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#authors = 4
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How do we enable these 
GNN workloads on the LPG 

graph datasets while 
harnessing all the existing 

label/property information?

? :?

?

:?

We need the right 
encoder!
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Evaluation: Used Machine & Objectives

Main goal: show that LPG2vec 
successfully harnesses the label and 
property information from the LPG 

graph datasets to offer more accurate 
predictions in graph ML tasks
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important to use 
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Task: predict the research 
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Node Classification, aka
Label Prediction

Task: predict the research 
area of the publication

Impact from each label/property pairImpact from each label/property

Harnessing most 
cases increases 

accuracy 

In same cases, 
accuracy decreases

It is important to understand the data well and 
select the right encoded LPG information 
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CSCS Cray Piz Daint & Ault
64GB – 2TB memory per server

Evaluation: Used Machine & Objectives

How to scale these computations to really big 
graphs (hundreds of billions of edges) using a lot 

of parallelism (>a hundred thousand cores)?

@ ACM/IEEE Supercomputing’23, Best Paper Finalisthttps://arxiv.org/abs/2305.11162
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Conclusions
Thank you

LPG2vec enables encoding arbitrary LPG 
datasets and their seamless analysis within 

an arbitrary GNN processing pipeline

This introduces & lays the foundation for 
Neural Graph Databases
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These dependencies make efficient processing of GNNs 
much more complex than in traditional DL
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Types of Samples & Downstream Tasks: GNNs vs. Traditional DL

Dependencies between 
samples in GNNs

Even in independent graph case, 
there are intra-sample dependencies

M. Besta, T. Hoefler. Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis. https://arxiv.org/abs/2205.09702, 2022.

https://arxiv.org/abs/2205.09702
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