates a better distribution of retrieval success ratios (across all 25 queries).

Next, Figure 5 shows the relative weighted performance improvement of MRAG with respect to
Standard RAG as we vary the number of aspects present in the queries. We show data for two
different embedding models (SFR and e5). MRAG consistently outperforms the Standard RAG by
10-20% on average, not only across the number of documents fetched, but also across the number of
aspects present in the replies, for both models.

Documents Fetched
Multi-Aspect Dataset Legal Dataset Accidents Dataset

SFR e5 SFR SFR

MRAG Standard RAG | MRAG Standard RAG | MRAG Standard RAG | MRAG Standard RAG

1 24/25 25/25 24/25 25/25 24/25 24/25 25/25 25/25
2 25/25 25/25 25/25 25/25 25/25 25/25 25/25 25/25
3 25/25 25/25 25/25 25/25 25/25 25/25 25/25 25/25

Table 1: Retrieval success ratio (the exact document match) for 25 queries with a single aspect.
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Figure 6: Relative retrieval improvements of MRAG over Standard RAG for the SFR embedding model compared with Split RAG (the blue
plots), and the relative retrieval improvements of Fusion MRAG over both Fusion RAG and MRAG (the red plots).

We additionally show in Table 1 that MRAG performs on-par with Standard RAG on queries from
our multi-aspect dataset where only a single aspect is expected. Hence, our approach does not suffer
from significant decrease in performance for single-aspect tasks.

4.2 Further Improvements with Additional Tokens
We now show that MRAG can be seamlessly integrated with other RAG approaches: We combine
MRAG with Fusion RAG, representing RAG schemes that use an LLM (additional token cost) for
more accurate retrieval. Fusion RAG uses an LLM to create a fixed number of questions about the
RAG query. Each question is separately applied through an embedding model using Standard RAG.
We apply MRAG’s approach to each of these questions and denote the combined scheme as Fusion
MRAG. Red plots of Figure 6 show that both Fusion RAG and Fusion MRAG perform better than
Standard RAG, on average gaining 10 to 30% in accuracy. Fusion MRAG performs consistently
better than pure Fusion RAG, indicating that these optimizations can be combined together. However,
both Fusion strategies introduce a greater variance than MRAG and additional costs in terms of
compute, latency, and tokens.

4.3 Benefits from Multi-Head Attention Solely
We also compare MRAG to the Split RAG baseline in Figure 6. The blue plots show the relative
weighted performance of MRAG and Split RAG over Standard RAG. MRAG performs better than
Split RAG, illustrating that its high accuracy is due to the actual multi-head part, and not merely just
partitioning the vector and using multiple embedding spaces.

4.4 Real-World Workloads
To further illustrate advantages of MRAG, we also consider two real-word use cases from in-house
industry data analytics projects, namely, the synthesis of legal documents and the analysis of causes
of chemical plant accidents. The results are in Figure 7. In the former (the left side), the task is to
create a document based on user requirements that may be related to different aspects, for example to
the law being considered (e.g., the British or the US one), the subject (e.g., energetic or civil), the
style of the document (e.g., aggressive or mild), etc.. This task is executed with RAG that can fetch
documents from a database. In the latter (the right side), the task is to discover a cause of an accident.
Here, one also wants to retrieve documents from a database that should be used in the LLM context
to facilitate discovering the cause of the accident. The causes are grouped in categories such as utility
impact due to severe weather, lack of preparedness and planning, incorrect installation of equipment,
lack of maintenance, etc.. Similarly to the previous analyses, we measure the retrieval success ratio
over corresponding databases. MRAG offers advantages over other schemes.

Figure 7: Average improvement of the retrieval success ratio of MRAG and Split RAG over Standard RAG for two real-world workloads
constructing legal documents (left) and discovering causes of industry accidents (right).
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Figure 8: Evaluation of different voting strategies for MRAG and Split RAG

4.5 Additional Analyses
We also analyze the impact of using embeddings from different decoder blocks for MRAG (instead
of the last one) and the impact of using different voting strategies for MRAG as well as for Split
RAG.

We consider taking multi-aspect embeddings from three different layers of the embedding model:
after the first multi-head attention block, after multi-head attention block 16 (in the middle of the
decoder architecture), and the final multi-head attention. We discover that the last multi-head attention
performs the best when compared with the Standard RAG.

We also illustrate selected representative data from a long investigation two additional voting strategies
for MRAG. We compare MRAG (1) where only the exponential lowering of significance of selected
chunks is applied (wi,p = 2−p), and MRAG (2) which assigns the weight for each text chunk based
on the distance between the particular text chunk (di,p) and the query (q) (wi =

1
distance(di,p,q)

).
Figure 8 shows that these voting strategies perform worse on average than our selected strategy for
MRAG, justifying its design and selection (described in Section 2.3).

We also consider two voting strategies for Split RAG, to further deepen the empirical evaluation.
Split (1) only uses the exponential lowering of significance (wi,p = 2−p) and Split (2) which uses the
same strategy as MRAG (wi,p = si · 2−p). Figure 8 (on the right) shows that these voting strategies
are on-par with each other while being worse than MRAG, further showcasing the advantages of
MRAG.

5 Related Work
Our work touches on many areas which we now briefly discuss.

Many RAG schemes appeared recently [10], using the output of the last decoder layer for embedding
generation. In contrast, MRAG leverages different embedding spaces of attention heads to focus
on different aspects of documents and queries. As such, it can be combined with other schemes to
further improve RAG pipelines.

Retrieval is sometimes enhanced by a cross-encoder reranking phase [9, 19, 22, 26, 27, 30]. In
such solutions, typically after retrieving a set of relevant chunks, they are re-ranked using specialized
models. In this work, we focus solely on the first retrieval phase, so MRAG can be seamlessly used
in conjunction with such cross-encoders.

Structure-enhanced RAG schemes employ different strategies for structuring text to improve
retrieval quality. A common idea is to construct a Knowledge Graph from text, which enables
retrieval amongst entities and relationships [3, 6, 16, 17, 37]. RAPTOR [31] generates multi-level
summaries for clusters of related chunks, building a tree of summaries with increasing levels of
abstraction to better capture the meaning of the text. Graph RAG [7] creates a Knowledge Graph,
and summarizes communities in the graph, which provide data at the different levels of abstraction.
All these systems try to improve RAG quality by utilizing additional structures that describe entity
relationships or the inner organization of text. Usually, they need a sophisticated preprocessing phase
to prepare such structures. MRAG achieves the improvement solely based on the embedding model
and has no additional storage requirements, and can be combined with any of these schemes.

6 Conclusion
Retrieval Augmented Generation (RAG) is pivotal for democratizing access to accurate and relevant
outputs from large language models (LLMs). Enhancing the precision and relevance of these outputs
is a critical goal, especially given the challenges posed by queries requiring the retrieval of multiple
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documents with significantly different contents. These complex queries are common across various
domains, but existing RAG solutions struggle because the embeddings of the necessary documents
can be far apart in the embedding space, complicating their retrieval.

To address this gap, we introduced Multi-Head RAG (MRAG), a novel scheme that leverages the
activations from the multi-head attention layer of decoder models instead of the traditional feed-
forward layer. This approach is grounded in the insight that different attention heads can capture
distinct aspects of the data. By using these diverse activations, MRAG creates embeddings that better
represent the multifaceted nature of data items and queries, thus enhancing the retrieval accuracy for
complex, multi-aspect queries. The simplicity and versatility of this idea allow it to be seamlessly
integrated into any modern RAG pipeline or data analytics framework.

Our comprehensive evaluation methodology, including specific metrics, synthetic datasets, and real-
world use cases, demonstrates MRAG’s effectiveness. The results indicate a significant improvement
in the relevance of retrieved documents, with up to 20% better performance compared to modern
RAG baselines. This validates MRAG’s potential to handle the intricacies of multi-aspect queries
effectively.

Moreover, MRAG proves to be both cost-effective and energy-efficient. It does not require additional
LLM queries, multiple model instances, increased storage, or multiple inference passes over the
embedding model. This efficiency, combined with the enhanced retrieval accuracy, positions MRAG
as a valuable advancement in the field of LLMs and RAG systems. By addressing the challenges of
multi-aspectuality in queries, MRAG paves the way for more reliable and accurate LLM applications
across diverse industries.
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Appendix
A Model Design: Additional Details
A.1 Retrieval Strategies for Multi-Aspect Data

Algorithm 2 Voting strategy.

l← []
for each head hi and its score si do

find best matching k text chunks
for each chunk di,p with index p in top k
do
wi,p ← si · 2−p

add tuple (di,p, wi,p) to l
end for

end for
sort l using weights wi,p; return top k elems

B Evaluation Methodology: Additional Details
B.1 Compute Resources
Our experiments were executed with compute nodes containing 4x NVIDIA GH200 and a total
memory of 800 GB. In general one GPU with at least 40GB of memory should suffice. We used
at most 50GB of storage and the OpenAI API as an external resource. The full experiments took
at most three hours of GPU time and the cost for the OpenAI API were at most $15. We carried
out additional experiments, which amounted to around 20 hours of GPU time and cost of $25 for
the OpenAI API. Additional evaluation was executed with a mix of compute resources including
NVIDIA A100 and V100 GPUs.

B.2 Dataset Details

Table 2: Prompt template for query generation.

Please create a story about the attached <number of articles> articles on the topics <list of titles>.

It is very important that each of the attached articles is relevant to the story, in a way that references
the content of the article, not just its title. But please also mention each title at least once. Please
make sure that all of the attached articles are relevant to your story, and that each article is referenced
in at least two sentences! They do not necessarily have to be referenced in the same order, but make
sure no article is forgotten.

Important: Output only the story, no additional text. And do not use bullet points, or paragraphs.

Articles:

———

Article <title>:

<body>

<...>

———

Again, make sure that you reference all the following topics in your story: <list of titles>
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