
1

Topologies of Reasoning: Demystifying
Chains, Trees, and Graphs of Thoughts

Maciej Besta1†, Florim Memedi1, Zhenyu Zhang1, Robert Gerstenberger1,
Guangyuan Piao2, Nils Blach1, Piotr Nyczyk3, Marcin Copik1,

Grzegorz Kwaśniewski1, Jürgen Müller4, Lukas Gianinazzi1, Ales Kubicek1,
Hubert Niewiadomski3, Aidan O’Mahony2, Onur Mutlu1, Torsten Hoefler1

1ETH Zurich 2 Dell 3Cledar 4BASF SE

Abstract—The field of natural language processing (NLP) has witnessed significant progress in recent years, with a notable focus on
improving large language models’ (LLM) performance through innovative prompting techniques. Among these, prompt engineering
coupled with structures has emerged as a promising paradigm, with designs such as Chain-of-Thought, Tree of Thoughts, or Graph of
Thoughts, in which the overall LLM reasoning is guided by a structure such as a graph. As illustrated with numerous examples, this
paradigm significantly enhances the LLM’s capability to solve numerous tasks, ranging from logical or mathematical reasoning to
planning or creative writing. To facilitate the understanding of this growing field and pave the way for future developments, we devise a
general blueprint for effective and efficient LLM reasoning schemes. For this, we conduct an in-depth analysis of the prompt execution
pipeline, clarifying and clearly defining different concepts. We then build the first taxonomy of structure-enhanced LLM reasoning
schemes. We focus on identifying fundamental classes of harnessed structures, and we analyze the representations of these
structures, algorithms executed with these structures, and many others. We refer to these structures as reasoning topologies, because
their representation becomes to a degree spatial, as they are contained within the LLM context. Our study compares existing prompting
schemes using the proposed taxonomy, discussing how certain design choices lead to different patterns in performance and cost. We
also outline theoretical underpinnings, relationships between prompting and other parts of the LLM ecosystem such as knowledge
bases, and the associated research challenges. Our work will help to advance future prompt engineering techniques.

Index Terms—Prompt Engineering, Prompting, Prompting Topology, Chain-of-Thought, Tree of Thoughts, Graph of Thoughts, Large
Language Models, LLMs, Vision-Language Models, VLMs, Generative AI, Chain Prompting, Tree Prompting, Graph Prompting.

✦

1 INTRODUCTION

Large Language Models (LLMs) have become a dominant
tool in modern machine learning (ML). Originating from
simple Natural Language Processing (NLP) tasks [34], [83],
[157], their far-extending potential has been quickly applied
in other fields, such as logical reasoning [51], planning [193],
medicine [182], and many others. Since the primary commu-
nication medium with LLMs is natural language, prompt
engineering has become a new area of study that gained
widespread attention and importance [156], [201]. First, it
democratizes the access to LLMs and to the overall genera-
tive AI landscape, by being easy to use and try by anybody.
Second, it is cost-effective and does not require fine-tuning
or pre-training, which are expensive and time-consuming.

Crafting LLM queries to increase both the accuracy of
outcomes as well as cost-effectiveness in tasks such as log-
ical or algebraic queries is challenging. Despite continuous
advances in the size and cognitive power of LLMs, solving
elaborate tasks with a single straightforward prompt yields
imprecise or plain incorrect results due to the left-to-right,
one-token-at-a-time nature of generative Transformer mod-
els [195]. Therefore, recent works focus on guiding LLMs to-
wards the final solution through intermediate steps. Exam-
ples of such schemes include Chain-of-Thought (CoT) [195],
Tree of Thoughts (ToT) [213], Graph of Thoughts (GoT) [10],
AutoGPT [160], ReAct [214], or LLMCompiler [110]. This

†Corresponding author

line of works increases the performance of the LLM reason-
ing.

Yet, despite all these advancements, state-of-the-art
schemes still exhibit numerous limitations. First, they are
still limited to simple tasks such as Game of 24 – it is
critical to further enhance prompting to enable solving com-
plex multifaceted tasks. Moreover, state-of-the-art prompt-
ing schemes often entail high inference costs [10], [213].
Third, designing, developing, maintaining, and extending
these schemes is hard. On one hand, this is due to the rapid
development and enrichment of the “LLM ecosystem” that
must be seamlessly integrated into the prompting pipeline.
This includes retrieval-augmented generation (RAG), ac-
cessing the Internet, executing Python scripts, fine-tuning,
and others. On other hand, different concepts related to
the LLM reasoning are not well-defined, hindering effective
design of new more powerful schemes. For example, while
many schemes rely on the notion of the LLM thought, it is
not clear how it relates to concepts such as a prompt.

To address the above issues, we first identify and crys-
tallize fundamental building blocks and concepts in the
general prompt execution pipeline. Then, we analyze and
clarify these blocks and concepts in the context of recent
schemes such as CoT, ToT, and GoT (contribution #1). Our
study is based on a broad analysis of recent works on LLM
reasoning. Then, we use the gained insights to develop a
general blueprint and a taxonomy of the LLM reasoning
schemes, focusing on how the underlying structure of rea-
soning can be used to facilitate more efficient, effective, and

ar
X

iv
:2

40
1.

14
29

5v
2

 [
cs

.C
L

]
 3

0
M

ar
 2

02
4

2

Input

Output

Input

OutputOutput

Thoughts:

Unscored

Negative
score Output

Input

Output

Input

Positive
score

Dependencies
between thoughts

Abandon thought

Backtrack

Basic Input-
Output (IO)

Legend

Multiple CoTs (CoT-SC)Chain-of-
-Thought

(CoT)

Tree of Thoughts (ToT) Graph of Thoughts (GoT)

Key novelty:
Intermediate
LLM thoughts
within a chain

Branching out
from a chain

Selecting
a chain with

the best score

Abandon a chain

Key novelty
(beyond CoT):
Harnessing multiple
independent chains
of thoughts

Key novelty
(beyond CoT-SC):
Generating several
new thoughts based
on a given arbitrary
thought, exploring
it further, and possibly
backtracking from it

Key novelty (beyond ToT):
Arbitrary graph-based thought
transformations (aggregating
thoughts into a new one,
looping over a thought to
refine it)

Backtracking

Refining

Aggregating
thoughts

Backtracking
from a chain

Intermediate
thoughts are
also scored

Aggregating
chains

Input

[Wei et al.,
Jan'22]

[Wang et al.,
March'22] [Long, May'23]

[Yao et al., May'23] [Besta et al., August'23]

[Lei et al., August'23]

https://github.com/spcl/graph-of-thoughts

https://github.com/jieyilong/tree-of-thought-puzzle-solver

https://github.com/princeton-nlp/tree-of-thought-llm

Fig. 1: Evolution of reasoning topologies used in prompting schemes.

productive prompting (contribution #2). For this, we ob-
serve that the reasoning process in many recent prompting
schemes can be modeled as a graph. While the nature of
interacting with the LLM is temporal, the representation of
the graph structure behind the LLM reasoning is periodi-
cally merged with the LLM context, becoming – to a degree
– spatial, thus forming different topologies. These topologies
can be a plain path graph (as in CoT [195]), multiple par-
allel path graphs with a single root (as in CoT with Self-
Consistency) [190], a tree (as in ToT [213]), or an arbitrary
graph (as in GoT [10]). We then use our taxonomy to survey
and analyze existing prompting schemes (contribution #3).
We dissect these schemes into fundamental aspects such
as the class of graphs (i.e., the topology) used to model
the reasoning process, the representation of this reasoning,
or the encoding of the reasoning schedule. We focus on
investigating which classes of schemes offer more perfor-
mance in terms of the accuracy of predictions, the latency
of execution, or the cost effectiveness (contribution #4). We
finally list open challenges and potential for novel research
directions (contribution #5).

2 EVOLUTION OF REASONING TOPOLOGIES

We first summarize the evolution of reasoning topologies;
see Figure 1 for an overview. For the sake of brevity, we do
not yet precisely define the used terminology, instead rely-
ing on terms broadly used in the literature. In Sections 3–4,
we introduce and discuss precise naming.

In the basic Input-Output (IO) prompting, the LLM
provides a final reply immediately upon receiving the
user initial prompt. There are no intermediate steps in the
LLM reasoning. Chain topologies, introduced in Chain-of-
Thought by Wei et al. [195], improve upon IO prompting by
incorporating explicit intermediate “steps of reasoning” in
addition to the input and output. Chain-of-Thought with
Self-Consistency (CoT-SC) [190] improves upon CoT by in-
troducing several independent reasoning chains, originating

from the same initial input. Then, the best outcome from the
final thoughts is chosen, according to a predefined function
S. The driving idea is to harness the randomness within the
LLM reasoning, as it can generate different thoughts from
the same prompt.

Tree of Thoughts (ToT) [133], [213] elevates the CoT
limitations by allowing prompt branching at any point of
the chain of thoughts. Therefore, different exploration paths
are not fundamentally independent, like in CoT-SC, but a
chain of thoughts can branch during the reasoning process
to explore different options. A single tree node represents a
partial solution. Based on a given node, the thought generator
constructs a given number k of new nodes. Then, the state
evaluator generates scores for each such new node. Depend-
ing on the use case, the evaluation could be conducted using
an LLM itself, or it can harness human scores. Finally, the
schedule of extending the tree is dictated by the utilized
search algorithm (e.g., BFS or DFS).

Finally, Graph of Thoughts (GoT) [10] enables arbitrary
reasoning dependencies between generated thoughts. Sim-
ilarly to ToT, every thought can generate multiple child
thoughts. However, each thought can also have multiple
parents, which can form an aggregation operation. GoT,
allowing both branching (thoughts with out-degree > 1)
and aggregation (thoughts with in-degree > 1) operations,
can express – for example – reasoning patterns resembling
dynamic programming, where GoT subgraphs are respon-
sible for solving subproblems, which are then combined to
form a final solution.

3 ESSENCE OF GENERAL PROMPT EXECUTION

We first summarize general prompt execution by giving a
detailed overview of the prompting pipeline (Section 3.1)
and then establishing a functional formulation for any
prompting scheme (Section 3.2). This formulation will fa-
cilitate our subsequent analysis of reasoning topologies.

3

User

1 8Provider

LLM

Preprocess

Add to context

Input context
to the LLM

Reply to
the user

6 Add to context

User prompt is
the only user input

Prompt Reply

Added
data

Added
metadata

Using an inflexible pipeline,
genera�ng auto-regressive output

un�l the model decides to stop

Poten�al
fine-tuning

Checking
for NSFW, ...

Autoregressive
genera�on

4

2

3

Reply

User-AI interac�on High-level overview of a promp�ng interac�on

Details of the i-th promp�ng interac�on

Prompt i

... ...

Post-processed
LLM Output

Post-process5

Prompt Reply

Preprocessed
Prompt i</>

Context

...
Preprocessed

Prompt 1</>

Reply 1</>

Preprocessed
Prompt i</>

Reply i</>

LLM
Output

7 (Poten�ally) iterate before
ge�ng back to the user

Internet ToolsDatabases

Preprocess

Add to
context

Input
context

to the LLM

Reply to
the user

Add to context

Autoregressive
genera�on

ReplyPrompt
User

LLM
infrastructure

Post-processed
LLM Output

Post
processPreprocessed

Prompt Context LLM
Output

Prompt Reply

Adding the "system
pre-prompt", using tools,
checking for compliance,
avoiding exploits, RAG,

quality enhancements, ...

Fig. 2: Overview of a general prompting pipeline.

3.1 Basic Prompting Pipeline

Figure 2 summarizes the prompting pipeline. On the left
side of the figure, it shows a high-level user–AI interaction,
which consists of a series of exchanges of information be-
tween the user and the LLM infrastructure ; the user
sends prompts while the LLM sends back replies .

An individual i-th prompting interaction, pictured in the
main central part of Figure 2, starts with the user sending
a prompt pi. Before being fed to the model, the prompt
can be preprocessed by the LLM provider 1 , becoming p̃i.
This could include adding a “system pre-prompt” or some
additional metadata </> , checking for the compliance with
some policies, enhancing the prompt quality, conducting
retrieval augmentation , or including outcomes from run-
ning external tools such as Python scripts or accessing
the Internet . The preprocessed prompt is added to the
LLM context 2 , which then is fed to the model 3 .
This results in the autoregressive output generation 4 .
The model is usually frozen such that its weights do
not change. In some considered prompting schemes, the
model can also be fine-tuned . The output oi is potentially
post-processed 5 , which could involve running oi through
additional neural layers (e.g., for sentiment analysis) or
other forms of post-processing on the provider side, such
as checking for NSFW, adding more metadata </> , and other
operations. The post-processed output õi is also added to
the context 6 and it is sent back to the user as a reply 8

. Note that õi could also be potentially fed back to the
model directly, for additional iterations, before getting back
to the user 7 .

3.2 Functional Formulation & Building Blocks

We formalize the basic prompting pipeline from Section 3.1.
This allows us to crystallize its fundamental building blocks,

facilitating future optimizations and propelling both ef-
ficient and effective designs. The fundamental functional
building blocks are fpre (for the prompt preprocessing 1),
fpost (for the post-processing of the LLM output 5), LLM
(for the auto-generative LLM execution 4), fc (for deter-
mining how the context is updated in stage 2 and f ′

c (for
determining how the context is updated in stage 6). For
this, we observe that the i-th prompting interaction (for
i = 1, ... and c′0 = {}) can be formally described as

p̃i = fpre(pi) (1)
ci = fc(p̃i, c

′
i−1) (2)

oi = LLMX(ci) (3)
õi = fpost(oi) (4)
c′i = f ′

c(ci, õi) (5)

where
• pi is the user prompt in the i-th prompting interaction,
• fpre(pi) is a preprocessing transformation applied to
pi. It may involve Retrieval Augmented Generation
(RAG), executing a script, accessing the Internet, and
using other tools,

• p̃i is the preprocessed version of the i-th prompt,
• ci is the context at the beginning of the i-th prompting

interaction (after executing fc),
• c′i is the context after executing f ′

c of the i-th prompting
interaction (note that in the actual implementation, ci
and c′i would be referring to the same data structure);
note that c′0 = {},

• oi is the output of the auto-generative execution of a
given LLM X (e.g., LLaMA),

• fpost(oi) is a post-processing transformation applied
to oi; this may involve additional neural layers (e.g.,
for sentiment analysis), checking for compliance with
guidelines, and others. While most existing schemes do

4

not focus on this part, we expect that in the future, the
post-processing transformation could also – similarly
to preprocessing – involve executing a script, accessing
the Internet, RAG, and others,

• õi is the post-processed LLM output oi; õi = fpost(oi),
• fc, f

′
c are transformations that determine the exact form

of updating the context.

3.3 Implementing Building Blocks
The provided building blocks can serve as the basis for
productive implementations of prompting baselines on dif-
ferent architectures. For example, scheduling different parts
of the prompting pipeline in the cloud setting could be
done using the granularity of these blocks: a lightweight
post-processing fpost could execute a fast function, while
a longer and stateful RAG operation within fpre could be
automatically placed on EC2.

The details of fpre, LLMX , fpost, and fc depend on the
specific LLM infrastructure. In general, they can be used to
implement different parts of the generative AI ecosystem.
For example, most of RAG-based frameworks would imple-
ment RAG in fpre. Similarly, adding a system pre-prompt
can be implemented as a part of fpre. The details of how the
context is updated, or how some of its parts are removed
when the input length reaches its limit, are specified in fc.

In many cases, it is the user responsibility to specify the
behavior of fpre, fpost, fc; this is the case – for example – with
LLaMA or when using the OpenAI API. Contrarily, when
interacting with commercial services such as ChatGPT, these
transformations are defined and implemented on the LLM
infrastructure side.

4 ESSENCE OF REASONING TOPOLOGIES

We now crystallize different concepts in the area of rea-
soning topologies, and relate it to the general prompting
pipeline and the functional formulation from Section 3.

4.1 What Is a Thought and a Reasoning Topology?
Many works use the term “thought”. Yet, its precise mean-
ing can differ, depending on the setting. For example, in
CoT, a thought refers to a statement within a paragraph that
contains a part of the reasoning process aimed at solving
the input task. We show this in the top part of Figure 3. In
ToT, in some tasks, such as Game of 24, a thought means
an intermediate or a final solution to the initial question.
However, in creative writing, it could be a plan of solving
the input task, or a passage of text. In GoT, a thought
contains a solution of the input task (or of its subtask). For
example, it can be a subset of documents to be summarized,
or a sequence of numbers to be sorted.

To encompass all these cases, we define a thought to be a
semantic unit of task resolution, i.e., a step in the process of solving
a given task. All the above examples fall into this definition:
a step in task resolution can be a statement, a plan, a text
passage, a set of documents, or a sequence of numbers.
We model thoughts with nodes; edges between nodes
correspond to dependencies between these thoughts. The
details of these dependencies are also use case specific. For
example, when generating a paragraph of text, if a given

paragraph y is a refined version of a previous version x,
then x and y become nodes in the topology, and there is
an edge from x to y indicating that y depends on x. If the
task is to sort a sequence of numbers, and the strategy is
based on splitting the sequence into sub-sequences, sorting
them independently, and merging, then the initial sequence
could be modeled as a node x, and the sub-sequences would
form further nodes y, z, ..., with edges (x, y), (x, z), ... from
x to all the nodes modeling sub-sequences. Now, a reasoning
topology is a graph of these nodes and edges.

Formally, a topology can be defined as G = (V,E),
where V is a set of nodes modeling thoughts, and E is
a set of edges between these nodes, modeling reasoning
dependencies between thoughts. Such a graph-theoretic ap-
proach to reason about chains, trees, and graphs of thoughts
facilitates devising more efficient reasoning schemes. For
example, when aiming for minimizing the latency of solving
a given task, one would attempt to devise a topology with
low distance between the input and output nodes.

4.2 Semantic Roles of Thoughts & Topologies
Graph nodes can model different aspects of reasoning. For
example, in writing tasks, some nodes model plans of
writing a paragraph, while other nodes model the actual
paragraphs of text. We refer to such aspects as different
semantic roles. As already observed in the prompting liter-
ature [10], semantic roles can also be modeled with graph
theory, namely with heterogeneous graphs. This enables
harnessing a powerful machinery for novel LLM reasoning
works. For example, one could consider using some of the
heterogeneous graph learning methods [139], [178], [220] in
future prompting approaches.

4.3 Fundamental Use Cases of Thoughts & Topologies
We identify two fundamental use cases of thoughts and
topologies: in-context examples and reasoning steps that
bring us towards a solution. In a topology of thoughts,
a node v is reachable from another node u, if there ex-
ists a path from u to v. If a node is reachable from the
node modeling the input task statement, we call such a
node a solution node, and the corresponding topology is
a solution topology. However, certain nodes may be not
reachable from the input node. For example, a user may
provide (in their prompt) in-context examples that form
a small topology, which are not a step in the reasoning
towards solving the input task, but merely examples. We
will refer to such thoughts and topologies as thoughts and
topologies of in-context examples. Examples of the two
use cases can be found in Figure 3. Solution thoughts and
topologies are marked with the blue color while in-context
examples are marked with the green color. Topologies of
in-context examples do not span beyond a single prompt.
Solution topologies, on the other hand, can span across
many prompts and replies.

Distinguishing between solution and in-context example
thoughts and topologies can enable more effective and effi-
cient LLM reasoning schemes. For example, a graph topol-
ogy has to be represented in a certain way. Now, knowing
that topologies of in-context examples are usually limited to
a single prompt, while solution topologies usually stretch

5

An example tree-based interac�on

An example chain-based interac�on

Legend & concepts
Topologies vs. prompts-replies

Prompt 1

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

Green color indicates a topology of in-context
examples, i.e., a topology that is not a part of the

topology related to the posed input task.

Blue color indicates
a solu�on topology,
i.e., topology that is

related to the input task.

Different shades
indicate different
seman�c roles of

nodes/edges

In-context examples (and poten�ally
other parts of the context) may include
instances of topologies. For example,

here, there are 1-level trees and forests
within other in-context examples.

Seman�c role of the dark shade:
provide the next part of the solu�on

Seman�c role of the
light shade: evaluate

Q: The cafeteria has 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

Reply 1

Prompt 1

Prompt 2

A thought refers to a
single sentence in a paragraph

that contains the LLM reasoning
towards solving the task

A thought refers
to the next part
of the solu�on

A thought refers
to an evalua�on

A thought
refers to
the next

part of the
solu�on

A thought refers
to the next part
of the solu�on

A thought
refers to an
evalua�on

A thought refers to a
single sentence in a paragraph

that contains the LLM reasoning
towards solving the task

Prompt i

Input: 2 8 8 14

2 + 8 = 10
(le�: 8 10 14)

14 + 2 = 16
(le�: 8 8 16)

8 / 2 = 4
(le�: 4 8 14)

10 + 14 = 24
sure

6 * 4 = 24
sure

17 + 3 = 20
likely

Input: 4 9 10 13

...
impossible

A: Roger started with 5 balls.

2 cans of 3 tennis balls
each is 6 tennis balls.

5 + 6 = 11.

The answer is 11.

A: The cafeteria has 23
apples originally.

They used 20 to make lunch.

So they had 23 - 20 = 3.

They bought 6 more apples,
so they have 3 + 6 = 9.

The answer is 9.

Prompt j

... {...more prompt-reply
pairs that evaluate other

series of numbers...}

... {...more prompts
& replies...}

...

...

...

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

A: The cafeteria has 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9.

Reply 1

4 + 9 = 13 (le�: 10 13 13)
10 - 4 = 6 (le�: 6 9 13)
13 - 10 = 3 (le�: 3 4 9)
{...more lines...}

Use 4 numbers and basic
arithme�c opera�ons (+-*/)
to obtain 24.

Input: 2 8 8 14

Possible next steps:
2 + 8 = 10 (le�: 8 10 14)
8 / 2 = 4 (le�: 4 8 14)
14 + 2 = 16 (le�: 8 8 16)
{...more in-context examples...}

Input: 4 9 10 13

Possible next steps:

Topology of in-context examples in
user's prompt

{...more nodes
that correspond
to more in-context
examples...}

10 14 6 4 17 3

Input: 5 3 2

2 + 5 = 7
(le�: 3 7)

3 * 2 = 6
(le�: 5 6)

3 + 2 = 5
(le�: 5 5)

{...more nodes
that correspond
to other possible
next steps...}

{...more nodes
& edges that
correspond to
other prompt-
-reply pairs
that evaluate
other series
of numbers...}

Topology is fully
included within

a single reply

Topology spans over
a prompt and a reply

Topology spans over
a prompt and a reply

Topology spans over
a prompt and a reply

Use 3 numbers and basic
arithme�c opera�ons (+-*/)
to obtain 24.

Input: 5 3 2

Possible next steps:
2 + 5 = 7 (le�: 3 7)
3 * 2 = 6 (le�: 5 6)
3 + 2 = 5 (le�: 5 5)
{...more in-context examples...}

Input: 6 9 13

Possible next steps:

Reply j

13 - 9 = 4 (le�: 4 6)
13 - 6 = 7 (le�: 7 9)
{...more lines...}

Reply 2

(13 + 10) * 13 = 23 * 13 = 299
10 * 13 + 13 = 143 There is no
way to obtain 24 with these big
numbers. impossible

Topology is fully
included within
a single prompt

Topology is fully
included within
a single prompt

Topology is
fully included in
a single prompt

Topology is fully
included within
a single prompt

Topology is fully
included within
a single prompt

4 + 9 = 13
(le�: 10 13 13)

13 + 13 + 10 =
36; impossible

10 - 4 = 6
(le�: 6 9 13)

13 - 10 = 3
(le�: 3 4 9)

13 - 9 = 4
(le�: 4 6)

6 * 9 = 54
(le�: 13 54)

13 - 6 = 7
(le�: 7 9)

...
likely

Evaluate if given numbers can
reach 24 (sure/likely/impossible)

10 14: 10 + 14 = 24. sure
6 4: 6 * 4 = 24. sure
17 3: 17 + 3 = 20. likely
{...more in-context examples...}

10 13 13

Are you sure, that numbers
10 13 13 are impossible to use?
Maybe try also this combina�on:
(13 + 13 + 10)

Solu�on topology in user's prompt:
this could be, for example, user's
sugges�on to the LLM

Topology of in-context examples in
LLM's reply: for example, LLM's
sugges�ons for in-context examples

Solu�on topology in LLM's reply:
this usually is a part of the LLM
reasoning towards solving the input task

(13 + 10) * 13 =
23 * 13 = 299
10 * 13 + 13 = 143
There is no way
to obtain 24 with
these big numbers.
impossible

{...more nodes
that correspond
to other possible
next steps...}

{...more nodes
that correspond
to more in-context
examples...}

{...more nodes
that correspond
to more in-context
examples...}

A thought refers
to the next part
of the solu�on

Fig. 3: Overview and examples of how reasoning topologies correspond to the user–AI prompting interactions.

6

beyond an individual prompt or LLM reply, one could use
different representations for these two topology classes, in
order to minimize token utilization in each of them.

Both topologies can collectively be modeled also as a
graph, with multiple components corresponding to topolo-
gies that are not connected with one another. To further
facilitate future optimizations, one could potentially harness
a hypervertex model [31], in which arbitrary subgraphs can
be modeled as individual nodes called hypervertices. In
such a view, one could model each separate topology of
in-context examples as a hypervertex, connected with other
nodes or hypervertices with hyperedges. This approach
could be harnessed to provide a theoretical framework for
optimizing the holistic performance of a reasoning scheme,
including its ingredients such as in-context examples, in
relation to all other scheme ingredients.

4.4 Functional Formulation of Reasoning Topologies
The LLM reasoning that harnesses topologies is formulated
in the exactly same way as described in Section 3. However,
one has to take into account the fact that prompts pi,
replies õi, and context ci in general, they all contain thoughts
and their dependencies. Now, the exact way in which a
topology is mapped to pi, õi, and ci, depends on a specific
prompting scheme. For example, in the i-th prompting
interaction of CoT, a reasoning topology T is a subset
(potentially a proper subset) of either the LLM reply õi
(when T is a solution topology), or of the user prompt
pi, as an in-context example (when T is a topology of in-
context examples). In many tree and graph based schemes,
however, this mapping is not so simple, and a topology can
span across multiple prompts and replies. We illustrate these
examples in Figure 3.

When developing an LLM reasoning scheme that har-
nesses reasoning topologies, one needs to specify the details
of such mappings, but also build the representation of that
topology, the schedule of traversing the topology, and many
others. To facilitate devising future LLM reasoning schemes,
we now provide a blueprint that clearly defines all these
aspects and how they can be instantiated.

4.5 A Blueprint for LLM Reasoning
We identify the following fundamental aspects of an LLM
reasoning scheme that harnesses a topology: ❶ topology class
(the structure of connections between intermediate steps
of the LLM reasoning, Section 4.5.1), ❷ topology scope (the
mapping between the topology and prompts/replies/con-
text, Section 4.5.1), ❸ topology representation (how a given
topology is represented within a prompt/reply/context,
Section 4.5.1), ❹ topology derivation (how a given topology is
obtained, Section 4.5.1), ❺ reasoning schedule (how is a given
topology traversed to conduct the LLM reasoning, Sec-
tion 4.5.2), ❻ schedule representation (how is a given schedule
represented within a prompt/thought, Section 4.5.2), and ❼

harnessed parts of the AI pipeline (what parts of the generative
AI pipeline, beyond prompting, are used, Section 4.5.3). We
picture the blueprint in Figure 4, and we analyze existing
schemes with respect to this blueprint1, in Table 1.

1We encourage participation in this analysis. In case the reader is
in possession of additional information relevant for the analyzed
schemes, the authors would welcome the input.

The provided blueprint and taxonomy are applicable to
both solution and in-context example topologies. For exam-
ple, a topology modeling an individual in-context example
can have its own representation, schedule, etc.. However,
for clarity, we will focus on applying the blueprint and
taxonomy mostly to solution topologies.

4.5.1 Topology of Reasoning

A reasoning scheme can harness different topologies for
the LLM reasoning process. Here, we distinguish chains,
trees, and graphs. Note that both a chain and a tree are
each a special case of a connected graph: a tree is an acyclic
connected undirected graph, and a chain is a path graph
(i.e., a tree where each node has at most one child); see
Part ❶ of Figure 4. Still, we treat them separately because
they differ in their effectiveness for different prompting
tasks [10], [133], [213]. Under this view, the plain IO prompt
can be viewed as a single node graph.

Second, we observe that these topologies can be har-
nessed within an individual prompt or a reply (single-prompt
topology), but also across prompts or replies (multi-prompt
topology); see Part ❷ of Figure 4.

An important aspect is the representation of the topol-
ogy, see Part ❸ of Figure 4. The representation can be
implicit (the nodes and edges are not specified explicitly)
or explicit (nodes and edges are stated explicitly). Explicit
representations vary and include a set of triples [17] or a
description of nodes and edges in natural text. Implicit rep-
resentation depends on a scheme – for example, it could be a
textual recipe that prescribes generating the next reasoning
steps. Finally, we also identify how the topology is derived
– for example, it can be constructed by the user or by the
LLM itself (Part ❹ of Figure 4). Specifically, derivation of a
multi-prompt topology can be manual (fixed by user before
the LLM reasoning), automatic (decided dynamically by the
LLM), or semi-automatic (the overall reasoning structure
is predefined before the LLM reasoning starts, but the
user/LLM have some control over the structure as well
during the actual reasoning).

4.5.2 Reasoning Schedule

The reasoning topology forms the “skeleton” for the LLM
reasoning, effectively prescribing the algorithm for solving
a given task. However, for a given fixed topology, many
prompting schemes offer different approaches for the execu-
tion of the intermediate reasoning steps. For example, ToT
harnesses Breadth-First Search (BFS) or Depth-First Search
(DFS). This motivates us to introduce another dimension of
structure-enhanced reasoning, namely the reasoning schedule.
This schedule prescribes how the topology of reasoning is
going to be processed (Part ❺ of Figure 4).

Whenever the schedule is specified, it can be represented
in different ways. It can be a description in a natural lan-
guage, a code specification, in-context examples, or others
(Part ❻ of Figure 4). Finally, as with the topology, the sched-
ule itself could also be determined using different methods,
for example by the LLM on-the-fly, or pre-determined (e.g.,
as the fixed BFS schedule).

7

Implicit

"The first preliminary solu�on
should be enhanced three �mes.
Each of these three enhanced
solu�ons should be further
augmented in two a�empts"

Explicit

Graph

Output

Input

Single-prompt

Input

Chain Tree

Topology Class

Input

Blueprint & taxonomy of a structure-enhanced reasoning scheme

1 Topology Scope2

Scope Representa�on Deriva�on

OutputOutput

1 2 3 4 7
Reasoning Schedule5

Schedule Representa�on6
Class

What is the connec�on structure of reasoning steps?

Topology Representa�on3

Can the topology extend beyond a single prompt?

How is the topology structure represented?

Topology Schedule Extensions

Harnessed Parts of the
Genera�ve AI Pipeline

Mul�-prompt

The structure is
contained within a

single prompt/reply

Prompt
or reply

Prompt or
reply

Prompt or
reply

One prompt/reply
can contain mul�ple

reasoning nodes

One prompt/reply
can contain a single

reasoning node

0

1 2 3

4 5 6 7 8 9

<node 0> connects to <node 1>, <node 2>, <node 3>
<node 1> connects to <node 4>, <node 5>
<node 2> connects to <node 6>, <node 7>
<node 3> connects to <node 8>, <node 9>

Automa�c, semi-automa�c

Topology Deriva�on4
How is the topology structure derived?

The structure is constructed
by the LLM on-the-fly, either
fully (automa�c) or par�ally,

with certain control from
the user (semi-automa�c)

...

Manual The user sta�cally
prescribes the

structure before
reasoning starts

...

Schedule Class5
How is the topology structure explored?

DFS BFS

...

Schedule Representa�on6
How is the schedule represented?

Textual
descrip�on

..."Proceed in the
BFS manner"

"Proceed in the
DFS manner"

"Traverse nodes <0>,
<1>, <4>"

"Traverse nodes <0>,
<1>, <2>, <3>"

In-context
examples

Genera�ve AI Pipeline7
What parts of the genera�ve AI pipeline are used, besides promp�ng?

Pre-
training?

Retrieval?

Tools?Modali�es?
0

1 2 3

4 5 6

0

1 2 3

4 5 6
Fine-

tuning?

Fig. 4: Taxonomy and blueprint for structure-enhanced reasoning.

4.5.3 Beyond Prompting
Many schemes go beyond pure prompting LLMs. This may
include pre-training, fine-tuning, retrieval, tools, or differ-
ent modalities (Part ❼ of Figure 4). We also consider this
aspect, as it provides insights into the integration of rea-
soning topologies with other mechanisms in the AI pipeline
beyond plain prompting interactions.

5 REASONING WITH CHAINS

We now proceed to investigate in more detail individual
schemes that use chain topologies. We analyze these works
with respect to our blueprint and taxonomy in the top
part of Table 1 (detailed descriptions of each individual
scheme are provided in the appendix) We also illustrate
fundamental concepts introduced in these works, namely
multi-step reasoning, zero-shot reasoning, planning & task de-
composition, task preprocessing, iterative refinement, and tool

utilization. We finish this section with a comparative analysis
and illustrations of example topology representations.

5.1 Multi-Step Reasoning
The concept of multi-step reasoning was first introduced
through the seminal Chain-of-Thought (CoT) [195], a
single-prompt scheme, which uses topologies of in-context
examples, also known as few-shot examples, to guide the
LLM into reasoning step-by-step before providing the final
answer. Different following works augment or adapt in-
context examples to elicit different forms of reasoning steps,
while still relying on the single-prompt chain topology. For
instance, instead of only providing a step-by-step reasoning
chain in the examples, SelfAsk [152] expands each step in
the chain to also pose a follow-up question that is then
answered in the subsequent step. Similarly, Program of
Thoughts (PoT) [41] uses code examples, rather than the

8

Topology Reasoning AI

Scheme single-prompt multi-prompt Schedule Pipeline Remarks
Class Rp. Dv. Class Rp. Dv. Scheme Rp. Dv. P F R T Modalities

Chain-of-Thought (CoT) [195] chain I (text) SA - - - - - - é é é é text
Zero-shot-CoT [112] chain I (text) SA - - - - - - é é é é text
SelfAsk [152] chain I (text) SA - - - - - - é é é text
Plan-and-Solve Prompting [188] chain I (text) SA - - - - - - é é é é text
Program of Thoughts (PoT) [41] chain I (text,code) SA - - - - - - é é é text,code,table
Selection-Inference (SI) [51] - - - chain E M linear I M é é é text
Chain-of-Symbol (CoS) [89] chain I (text) SA chain E SA linear I M é é é é text
Least-to-Most Prompting [233] - - - chain E SA linear I M é é é é text
Decomposed Prompting [105] - - - chain E SA linear I M é é text
LogiCoT [231] chain I (text) SA tree E SA linear I M é é é é text
SELF-REFINE [140] - - - chain E SA linear I M é é é é text
Reflexion [168] - - - chain E SA linear I M é é é é text
Reasoning Graph Verifier (RGV) [35] chain I (text) SA graph E SA linear I M é é é é text
Plan, Verify and Switch (PVS) [131] chain I (text,code) SA chain E SA linear I M é é é text,code
Chameleon [136] - - - chain E SA linear I M é é text,code
ChatCoT [45] chain I (text) SA chain E SA linear I M é é text

Tree-of-Thought (ToT) [133] tree I (text) M tree E SA arbitrary E M é é é é text
Tree of Thoughts (ToT) [213] tree I (text) M tree E SA arbitrary E M é é é é text
Thought Decomposition [205] tree I (text) M tree E SA beam† E SA é é é text,code †stochastic
Self-Consistency with CoT [190] chain I (text) M tree ()† E SA - - - é é é é text †depth one
Creswell and Shanahan [50] tree I (text) M tree E SA beam E A é é é text
Dynamic Least-to-Most Prompting [58] tree I (text) M tree E A bottom up E A é é é text,code
Algorithm of Thoughts (AoT) [166] tree I (text) M - - - DFS, (BFS) I M é é é é text
Tree of Uncertain Thought (TouT) [145] tree I (text) M tree E SA BFS, DFS E M é é é é text
Tree-of-Mixed-Thought [91] tree I (text) M tree E SA DFS E A é é é scene graphs
Tree of Clarifications (ToC) [106] tree ()† I (text) M tree E SA BFS E A é é é text †depth one
Tree Prompting [170] - - - tree E A top-down E A é é é é text
Skeleton-of-Thought (SoT) [148] tree ()† I (text) M tree ()† E A parallel E A é é é é text †depth one

Branch-Solve-Merge (BSM) [162] tree (depth one) I (text) M graph ()† E SA BFS E M é é é é text †double tree ()
Thought Propagation (TP) [218] graph () arbitrary M graph ()† E SA BFS E M é é é é text †double tree ()
Socratic Questioning [154] tree (depth one) I (text) M graph ()† E SA DFS E M é é é é multi †double tree
Graph of Thoughts (GoT) [10] graph () arbitrary M graph E M arbitrary E M é é é é text
Graph of Thought (GoT) [119] ? ? ? graph E (S)A DFS E ? é é é é text
Graph-of-Thought (GoT) [215] graph I (text) M chain E M linear E M é é é text,image
ControlLLM [132] graph E (json) M graph E M DFS E M é é† é text,image,video,audio †can be used
Cumulative Reasoning [224] graph (DAG) I (text) M graph (DAG) E SA arbitrary E M é é é é text
Everything of Thoughts (XoT) [57] graph ? L chain E M linear E M é é é text
ResPrompt [99] graph I (text) M - - - - - - é é é é text
Hypergraph-of-Thought (HoT) [212] hypergraph ? M - - - - - - é é é text,image

BatchPrompt [124] batch E (text) M chain E M linear E M é é é é text
Memory Injections [163] - - - - - - - - - é é é é text

TABLE 1: Comparison of LLM reasoning schemes with respect to the provided taxonomy (Section 4.5 and Figure 4). “Topology”: Details of the harnessed structure.
“Single- / Multi-prompt”: Does a given scheme support single- / multi-prompt topology? If yes, what is the supported Class, Representation, and Derivation?
“Reasoning Schedule”: Details of the harnessed reasoning schedule, including its specific Scheme, Representation, and Derivation. “AI pipeline”: Does a given
scheme harness parts of the AI pipeline beyond prompting? If yes, which ones? (“P”: pre-training, “F”: fine-tuning, “R”: retrieval, ‘T”: tools, “Modalities”: modalities).
When describing representations, we use the following abbreviations: “E”: explicit, “I”: implicit. When describing derivation, we use the following abbreviations: “A”:
automatic, “L”: learned, “M”: manual, “SA”: semi-automatic. “”: full support (i.e., YES), “”: partially [supported], “é”: no support (i.e., NO).

natural-language-based examples as in CoT, to obtain a step-
by-step generated, functional Python program that can be
executed to get the final result.

5.2 Zero-Shot Reasoning Instructions

Zero-shot reasoning instructions aim to elicit the same
multi-step reasoning chains, but without the use of hand-
tuned, problem-specific in-context examples, i.e., they elim-
inate chain topologies forming in-context examples. Zero-
shot-CoT [112], an extension to CoT, achieves this by simply
prompting the LLM with one sentence, “Let’s think step by
step”, or using other similar statements. Along the same
lines, PoT can also leverage zero-shot reasoning instruction,
e.g., “Let’s write a Python program step by step and return the
result. Firstly we need to define the variables.”.

5.3 Planning & Task Decomposition

Both planning and task decomposition aim to break down
a task into a number of manageable sub-tasks that help
reaching the final solution. Plan-and-Solve (PS) Prompt-
ing [188], one of the key single-prompt schemes building on
this concept, first divides the complex task into a chain of
sub-tasks and then executes these step-by-step for the final

solution. PS operates in a zero-shot, multi-step manner, thus
also relies on the previous two concepts as well.

Planning and decomposition is also frequently used in
multi-prompt chains. The introduction of a node for speci-
fying the details of the decomposition at the start of a multi-
prompt reasoning chain, usually not only determines the
chain’s depth, but also facilitates more effective reasoning
approaches in the subsequent sub-steps. This allows for a
finer-grained resolution of sub-tasks, enriching the overall
reasoning process. Here, Least-to-Most Prompting [233]
grows a reasoning chain where decomposition of complex
tasks or questions is conducted in the first node and the sub-
tasks/sub-questions are solved in the subsequent nodes.
Specifically, the multi-prompt chain operates by first de-
composing the original question into a list of sub-questions,
which are each solved in individual sub-steps with the
questions and answers of previous sub-steps included in
the context. The chain terminates when the final answer is
returned after answering all sub-questions in the list. Then,
Decomposed Prompting [105] is a modular framework for
a detailed decomposition of complex tasks. To generate a
reasoning chain, the LLM is prompted by demonstrations
comprised of sequential question-operation triplets, which
form “sub-questions”. In contrast to Least-to-Most prompt-

9

ing, this allows for the recursive breakdown of questions
into simpler sub-questions until they can be solved directly,
as further decomposition is a valid operation in the frame-
work. Apart from these two above schemes, decomposition
is applied in many similar works [59], [102], [217].

5.4 Task Preprocessing
The concept of task preprocessing comprises any technique
that preprocesses the context of a task by updating it or
rephrasing the task description itself, before taking any
reasoning steps. For instance, the multi-prompt scheme
Selection-Inference (SI) [51] is designed to tackle multi-step
logical reasoning problems where all essential information
is already present within the input context. The key func-
tionality of SI lies in its recurring process of context pruning
before each reasoning step. This means that it selectively
filters the context to retain only the relevant information
necessary for each specific subsequent step of reasoning,
ensuring that the most pertinent data is always used for
each decision-making stage. On the other hand, instead of
pruning the context, the multi-prompt scheme Chain-of-
Symbol (CoS) [89], specifically designed for spatial plan-
ning tasks, augments the context with condensed symbolic
representations, before subsequently using those as prompts
for the LLM to conduct CoT-based reasoning.

5.5 Iterative Refinement
The introduction of verification enables the reasoning
frameworks to iteratively refine the generated context and
intermediate results. With this strategy, the execution of
chain-based reasoning is effectively extended with loops,
with conditions on how many times one can loop over a
node (based on the number of iterations or some terminal
conditions). The concept is applied in different works [123],
[126], [140], [168], [198], [231].

5.6 Tool Utilization
To better integrate multiple execution methods, more ef-
fective schemes opt to devise a plan that specifies tools
for handling each sub-task, before executing the reasoning
chain. Examples include AutoGPT [160], Toolformer [165],
Chameleon [136], ChatCot [45], PVS [131] and others [230].

5.7 Analysis & Comparison of Designs
We now broadly discuss and analyze chain designs with
respect to different aspects of our blueprint.

5.7.1 Topology & Its Construction
In single-prompt schemes, the entire reasoning process is
executed within a single prompting round. This approach
is less common for complex tasks, as it often demands
sophisticated prompt engineering to encompass the entire
reasoning pathway in one go. On the other hand, most
chain designs employ multi-prompt schemes, where the
reasoning process is segmented into multiple rounds of
prompting. This allows for a more nuanced and step-wise
approach to problem-solving. Key novel architectural fea-
tures of chain designs include the ability to appropriately

Game of 24

User Prompt

Use numbers and basic arithmetic operations (+ - * /) to obtain 24

LLM Answer

Q: 9 6 5 3

A: (5 + 3) * (9 - 6) = 24

Q: 8 8 7 4

A: (7 - (8 / 8)) * 4 = 24

Q: 14 8 8 2

Sure, here's one way to obtain 24 using the numbers 14, 8, 8, and 2

((14 - 8) / 2) * 8 = 24

Fig. 5: GAME OF 24. An example showing an IO scheme (effectively an implicit
single-prompt single-node chain topology). A few-shot IO prompt is used,
leading to a single output directly providing the result with no intermediate
reasoning steps.

decompose tasks, verify and refine intermediate solutions,
preprocess initial prompts, and utilize external tools, such
as Python scripts. This multifaceted approach enables LLMs
to tackle more complex problems by breaking them down
into smaller, more manageable components and iteratively
refining the solutions.

5.7.2 Representations of Topology & Schedule
We now illustrate representative prompts that show dif-
ferences between single- and multi-prompt chain-based
topologies (the tasks are described in detail in the prompts
of the figures). We use examples based on the well-known
tasks of Game of 24, Creative Writing, and Mathematical
or Logical Reasoning. For this, we illustrate an example
simplest IO scheme in Figure 5 (effectively a single-node
CoT) and compare it to an implicit single-prompt few-shot
CoT in Figure 6, an implicit single-prompt zero-shot CoT in
Figure 7 and to an example few-shot explicit multi-prompt
CoT (Selection-Inference) in Figure 8.

5.7.3 Performance
We now summarize performance patterns found in chain
topologies. For a more detailed performance comparison,
see Appendix E.1.

Overall, in Arithmetic Reasoning, CoT significantly out-
performs Input-Output (IO) prompting, with notable im-
provements in terms of accuracy on several datasets from
benchmarks such as GSM8K (Grade School Math) [48],
SVAMP (Simple Variations on Arithmetic Math word Prob-
lem) [151], and MAWPS (MAth Word ProblemS) [113],
which focus on mathematical tasks. The effectiveness of
CoT increases with the scale of the LLM. Variants like Zero-
shot-CoT, PoT, and schemes with decomposition nodes (like
Least-to-Most Prompting, PS+) show further improvements
in specific datasets. Chameleon, with its table reader tools,
enhances performance in tabular math questions.

In Commonsense Reasoning, CoT excels over IO
prompting with a distinct advantage in datasets like Strat-
egyQA [71]. Specialized methods like SelfAsk and the
Selection-Inference framework show further improvements

10

Math Reasoning

User Prompt

Q: Alexis is applying for a new job and bought a new set of business clothes to wear to
the interview. She went to a department store with a budget of $200 and spent $30 on
a button-up shirt, $46 on suit pants, $38 on a suit coat, $11 on socks, and $18 on a
belt. She also purchased a pair of shoes, but lost the receipt for them. She has $16 left
from her budget. How much did Alexis pay for the shoes?

Q: Tobias is buying a new pair of shoes that costs $95. He has been saving up his
money each month for the past three months. He gets a $5 allowance a month. He
also mows lawns and shovels driveways. He charges $15 to mow a lawn and $7 to
shovel. After buying the shoes, he has $15 in change. If he mows 4 lawns, how many
driveways did he shovel?

Q: [more in-context examples...]

LLM Answer

...

A: Let S be the amount Alexis paid for the shoes.

She used all but $16 of her budget, so S + 143 = 200 - 16 = 184.

Thus, Alexis paid S = 184 - 143 = 41 for the shoes.

So the answer is 41.

She spent S + 30 + 46 + 38 + 11 + 18 = S + 143.

Let D be the number of driveways Tobias shoveled.

He earned $5 allowance per month for three months, so he has $5 * 3 = $15 from his
allowance.

He mowed 4 lawns, each earning him $15, so he made $15 * 4 = $60 from mowing
lawns.

He also earned $7 for each driveway shoveled, and he shoveled D driveways, so he
made $7 * D from shoveling driveways.

In total, he has $15 (allowance) + $60 (mowing lawns) + $7D (shoveling driveways)
before buying the shoes.

After buying the $95 shoes, he has $15 in change.

Therefore: $15 + $60 + $7D - $95 = $15

So, Tobias shoveled 5 driveways.

Fig. 6: MATH REASONING. Another implicit single-prompt chain topology example, encoded with text. It shows how few-shot CoT solves a math question from
GSM8K [48]. This results in an implicit chain where individual reasoning steps can be regarded as nodes.

Creative Writing

User Prompt

LLM Answer

Mastering a handstand may seem daunting at first, but the key lies in simplicity. It isn't
difficult to do a handstand if you just stand on your hands. Breaking down the complex
maneuver into a straightforward action can make the seemingly impossible, achievable.
Sometimes, the most challenging tasks become manageable when approached with a
clear and uncomplicated perspective.

In the vast expanse of outer space, surprises await even the most seasoned explorers.
It caught him off guard that space smelled of seared steak. The unexpected aroma
challenged preconceptions, reminding us that the universe is full of mysteries that
extend beyond the visual and auditory senses. The interplay of senses in unfamiliar
environments can reshape our understanding of the cosmos.

Navigating social interactions often demands creative strategies, especially when faced
with unwanted advances. When she didn't like a guy who was trying to pick her up, she
started using sign language. Non-verbal communication became her shield, a tool to
ward off unwelcome attention without resorting to confrontation. In these moments,
the power of expression transcends spoken words, allowing for a graceful escape from
uncomfortable situations.

Perceptions of identity are as diverse as the individuals who form them. Each person
who knows you has a different perception of who you are. It's a kaleidoscope of
perspectives, shaped by unique experiences and interactions. Understanding that our
multifaceted nature is reflected in the eyes of those around us can foster empathy and
open the door to a richer tapestry of human connections.

Write a coherent passage of 4 short paragraphs. The end sentence of each paragraph
must be:
1. It isn't difficult to do a handstand if you just stand on your hands.
2. It caught him off guard that space smelled of seared steak.
3. When she didn't like a guy who was trying to pick her up, she started using sign
language.
4. Each person who knows you has a different perception of who you are.
Let’s think step by step.

Fig. 7: CREATIVE WRITING. An example implicit single-prompt chain topology,
encoded with text. It shows the Creative Writing example from ToT [213] using
zero-shot CoT prompting. This results in an implicit chain with a first node for
the question and one node for each generated paragraph.

in multi-hop questions. Decomposition-based schemes like
Least-to-Most and Decomposed Prompting achieve high
accuracy in tasks requiring sequential actions or multi-
faceted reasoning. ChatCoT, with its retrieval and external
tool utilization, shows a 20% gain on specific datasets.

Logical Reasoning

User Prompt

If something is quiet and cold then
it is smart.
All young, cold things are kind.
If something is kind then it is nice.
All smart, blue things are kind.
If something is cold then it is quiet.
If Anne is smart and Anne is kind
then Anne is cold.
If something is nice and blue then
it is young.
If something is nice and young
then it is cold.

Anne is young.
Gary is nice.
Charlie is quiet.
Anne is blue.
[...]
Dave is smart.
Anne is quiet.
Dave is blue.
Gary is cold.
Anne is nice.

Does it imply that the
statement "Dave is not quiet"
is true?

LLM Answer

All smart, blue things are kind.
We know that Dave is smart and Dave is blue.

Selection

Dave is kind.

Inference

If something is kind then it is nice.
We know that Dave is kind.

Dave is nice.

If something is nice and blue then it is young.
We know that Dave is nice and Dave is blue.

Dave is young.

If something is nice and young then it is cold.
We know that Dave is nice and Dave is young.

Dave is cold.

If something is cold then it is quiet.
We know that Dave is cold.

Dave is quiet.

Fig. 8: LOGICAL REASONING. An example explicit multi-prompt chain topol-
ogy, encoded with text. It demonstrates the manually derived chain topology
of Selection-Inference [51]. ”Selection” and ”Inference” indicate independent
consecutive prompts/thoughts.

In Symbolic Reasoning, CoT demonstrates near-perfect
accuracy for in-context examples and substantial accuracy
for out-of-domain cases for tasks like last letter concatena-
tion and coin flip predictions. Schemes with decomposition
nodes outperform CoT in more complex tasks and longer
word scenarios.

Overall, across different domains, CoT and its variants
show a consistent trend of outperforming basic IO prompt-
ing. The integration of additional tools, tailored prompting
strategies (like few-shot or zero-shot), and the incorporation
of decomposition and refinement nodes enhance the LLMs’

11

Tree Topology Variants Graph Topology Variants

Tree of chains

Example designs:
CoT with Self-Consistency
Reasoning Graph Verifier

Example designs:
Tree-of-Thought
Tree of Thoughts
[Creswell & Shanahan]
Dynamic Least-to-Most
Algorithm of Thoughts
Tree of Uncertain Thought
Tree-of-Mixed-Thought
Tree of Clarifica�ons
Thought Decomposi�on

Different frameworks
enable using arbitrary

trees, but the prevalent
variant is a k-ary tree

Schemes that improved
upon Chain-of-Thought,

such as Chain-of-Thought
with Self-Consistency, are
effec�vely harnessing tree

topology variants

Example designs:
Graph of Thoughts

Output

Input

1-Level trees

Input

Example designs:
Skeleton-of-Thought

Thought Propaga�on

Input

Output

Directed graphs

Example designs:
Graph of Thoughts
Graph-of-Thought
ControlLLM
Cumula�ve Reasoning
Everything of Thoughts
ResPrompt

Output

Input

Hypergraphs

Example design:
Hypergraph-of-Thought

Output

Input

Socra�c Ques�oning

Input

Output

k-ary tree

Input

Output

Example designs:
Tree Promp�ng

Binary tree

Branch-Merge

Output

Input

Input

Output

Directed graphs
+ loops

The only currently exis�ng
Hypergraph-based scheme,
the Hypergraph-of-Thought,

uses a limited variant of
hypergraphs, in which
hyperdges span only

triples of ver�ces

Output

Input

Fig. 9: Variants of tree and graph prompting topologies.

performance significantly.

6 REASONING WITH TREES

We next investigate in more detail individual schemes that
use tree topologies. We analyze these works with respect to
our blueprint and taxonomy in the middle part of Table 1
(detailed descriptions of each individual scheme are pro-
vided in the appendix). We structure the discussion based
on the harnessed topology variants, namely trees of chains,
1–level trees, and k–ary trees, see Figure 9 for details. As
in chain schemes, we also discuss fundamental concepts
introduced or harnessed in these works. Tree schemes, most
importantly, introduce exploration (i.e., generating multiple
thoughts from a given one). The purpose behind exploration
is usually either task decomposition (which is similar to CoT,
but it differs as decompositions are not limited to a single
linear plan) or sampling (i.e., having a higher chance of
obtaining a high-quality solution). Moreover, tree schemes
also introduce voting (i.e., automatic selection of the best
outcome of all the generated outputs) and they harnesses
various architectural concepts also used in chain schemes,
such as iterative refinement or task preprocessing. We finish
this section with a comparative analysis and illustrations of
example topology representations.

6.1 Trees of Chains

While trees as reasoning topologies have been explicitly
established in the works by Long [133] and Yao [213], this
idea has been present earlier. Chain-of-Thought with Self-
Consistency (CoT-SC) [190] is an early scheme that har-
nesses the tree structure to a certain degree. Here, multiple
CoTs originate from the same initial (root) prompt, forming
a “tree of chains”. The chain providing the best outcome to
the initial question, is selected as the final answer.

6.2 Single-Level Trees

A tree-based approach has also been harnessed in Skeleton-
of-Thought (SoT) [148], which effectively harnesses a tree
with a single level of depth. This scheme aims to reduce
the end-to-end generation latency of LLMs, caused by their
inherent sequential decoding. Instead of generating one
long continuous answer, this scheme uses a divide-and-
conquer approach. In a first prompt, the LLM is instructed
to generate a skeleton of the answer, i.e., a list of points
that are independently answerable. Then, for each of these
points, a new prompt is issued in parallel to answer just this
specific part of the question. As these points are processed
in parallel, the overall latency is reduced.

6.3 k–Ary Trees

Numerous schemes have harnessed more general k–ary
trees. First, the Tree-of-Thought (ToT) design by Long [133]
utilizes a tree structure to decompose a problem into sub-
problems and solve them using separate LLM prompts. Af-
ter the LLM suggests possible next steps and corresponding
partial solutions, a checker module decides if any of these
solutions is valid, whether it can be selected as the final
one, or whether it should backtrack to the previous step. All
issued prompts and answers are explicitly stored as a tree
structure and navigated through using a controller module.
The LLM prompting is only used to generate the next
individual steps (i.e., hops) in this tree, whereas the overall
problem solving process is coordinated by the controller.

Tree of Thoughts (ToT) by Yao et al. [213] differs from
the above ToT approach in using the LLM itself as a solution
evaluator with access to all generated solutions, instead of
using a programmed or learned evaluator module. This
allows to rate states individually or vote across intermediate
solutions to select the most promising one to continue with

12

the search. Both mentioned ToT approaches are a general-
ization of the IO, CoT, and CoT-SC prompting schemes.

Other examples in this class of topologies include
Thought Decomposition [205] (a multi-prompt scheme
based on stochastic beam search and self-evaluation), a
scheme by Creswell and Shanahan [50] (an extension of
the chain-based Selection-Inference [51]), Dynamic Least-
to-Most Prompting [58] (an extension of least-to-most
prompting with a tree-based problem decomposition and
a dynamic external tree-based few-shot example selection),
Algorithm of Thoughts (AoT) [166] (a single-prompt ap-
proach that utilizes in-context examples formulated in an
algorithmic tree-based fashion), Tree of Uncertain Thought
(TouT) [145] (an extension of ToT with local “uncertainty
scores” by incorporating the variance of multiple LLM re-
sponses into the state evaluation function), Tree-of-Mixed-
Thought (TomT) [91] (a ToT-based reasoning scheme to
answer questions on visual scene graphs), or Tree of Clar-
ifications (ToC) [106] (recursive prompting of an LLM to
construct a tree of disambiguations for the initial question).

6.4 Analysis & Comparison of Designs
We now broadly discuss and analyze tree designs with
respect to different aspects of our blueprint.

6.4.1 Topology & Its Construction
The key novel architectural feature of tree schemes is the
exploration of a thought, i.e., the ability to generate multiple
new steps based on a given single one. The vast majority of
tree schemes are multi-prompt. Most multi-prompt schemes
use a dynamic approach to building the tree topology. The
details of how the topology is exactly shaped depend on
the specific question. For most multi-prompt approaches,
the user can adapt the tree topology to a certain degree, i.e.,
by varying the branching factor (i.e., the number of thoughts
generated from a given vertex) and limiting the depth of the
tree.

6.4.2 Representations of Topology & Schedule
We showcase the differences between implicit vs. explicit
and single- vs. multi-prompt topologies using represen-
tative examples (the tasks are described in detail in the
prompts of the figures). We continue with the driving tasks
of Game of 24, Creating Writing, and Mathematical/Logical
Reasoning. For this, we illustrate an implicit single-prompt
tree topology elicited by AoT in Figure 10 as well as two
example explicit multi-prompt tree topologies from ToT and
CoT-SC in, respectively, Figure 11 and 12. Lastly, we show
an example of a parallel execution schedule in Figure 13 for
SoT [148].

6.4.3 Performance
We now summarize performance patterns found within
tree topologies. A detailed analysis can be found in Ap-
pendix E.2.

Overall, increasing the branching factor (i.e., the number
of thoughts generated from a given vertex) often leads to
a higher diversity of outcomes, which can be beneficial
for accuracy, but it also increases #prompts, i.e., compu-
tational cost. The most advantageous branching factor is

hard to find and it often depends on the specific problem
to solve. Easily decomposable problems may benefit less
from more branching than complex problems. Specifically,
more complicated problems profit more from decomposing
them into many/diverse sub-problems (e.g., this ensures
enough diversity for self-consistency to work better). In
contrast, a question that has clearly only two sub-parts does
not benefit from many more subdivisions, as the additional
branches then can be either redundant or wrong. Single-
prompt approaches can perform better on some problems
than multi-prompt approaches, while using only a single
prompt compared to possibly hundreds [166].

7 REASONING WITH GRAPHS

We also analyze schemes that harness graph topologies, see
the bottom part of Table 1 (detailed descriptions of each
individual scheme are provided, as for chains and trees, in
the appendix). Similarly to the tree analysis, we structure
the discussion based on the harnessed topology variants, see
Figure 9 for details. We also discuss fundamental concepts
introduced or harnessed in these works. Graph schemes,
most importantly, introduce aggregation (i.e., being able to
combine multiple thoughts into a single one). The purpose
behind aggregation is usually synergy (i.e., being able to
produce an outcome better than the individual ingredients)
or an effective composition of outcomes of tasks. Graph schemes
also use architectural concepts employed in chain or tree
schemes, such as exploration or iterative refinement. We
conclude this section with a comparative analysis and il-
lustrations of example representations of graph topologies.

7.1 Special Classes of Graphs
Different schemes harness certain special classes of graphs.
Branch-Solve-Merge (BSM) [162] employs a 1–level double
tree structure to first divide a problem into independently
solvable sub-problems, and then combines them into a final
solution. The first prompt instructs the LLM to propose sub-
problems, which are then solved independently. The final
prompt instructs the LLM to merge the results of the sub-
problems into a single output. Socratic Questioning [154] is
a scheme that models recursive exploration of the thought
space using a tree structure. Hereby, the original question
is recursively decomposed into sub-tasks until all tasks
can be solved with high confidence. These results are then
aggregated and propagated back up the tree to answer
the original question. This results in an overall double tree
reasoning topology.

7.2 Directed Graphs
Some schemes embrace a general directed graph model.
Graph of Thoughts (GoT) [10] uses a multi-prompt ap-
proach to improve the LLM problem solving performance
by decomposing a given task into sub-tasks that form a
graph. This decomposition is specified as a Graph of Opera-
tions, which coordinates how the LLM is prompted and how
the results are further used in the reasoning process. The
Graph of Thought [119] presents a multi-prompt approach
where a graph of thoughts is constructed recursively in a
DFS manner by starting at the question node that represents

13

Game of 24

User Prompt

Use numbers and basic arithmetic operations
(+ - * /) to obtain 24.
[in-context examples]
User:
14 8 8 2
Assistant:

Step by step reasoning in a CoT
fashion is used for backtacking
the solution.

The implicit tree structure is
created on the fly and traversed
in a DFS manner. Nodes are
constructed from left to right.

Trying a promising first operation:
1. 8 + 2: (14, 10, 8)
- 14 + 10: (24, 8) 32, 16, 192, 3
- 14 - 10: (8, 4) 12, 4, 32, 2
- 14 * 10: (140, 8) 148, 132, 1120, fractional
- 14 / 10: fractional
- 14 + 8: (22, 10) 32, 12, 220, fractional
- 14 - 8: (10, 6) 16, 4, 60, fractional
- 14 * 8: (112, 10) 122, 102, 1120, fractional
- 14 / 8: fractional
- 10 + 8: (18, 14) 32, 4, 252, fractional
- 10 - 8: (14, 2) 16, 12, 28, 7
- 10 * 8: (80, 14) 94, 66, 1120, fractional
- 10 / 8: fractional
Trying another promising first operation:
2. 8 / 2: (14, 8, 4)
- 14 + 8: (22, 4) 26, 18, 88, fractional
- 14 - 8: (6, 4) 10, 2, 24 = 6 * 4 -> found it!
Backtracking the solution:
Step 1:
8 / 2 = 4
Step 2:
14 - 8 = 6
Step 3:
6 * 4 = 24
Considering these steps: 24 = 6 * 4 = (14 - 8) * 4
= (14 - 8) * (8 / 2) = 24.
Answer: (14 - 8) * (8 / 2) = 24.

LLM Answer: Implicit Tree Structure

LLM Answer
...

...

Trying a promising first operation:

8 + 2: (14, 10, 8)

10 / 8: fractional

32 16 192 3 10 2 24 = 6 * 4 -> found it!

Considering these steps: 24 = 6 * 4 = (14 - 8) * 4 = (14 - 8) * (8 / 2) = 24.

Answer: (14 - 8) * (8 / 2) = 24.

Backtracking the solution:
Step 1:

8 / 2 = 4

Step 2:
14 - 8 = 6

Step 3:
6 * 4 = 24

Trying another promising first operation:
8 / 2: (14, 8, 4)

14 + 10: (24, 8) 14 - 8: (6, 4)14 + 8: (22, 4)

Fig. 10: GAME OF 24. An example implicit single-prompt tree topology, encoded with text. It demonstrates a Game of 24 DFS in-context example from AoT [166]. The
left view shows the user prompt and the single textual answer from the LLM. The right view shows the implicit tree structure that is explored during the generation
of the LLM answer. We mark text corresponding to implicit nodes as bold.

Creative Writing

...

...

Plan 1

1. Introduce and explain the
technique of doing a

handstand.
2. … 3. … 4. ...

Passage
1

Passage
2

User

Write a coherent passage of 4 short paragraphs. The end sentence of each paragraph
must be: 1. It isn't difficult to do a handstand if you just stand... 2. … 3. … 4. ...

Plan 2

Plan 2 is chosen.

Passage 2 is chosen.

1. Introduction to an unusual
self-help book, mentioning a
handstand as a metaphor for

embracing challenges.
2. … 3. … 4. ...

Fig. 11: CREATIVE WRITING. An example explicit multi-prompt tree topology,
encoded with text, from the Tree of Thoughts (ToT) scheme [213] for creative
writing. Given the task of writing a coherent passage of four paragraphs ending
in given sentences, first multiple plans (nodes) are generated and then ranked.
In a next step, the best plan is used to generate multiple possible passages as
outputs. Finally, the best ranked passage is the output of the ToT reasoning.

the question to be answered by the LLM. From this node,
possible reasoning paths are generated by the LLM. For
each path, new nodes, i.e., intermediate reasoning steps,
are generated by the LLM and are then used to grow
the graph. Graph-of-Thought [215] describes a two-stage
framework to answer multi-modal questions, i.e., textual
questions accompanied by images. In the first stage, the
model generates natural language rationales based on the
input text, which provide additional context and knowledge
to support answering the given question. This rationale
generation is learned as part of the overall model pipeline.
In the second stage, these rationales are then appended to

Math Reasoning

Answer 2 Answer 3

Select final answer based on
majority vote:

Let D be the number of
driveways Tobias shoveled.

He earned $5 allowance
[…]

So the answer is 5.

Answer 1

Let D be the number of
driveways Tobias shoveled.

He has been saving up
[…]

So the answer is 1.

Let M be the number of
lawns Tobias mows and D

be the number of
[…]

So the answer is 5.

So the answer is 5.

User

[in-context examples]
Q: Tobias is buying a new pair of shoes that costs $95. He has been saving up his money

each month […]?

Fig. 12: MATH REASONING. An example using explicit multi-prompt tree
topology, encoded with text. Given a math reasoning task, CoT-SC [190] is used
to generate multiple answers and pick a final one based on majority vote. Each of
the generated answers contains multiple CoT reasoning steps, depicted here in a
single node.

the initial question and passed again through the model
to predict an answer. Other schemes in this class include
Cumulative Reasoning [224], Everything of Thoughts
(XoT) [57], ControlLLM [132], and ResPrompt [99].

7.3 Hypergraphs
Finally, we also consider a hypergraph, which generalizes
a graph by enabling edges to connect arbitrary subsets
of nodes instead of being links between just two nodes.
We include hypergraphs in the taxonomy, because prelimi-
nary works already harness them for multi-modal prompt-
ing [212]. Here, Hypergraph-of-Thought (HoT) [212] is a
multi-modal reasoning paradigm modeling the thought pro-

14

Question Answering

Skeleton Prompt User Input Point-Expanding Prompt

You are an organizer responsible for only giving
the skeleton (not the full content) for answering
the question. Provide the skeleton in a list of
points (numbered 1., 2., 3., etc.) to answer the
question. Instead of writing a full sentence,
each skeleton point should be very short with
only 3~5 words. Generally, the skeleton should
have 3~10 points. Now, please provide the
skeleton for the following question.

Q: [...]
Skeleton:

1. Active listening
2. Identify issues
3. Compromise

1. Active listening
2. Identify issues
3. Compromise

1. Active listening involves fully
concentrating on ...

2. Identify issues. Look into the
root causes of ...

3. Compromise. Look for a
middle ground ...

Q: What are the most effective strategies for conflict
resolution in the workplace?

You are responsible for continuing the writing of
one and only one point in the overall answer to
the following question.
Q: [...]
The skeleton of the answer is
1. Active listening
2. Identify issues
3. Compromise
Continue and only continue the writing of point
1. Write it **very shortly** in 1~2 sentence and
do not continue with other points!

First, a skeleton node is generated containing a list of points
to answer the question. Then, each point of the skeleton is
expanded in parallel, and the final answer is derived by
concatenating them.

1. Active listening involves fully concentrating
on ...

Fig. 13: An example explicit multi-prompt tree topology, encoded with text. It demonstrates the automatically derived tree topology of Skeleton-of-Thought
(SoT) [148] where the individual points are expanded in parallel.

cess as a hypergraph. First, a graph-of-thoughts as in [215]
is constructed. Then a textual hypergraph is constructed,
sharing the same nodes. The hyperedges are then defined as
node triples, e.g., ”(Lionel Messi, place of birth, Rosario)”.
Additionally, a visual hypergraph-of-thought is constructed
by performing k-means clustering on image patches, where
a cluster corresponds to a hyperedge. Both hypergraphs are
then encoded and combined to perform graph learning.

7.4 Analysis & Comparison of Designs
We now broadly discuss and analyze graph designs with
respect to different aspects of our blueprint.

7.4.1 Topology & Its Construction
Firstly, the considered schemes exhibit a blend of single-
and multi-prompt aspects, allowing for a high degree of
flexibility and control over the prompting process. This
is evident in the diverse approaches taken by different
schemes such as GoT, ControlLLM, and Cumulative Rea-
soning, each offering unique ways of constructing and
utilizing graphs for problem-solving. Secondly, the user’s
control over the topology of the graph is significant in most
schemes, enabling customization of the reasoning process
based on specific needs, such as setting branching factors or
defining the depth of the graph. Thirdly, the role of the LLM
in these graph-based schemes is multifaceted, involving the
generation, evaluation, and modification of nodes within
the graph, as well as determining the conclusion of the
reasoning process. Lastly, there is a notable variation in the
degree of user and LLM influence on the topology across
different schemes, with some allowing direct user control,
while others rely on predefined heuristics or the LLM’s
decision-making capabilities.

7.4.2 Representations of Topology & Schedule
We now illustrate a representative set of prompts that show
different aspects of graph-based prompting topologies, fo-
cusing on how the respective graph topologies are encoded
inside the prompts (the tasks are described in detail in
the prompts of the figures). We illustrate ResPrompt and
Cumulative Reasoning (as example implicit single-prompt
representations), ControlLLM (as an example explicit single-
prompt representation), and Branch-Solve-Merge (as an ex-
ample multi-prompt representation).

Figure 14 shows a prompting example using Cumulative
Reasoning [224] for the Game of 24 with an explicit multi-
prompt graph topology. Figure 15 shows an in-context ex-
ample of ResPrompt [99] with a multi-step math question,
where the topology is single-prompt and implicit. Here, an
(implicit) edge can be formed by repeating the same token,
for example “earned from his allowance”, which implies a
connection between step 2 and 4 where each step indi-
cates a node. Figure 16 illustrates an in-context example
where Cumulative Reasoning [224] is applied to the same
math problem with user-specified number of intermediate
nodes before reaching the final solution node. Here, implicit
vertices are formed using numbered positions 1 and 2 on
the list, and edges connect points 1 and 2 to point 3. In
contrast to the implicit representation of topology, Figure 17
shows an example from ControlLLM [132] to represent the
topology explicitly with a JSON format, but also in the single-
prompt setting. Finally, Figure 18 depicts a multi-prompt
example from Branch-Solve-Merge (BSM) [162] for story
generation.

7.4.3 Performance
The considered works universally show improvements
in effectiveness of graph-based prompting schemes over
chains and trees across various tasks, suggesting a promis-
ing direction for future research and application in the field
of AI and machine learning.

8 CHAINS VS. TREES VS. GRAPHS OF THOUGHTS

We also broadly discuss tradeoffs, commonalities, and dif-
ferences between the three fundamental classes of topolo-
gies: chains, trees, and graphs.

The novelty in chain-based prompting lies in introducing
explicit intermediate LLM thoughts between the input and
the output. This linear sequence of thoughts guides the LLM
in a step-by-step manner towards the solution, enhancing
the clarity and traceability of the reasoning process. Beyond
this, tree-based schemes bring the possibility to explore
several next-step variants at each juncture, allowing the
LLM to evaluate multiple pathways and select the most
promising one. This branching structure facilitates a broader
exploration of potential solutions. Graph-based schemes,
however, represent the most complex structure, offering an

15

Game of 24

Validate Step

Verify Step

...

Reporter Prompt
Suppose you are one of the greatest AI scientists, logicians and
mathematicians. You are very good at basic arithmetic operations.
Use numbers and basic arithmetic operations (+ - * /) to obtain 24
with input numbers. You need to combine the given
intermediate steps step by step into a complete expression.
[in-context examples]

Input: 14, 8, 8, 2
Intermediate steps:
8 / 2 = 4 (left 4, 8, 14)
14 - 8 = 6 (left 4, 6)
6 * 4 = 24
Draft:

Because 6 * 4 = 24, while 6 = 14 - 8. So (14 - 8) * 4 = 24.
Because (14 - 8) * 4 = 24, while 4 = 8 / 2. So (14 - 8) * (8 / 2) = 24.
Output:
(14 - 8) * (8 / 2) = 24

Starting with the user input node, one valid node is selected at random in each iteration.
Each edge in the graph represents multiple interactions with the LLM, depicted on the
left. First a next step is proposed. Then this step is validated and verified, judging if this
can lead to the desired solution or if it is a dead end (dashed nodes). Opposed to ToT,
these invalid steps are kept track of and are used in the next propose prompt as
"forbidden steps", so directly influencing the next node (dashed arrows). If the validation
output is "sure", the Reporter is invoked to summarise the steps and derive the final
result as shown in the reporter prompt.

...

User Input
Propose Prompt

Verifier Prompts

14, 8, 8, 2

(14 - 8) * (8 / 2) = 24

12, 8, 8

Suppose you are one of the greatest AI scientists, logicians and mathematicians. You are
very good at basic arithmetic operations. Use numbers and basic arithmetic operations
(+ - * /) to obtain 24 with input numbers. In each step, you are only allowed to
randomly choose TWO of the input numbers to obtain a new number using
arbitrarily one basic arithmetic operation (AVOID duplication of forbidden
steps). Your calculation process must be correct.
[in-context examples]

Input: 14, 8, 8, 2
Forbidden Steps : [...]
Next Step:

14 - 2 = 12
Remaining Numbers:
12, 8, 8

Suppose you are one of the greatest AI scientists, logicians and mathematicians. You are
very good at basic arithmetic operations. Use numbers and basic arithmetic operations
(+ - * /) to obtain 24 with input numbers. Evaluate if a given intermediate step is
correct and only use two existing numbers.
[in-context examples]

Input: 14, 8, 8, 2
Intermediate step: 14 - 2 = 12

Suppose you are one of the greatest AI scientists, logicians and mathematicians. You are
very good at basic arithmetic operations. Use numbers and basic arithmetic operations
(+ - * /) to obtain 24 with input numbers. Evaluate if given numbers can reach 24
(sure/likely/impossible)
[in-context examples]

Input: 12, 8, 8
Draft:

(12 - 8) * 8 = 32
12 + 8 + 8 = 28
8 / 8 + 12 = 13
I cannot obtain 24 now, and numbers are not within a reasonable range.
Output:
impossible

(12, 8, 8) is added to forbidden steps.

The intermediate step is valid.
Judgment:
Valid

14, 4

4, 8, 14

4, 6

Fig. 14: GAME OF 24. An example explicit multi-prompt graph topology, encoded with text using Cumulative Reasoning [224].

Math Reasoning

User Prompt

[in-context examples]
Q: Tobias is buying a new pair of shoes that costs $95.
He has been saving up his money each month […]?

LLM Answer: Implicit Tree Structure

LLM Answer

3. Then we know he mowed 4 lawns and he charges $15 per lawn, so from
mowing lawns, he earned 4 * $15 = $60.

6. As he charges $7 to shovel a driveway, we divide the total earned from shoveling by the charge per
driveway to find out the number of driveways he shoveled: $35 / $7 = 5 driveways.

1. He has $15 left after buying the shoes that cost $95, which
means he had $95 + $15 = $110 in total before the purchase.

2. Next, we calculate the amount he earned from his
allowance. He has been saving for three months, getting $5
each month, [...]

3. Then we know he mowed 4 lawns and he charges $15 per
lawn, so from mowing lawns, he earned 4 * $15 = $60.

4. Let us sum up the money he earned from his allowance and
from mowing lawns: $15 (allowance) + $60 (mowing) = $75.

5. Now, let us subtract the total amount of money earned from
allowance and mowing from his total amount of money before
buying the shoes to [...].

6. As he charges $7 to shovel a driveway, we divide the total
earned from shoveling by the charge per driveway to find out
the number of driveways he shoveled: $35 / $7 = 5 driveways.

2. Next, we calculate the amount he earned from his allowance. He has been saving for three
months, getting $5 each month, [...]

1. He has $15 left after buying the shoes that cost $95, which means he had $95 + $15 = $110 in total
before the purchase.

4. Let us sum up the money he earned from his allowance and from mowing lawns: $15
(allowance) + $60 (mowing) = $75

5. Now, let us subtract the total amount of money earned from allowance and mowing from his total
amount of money before buying the shoes to [...].

Fig. 15: MATH REASONING. An example implicit single-prompt graph topology, encoded with text. It shows an in-context example of a math question from
ResPrompt [99], representing a linear sequence of six connected nodes with two implicit edges of the graph topology, marked with two different colors (red and blue),
together with their corresponding nodes.

16

Math Reasoning

Validate Step

Verify Step

...

Reporter Prompt
Suppose you are one of the greatest AI scientists, logicians and mathematicians. Let
us think step by step. Read and analyze the "Premises" first, then using First-
Order Logic (FOL) to answer the "Question". Please make sure your
reasoning is directly deduced from the "Premises" and "Propositions" other
than introducing unsourced common knowledge and unsourced
information by common sense reasoning.
[in-context examples]

Premises:
 1. Tobias is buying a new pair of shoes that costs $95.
 2. He has been saving up his money each month
 […]
Question: How many driveways did he shovel?
Generated Propositions:
 1. He had $110 in total before buying the shoes.
 2. He had $75 from saving the last three months and mowing lawns.
 3. Using 1 and 2, we know that he earned $35 from shoveling driveways.
Reasoning:

We know that he earned $35 from shoveling, and he charges $7 for shoveling. Therefore,
the number of driveways he shoveled is $35 / $7 = 5.

Each premise is a valid node at the begining. In each iteration five valid nodes are selected at
random to generate a proposition. Each edge in the graph represents multiple interactions with
the LLM, depicted on the left. Each proposition is validated and verified before adding it to the
valid node list, judging if this is deducted from valid nodes and verified based on FOL or if it is a
dead end (dashed nodes). After having a predefined number of propositions, the Reporter is
invoked to answer the question with all valid nodes.

User InputPropose Prompt

Verifier Prompts

Premises:
 1. Tobias is buying a new pair of shoes that costs $95.
 […]
Question: How many driveways did he shovel?

Suppose you are one of the greatest AI scientists, logicians and mathematicians. Let us
think step by step. Please use First-Order Logic (FOL) to deduce a "Proposition"
from two given "Premises". Please make sure that the "Proposition" is logically
correct. Please make sure that the "Proposition" is not a duplicate of the
"Premises". Please make sure your reasoning is directly deduced from the
"Premises" and "Propositions" other than introducing unsourced common
knowledge and unsourced information by common sense reasoning.
[in-context examples]

Premises: [...]
Question: [...]

He had $110 in total before buying the shoes.

Suppose you are one of the greatest AI scientists, logicians and mathematicians. Let us
think step by step. Please determine whether the "Proposition" is directly
deduced from the "Premises" with certainty other than introducing unsourced
information by common sense reasoning, reply with True or False.
[in-context examples]

Premises: [...]
Proposition: He had $95 in total before buying the shoes.

Suppose you are one of the greatest AI scientists, logicians and mathematicians. Let us
think step by step. Please use First-Order Logic (FOL) to determine whether the
deduction of two given "Premises" to a "Proposition" is valid or not, reply with
True or False.
[in-context examples]

Premises: [...]
Proposition: He had $95 in total before buying the shoes.

Judgment:
False

The proposition is not added to the valid node list.

Judgment:
False

He had $95 in total
before buying the shoes.

He had $110 in total
before buying the shoes.

He had $75 from saving
the last three months and

mowing lawns.

He earned $35 from
shoveling driveways.

We know that he earned $35 from shoveling, and
he charges $7 for shoveling. Therefore, the
number of driveways he shoveled is $35 / $7 = 5.

Fig. 16: MATH REASONING. An example implicit single-prompt graph topology, encoded with text, for the same question as in Figure 15, but using Cumulative
Reasoning [224]. It illustrates three intermediate proposition nodes with direct connections from the first two nodes to the third one. The reasoning part indicates the
final solution node, with direct connections from the third proposition and input nodes.

arbitrary reasoning framework. They enable the aggrega-
tion of various reasoning steps into a synergistic solution,
allowing for non-linear and multifaceted problem-solving
approaches. This diversity in structures reflects the varying
needs and complexities of tasks that LLMs are expected to
handle.

In terms of cost-effectiveness, chain-based prompting
schemes generally outperform their tree-based and graph-
based counterparts. This efficiency largely stems from their
single-prompt nature, which requires fewer computational
resources and less processing time. Tree and graph-based
schemes, on the other hand, often involve multiple rounds
of prompting to explore the various branches or connections
in their respective structures, naturally incurring higher
costs. However, this is not an inherent limitation of these
schemes. Future developments in tree and graph-based
prompting should aim to better encode the tree and graph
structures within a single prompt. Such advancements could
potentially combine the cost-effectiveness of single-prompt
schemes with the enhanced quality and complexity manage-
ment offered by tree and graph-based structures.

When it comes to the quality of outcomes, tree-based and
graph-based prompting schemes typically surpass chain-
based ones. This superior performance is attributed to their

ability to explore a wider range of potential transformations
at each step, going beyond the linear refinement seen in
chains. Tree-based schemes, with their branching paths,
offer multiple avenues for solution exploration at each deci-
sion point, leading to a more comprehensive search for the
optimal outcome. Graph-based schemes take this a step fur-
ther by allowing for an even more diverse set of connections
and interactions between different steps in the reasoning
process. This flexibility enables these schemes to handle
more complex and multifaceted tasks effectively, leading to
higher-quality outcomes in scenarios where simple linear
reasoning is insufficient.

9 DESIGN ARCHITECTURES

We also analyze design tradeoffs. We consider the follow-
ing aspects: design architecture (what the architecture-level
decomposition of different schemes into interacting mod-
ules is), productivity & programmability (how well differ-
ent schemes support efforts such as new extensions), and
scalability as well as parallelizability (whether considered
schemes can be parallelized and whether they scale well).

17

JSON

LLM Task Decomposition Answer

User Task

Please dub the video.mp4 with suitable background music and then generate an HTML
web page to introduce this video.

[{
"description": "Dub the video with background music",
"task": ["video-editing"],
"id": 1,
"args": {
 "type": "video",
 "value": "video.mp4" },
"returns": {
 "type": "video",
 "value": "<GEN>-1" }
},

{
"description": "Generate an HTML page to introduce the video",
"task": ["HTML-generation"],
"id": 2,
"dep": 1,
"args": {
 "type": "video",
 "value": "<GEN>-1" },
"returns": {
 "type": "HTML",
 "value": "<GEN>-2" }
}]

Fig. 17: JSON. An example explicit single-prompt graph topology, encoded
with JSON, based on the ControlLLM scheme [132] for task decomposition. It
shows two nodes describing decomposed subtasks for solving a given task. The
”dep” field refers to dependent tasks, showing there is a direct edge from the first
node (task 1) to the second.

Creative Writing

Branch 1 Branch 2

Story 1

Generated Story

Story 2

User

shirt, dunk, bang, soap, court, float, swimmer, coat, sleigh, groom

...
shirt, dunk, bang, soap,

court
float, swimmer, coat,

sleigh, groom

[story topic]
a winter wedding

adventure

a loud bang echoed …, dunking his shirt
in a bucket of soap and water, and then

using it to clean the court. …

they were greeted by a swimmer, … The
groom, a skilled float operator, …

dressed in matching red coats, rode on a
colorful sleigh, …

a loud bang echoed through the church, … dunking his shirt in a bucket of soap and water,
and then using it to clean the court. … Meanwhile, outside, the groom, a skilled float

operator, … , rode on a colorful sleigh, … a swimmer, ..., black coat, gracefully …

Fig. 18: CREATIVE WRITING. An example multi-prompt graph topology, en-
coded with text, from the Branch-Solve-Merge scheme [162] for story generation
with branch, solve, and merge prompts. Given a list of concepts as input, the
branch module generates three child nodes: two groups of concepts and one
topic node. The solve module then creates two story nodes based on each group
of concepts and the topic. Finally, these two story nodes are merged into the final
solution node.

9.1 Design Architecture
Here, we analyze how the overall prompting scheme, com-
bining the LLM and some additional logic, decomposes into
different modules. The module-level design architecture
is explicitly discussed to a certain degree by some tree-
based approaches, such as [50], [91], [133], [145], [213] as
well as graph-based approaches such as [10], [119], [154],
[162], [218], [224]. Detailed module-level architectures are
presented by Long [133], Yao et al. [213], and Besta et al. [10].

The general architecture of considered schemes can be
summarized as consisting of the following modules: a gen-

erator, an evaluator, a halter, and a controller module. The
generator prompts the LLM to produce further reasoning
steps given the current reasoning step and some context.
The evaluator rates the current reasoning step, depending
on the implementation this rating can depend on other
states, the path to the initial question node, or some other
context. The halter determines if a suitable solution has
been found and how it should be reported or if the search
should continue. The controller module coordinates the
other modules as well as the construction and exploration
of the tree/graph.

9.2 Productivity & Programmability
ToT by Yao et al. [213], Tree Prompting [170] and SoT [148]
provide implementations that can be used directly for cus-
tom tasks; ToT [213] is the only tree approach that pro-
vides an easily usable API to solve custom problems in
a multi-prompt fashion. ToT by Long [133], Thought De-
composition [205] and ToC [106] provide implementations
to reproduce their results, but can not easily be used for
other tasks. CoT-SC [190] is a paradigm and can easily be
implemented when needed, AoT [166] is a single-prompt
scheme and does not provide an implementation but lists
in-context examples. The remaining approaches [50], [58],
[91], [145] have no code published at this time.

In graph designs, Socratic Questioning [154] and Graph
of Thoughts (GoT) [10] provide implementations that can be
used directly for custom tasks. Cumulative Reasoning [224]
provides an implementation to reproduce their results, but
cannot easily be used for other tasks. Thought Propaga-
tion (TP) [218], Branch-Solve-Merge (BSM) [162], Control-
LLM [132] and ResPrompt [99] do not provide implemen-
tation but list a set of prompting examples. Among these,
ResPrompt [99] is a paradigm can be easily implemented
when needed. The remaining approaches [57], [119], [212],
[215] have no code published at this time.

Overall, GoT [10] offers the most general API for ad-
dressing custom tasks in a multi-prompt fashion. It of-
fers a principled way to design a prompting structure,
through thought transformations, i.e., ways to transform
GoT nodes into new outcomes. Example GoT API rou-
tines, which implement thought transformations include
– for example Generate(prompt, k=4) (prompt the LLM to
produce k answers to a given prompt), Generate(prompt,
k=1)+Repeat(k=4) (generate 4 context isolated responses
of the LLM), Aggregate(thought1, thought2) (combine two
thoughts), KeepBest(N=1) (query the LLM to return N best
results), Improve(thought) (query the LLM to improve the
result using information from another thought, e.g., input
list and currently sorted list → try to fix incorrectly sorted
elements).

9.3 Scalability & Parallelizability
Only a few works address scalability and parallelizability
improvements of LLMs. Skeleton of Thought [148] uses the
ToT approach: the prompt query is a tree of depth one and
all leaves can be processed in parallel. Batch Prompt [124]
improves the performance by batching different data points
into a single prompt. On the other hand, Lookahead De-
coding [65] is focused on speculatively guessing tokens to

18

speed up the answer generation. We now discuss in more
detail how these concepts are realized.

Skeleton of Thought [148] tackles the problem of high
inference latency in LLMs by addressing the sequential
decoding problem (generating answer tokens one at a time).
They proposed a new approach where a skeleton prompt
leads the LLM to first generate a succinct list of points that
form the skeleton of its future answer. Then, each point in
the skeleton is decoded in parallel, using batching whenever
possible. The method does not require changes to LLMs
and can be applied to off-the-shelf models. with reported
speedups of up to 2.69×. However, this method ignores
dependencies between points in the skeleton answer, and
the authors propose replacing the tree with a graph model
as future work.

Lookahead Decoding [65] extends the idea of speculative
decoding where a sequence of future tokens is predicted,
and the LLM later verifies each one of them in parallel.
This method represents the sequential generation of a chain
of responses as a non-linear system of equations and then
solves it with the Jacobi iteration method. In each iteration
step, at least one guessed token - the next one - is verified
and matched successfully. Furthermore, the method caches
n-grams generated for each token by inspecting N prior
Jacobi iterations, allowing it to decode multiple tokens on
a positive match. By conducting the lookahead and verifica-
tion in parallel, authors achieve decoding speedup by up to
2.25×, at the cost of an exponential increase in GPU FLOPs.

BatchPrompt [124] is a scheme that batches similar
questions into a single prompt to reduce the overhead of
task description and few-shot examples compared to single-
question prompting. However, naive batching decreases the
overall LLM performance, and the final accuracy depends
on the position of each single prompt within the batch,
which may be challenging to tune. BatchPrompt avoids this
problem by performing majority voting on multiple rounds
of prompting with different permutations of the ques-
tion, allowing for competitive results compared to single-
question prompting. By using large batches with few voting
rounds, the scheme can process queries with significantly
fewer calls to the LLM.

10 FOUNDATIONS & THEORY

There are a few preliminary works that attempt to provide
foundations for structured prompting.

Madaan and Yazdanbakhsh [141] focus on dissecting
CoT into three basic components, namely symbols (se-
quences of tokens used as the basis of the LLM reasoning,
for example numbers to be sorted), patterns (the structure
within prompt that reinforces task understanding, for exam-
ple the order of numbers to be sorted), and text (any tokens
that are neither a symbol nor a pattern). Here, “patterns” is
effectively a certain single-prompt topology that enhances
the LLM reasoning. The authors discover that, for example,
patterns are relevant for better task understanding, and they
form a symbiotic relationship with text: the latter help to
create more useful patterns while the former enable the LLM
to generate text that helps in task solving.

Tutunov et al. [185] use probabilistic graphical models
to provide a theoretical understanding of how and why

LLMs are able to generate a coherent chain of thoughts.
Their model generalizes Jiang’s latent space theory of lan-
guage models [98] to chains of thoughts. In the latent space
theory, thoughts convey a hidden intention. Because the
intention is not directly observed – only the uttered thought
– there is a potential for ambiguity. This ambiguity ρ can
be quantified probabilistically for the language as a whole.
Tutonov et al. extend Jiang’s model by adding an additional
hidden context variable upon which intentions are condi-
tioned. This context c defines a family of tasks which each
define a set of coherent reasoning steps. Moreover, Tutonov
et al. generalize the one-shot generation of thoughts into
a chain of thoughts with an associated chain of intentions.
Every intention is conditioned on the context c and the
previous intentions. In turn, the i-th thought in the chain is
conditioned on the i-th intention. Their main result is as fol-
lows: conditioned on the input and a sequence of N example
chain of thoughts generated from a context c, the probability
that an LLM assigns to a chain of thoughts approaches the
true probability of the chain given the input and the hidden
context c with convergence speed ρN . This means that, with
the appropriate examples, LLMs can generate a chain of
thoughts that is arbitrarily close to the true output.

Besta et al. [10] discuss tradeoffs between latency (num-
ber of steps to reach the final thought) and volume, which
they define – for a given thought t – as the number of preceding
LLM thoughts that could have impacted thought t. Formally,
it is the number of thoughts in the topology from which
there exists a path to thought t. They assume a time of
O(1) for each reasoning step, fix the total cost for each
topology in their analysis to Θ(n) and also make certain
assumptions for each topology. For a single chain both the
latency and the volume have a high value of N , which for
multiple chains (k independent chains) is reduced by k for
both metrics (N/k). In their tree analysis they assume a
complete k-ary tree, which has a low latency of ⌈logk N⌉,
but the volume is similarly low (O(logk N)). For graphs,
they assume two complete k-ary trees, where the first tree,
representing the division into sub-tasks, is joined at the
leaf level with another “reversed” k-ary tree (including its
edges), representing the aggregation into the final solution.
They conclude that double-tree graphs provide the best
tradeoff with a latency of logk N and a volume of N .

Several works, while not providing any theoretical un-
derpinning for structured-enhanced prompting, investigate
the capabilities for CoT to conduct formal analyses. This
includes GSM8K [48], ProofWriter [179], FOLIO [82], Sim-
pleLogic [221], and PrOntoQA [164].

Finally, there have been several works that investigate
the theoretical underpinning of general in-context learning.
This includes Xie et al. [204], Wies et al. [200], Hahn and
Goyal [80], and Jiang [98]. However, as they do not focus on
the topologies of prompting, details are outside the focus of
our work.

11 RESEARCH OPPORTUNITIES

We now review future research directions in structure-
enhanced prompting.

Exploring New Topology Classes An intriguing re-
lated approach is the study of novel topology classes, such

19

as hypergraphs, in prompting schemes. The existing HoT
scheme [212] primarily uses triples, barely scratching the
surface of what hypergraphs can offer in terms of their con-
nectivity structure, where hyperdges can connect arbitrary
subsets of vertices. Future research could delve into how hy-
pergraphs can accommodate more complex relationships in
data such as motifs [18], dense subgraphs [30], cliques [25],
[74], [174], and others, potentially leading to breakthroughs
in LLM’s understanding and reasoning capabilities.

Explicit Representations in Single-Prompt Settings The
explicit representation of prompting topologies has been
largely unexplored, especially in scenarios involving single
prompts. Research in this area could focus on how different
representations, such as Adjacency Lists, Adjacency Matrix,
or numerous others [29], can be employed to enhance the
efficiency and effectiveness of LLMs. This exploration is
vital, considering the impact of different data structures on
the processing and interpretation of information by LLMs.
The challenge lies in integrating these complex representa-
tions into a single-prompt format without compromising the
simplicity and accessibility of the models.

Automatic Derivation of Tree and Graph Topologies
The majority of current tree and graph topologies in LLM
prompting are created manually or semi-automatically. A
promising research direction is the development of method-
ologies for the automatic derivation of these topologies.
Automating this process could significantly reduce the time
and effort required to configure LLMs for specific tasks,
making them more accessible and efficient. This automation
might involve leveraging machine learning algorithms to
identify and implement the most effective topologies based
on the nature of the task and the data involved.

Advancements in Single-Prompt Schemes While there
are a few examples of single-prompt schemes, such as
the initial Chain-of-Thought (CoT), there’s much room for
improvement. Future research could focus on how to encap-
sulate more complex and detailed tree and graph structures
within a single prompt, because it could reduce computa-
tional costs and simplify user interaction with LLMs (as one
does not need multiple prompting interactions to build a
given topology). The challenge lies in balancing the rich-
ness of the prompt with the need to maintain clarity and
avoid overwhelming the model. Here, one could harness a
recent line of works related to encoding graph structures
within a prompt, such as GPT4Graph [79], GraphText [229],
GraphGPT [181], LLMs-as-Predictors [44], and others [36],
[61], [92], [94], [127], [155], [186], [187], [216], [222], [223],
[227].

Investigating New Scheduling Approaches Most cur-
rent structure-enhanced prompting schemes rely on stan-
dard scheduling algorithms like Breadth-First Search (BFS),
Depth-First Search (DFS), or are manually designed. Explor-
ing new scheduling techniques could lead to more efficient
and effective processing of prompts. This could include
adaptive scheduling algorithms that adjust their approach
based on the nature of the task or the responses of the LLM,
potentially enhancing the model’s performance in complex
reasoning tasks.

Investigating Novel Graph Classes An interesting idea
is to explore graph classes for more effective and more effi-
cient reasoning topologies. While current approaches have

harnessed, among others, general directed graphs, utilizing
specialized ones could lead to better reasoning routines. One
could harness, for example, structures behind low-diameter
networks [19], [20], [96], [107], [108], [116], [117], [118] for
potential gains in theoretical properties of LLM reasoning,
such as lower latency.

Integration with Graph Algorithms and Paradigms
Integrating graph-related algorithms and paradigms could
offer more powerful representations and schedules in LLM
prompting. This integration might involve the use of ad-
vanced graph algorithms to optimize the structure and
flow of the prompting process [11], [13], potentially leading
to more accurate and efficient outcomes. Research could
explore how such different graph paradigms [26] can be
adapted to the unique requirements of LLM prompting.

Diversifying Modalities in Prompting Different modal-
ities in prompting, such as visual, auditory, or kinesthetic,
are currently underexplored. Research in this area could
involve developing multi-modal prompting systems that
can understand and respond to inputs in various forms
while harnessing the advantages of graphs or trees of
thoughts. This diversification could lead to more interactive
and inclusive LLM systems that cater to a wider range of
users and use cases.

Enhancing Retrieval in Prompting Retrieval in prompt-
ing is another area that has received certain attention, with
various recent schemes [6], [7], [40], [68], [100], [106], [191],
[199], [219]. Improving retrieval mechanisms could enhance
the LLM’s ability to access and utilize relevant informa-
tion more efficiently. This might involve developing more
sophisticated algorithms for data retrieval or integrating
external databases and knowledge bases [4], [5], [15], [16],
[53] to expand the scope and depth of the LLM’s responses.

Parallel Design in Prompting The aspect of parallel
design in runtime prompting is an area that remains mostly
unaddressed, and only a few schemes such as Skeleton-
of-Thought address this challenge. Building upon these
attempts could significantly enhance the speed and effi-
ciency of LLMs. Research could focus on developing models
that can simultaneously process multiple components of
a prompt or handle various tasks in parallel, or the ap-
propriate mapping to massively parallel architectures [19],
[28], [73], [95], thereby reducing latency and improving
user experience. One could also investigate effective inte-
gration of prompting with distributed-memory infrastruc-
ture and paradigms, such as remote direct memory access
(RDMA) [21], [55], [56], [70] or serverless processing [49].

Integrating Structure-Enhanced Prompting with Graph
Neural Networks A potential area of exploration is the inte-
gration of structure-enhanced prompting with Graph Neu-
ral Networks (GNNs) [22], [27], [37], [111], [203], [225], [234]
and other mechanisms for Graph Machine Learning [12],
[33], [81]. GNNs, known for their proficiency in handling
relational data and capturing dependencies in graph struc-
tures, could augment the capabilities of LLMs in process-
ing complex, structured prompts. By embedding prompt-
ing structures into graph-based representations, GNNs can
provide a more nuanced and context-aware interpretation
of the prompts, potentially leading to richer and more
accurate responses. Furthermore, leveraging graph-related
embeddings [12], [75] can enhance the LLMs’ ability to

20

capture the subtleties in the relationships and hierarchies
present in the prompts. Finally, harnessing heterogeneous
GNNs [139], [178], [220] for integration with the concept of
different semantic roles of vertices could be an interesting
direction.

Integrating Structure-Enhanced Prompting with Com-
plex System Architectures An essential and emerging area
of research is the integration of prompting capabilities into
the environment of complex existing system architectures,
such as graph representation learning systems [63], [121],
[189], graph databases [14], [17], [23], or relational databases.
This integration aims to facilitate direct and nuanced in-
teractions with complex data structures stored in these
systems. By embedding LLMs into these environments, the
prompting process can leverage the inherent organizational
and relational capabilities of these databases. This approach
would allow LLMs to access, interpret, and manipulate
large and intricate datasets more efficiently and accurately.
For instance, integrating with graph databases could enable
LLMs to naturally understand and utilize the connections
and relationships within data, while relational databases
could provide a structured and queryable data format that
complements the LLMs’ linguistic capabilities.

Hardware Acceleration Understanding energy and per-
formance bottlenecks and mitigating them with specialized
techniques such as processing-in-memory [1], [24], [72],
[146], [147], [167], FPGAs [28], [54], [144], or even quan-
tum devices [9] will likely be increasingly important. Such
advances can also enable much more scalable models and
model execution under stringent conditions.

12 RELATED WORK

We also broadly discuss related analyses, taxonomies, and
surveys.

12.1 General Prompt Engineering

There exist several detailed overviews of general prompt
engineering. The main difference is that we provide the
first taxonomy and analysis of structure-enhanced prompting
methods, in which we focus on the topology of the LLM
reasoning. Wang et al. [194] provide an overview of inter-
active NLP, in which they outline interactions of LLMs
and humans, knowledge bases, models/tools, and envi-
ronments. Gu et al. [77] provide a systematic survey of
prompt engineering on vision-language foundation models.
Liu et al. [130] describe in great detail general prompting
and describe this area through the “pre-train, prompt, and
predict” paradigm of building a prompting scheme. Qiao et
al. [156] overview prompting schemes related to reasoning.
Chen et al. [38] review the potential of prompting with
LLMs. Finally, Zhang et al. [228] and Chu et al. [47] review
CoT and the associated prompting schemes.

12.2 Graph-Related Generative AI

There have also been numerous works on graphs and LLMs.
The key difference is that these works focus mostly on
using graph structures as input data (at pre-training, fine-
tuning, or prompting stage). We instead focus on graphs

(and other structures) as mechanisms enabling structured LLM
reasoning [93].

General overviews of using graphs together with LLMs
have been outlines by Li et al. [122] and Zhang et al. [226].
Pan et al. [150] very briefly mention some of the methods for
integrating graphs with LLMs. Zong et al. briefly mention
graph-related fusion in their work on self-supervised multi-
modal learning [236]. Yang et al. [208] analyze data-centric
graph learning.

Next, various works propose to enhance general gen-
erative models with knowledge graphs (KGs). The focus
of these works is usually to use KGs in order to enhance
the LLM answers, for example by grounding knowledge in
general models to reduce effects such as hallucinations [90],
[149], [196], [209], [210]. Example schemes include Knowl-
edge Graph Prompting (KGP) [192], Graph Neural Prompt-
ing (GNP) [183], Think-on-Graph (ToG) [176], Knowledge
Solver (KSL) [62], KnowledGPT [191], and others [32], [138].
Zhu et al. [235] discuss how LLMs can be used for en-
hancing KG construction and tasks. Wen et al. [197] present
MindMap, a framework to perform reasoning on KG data.
Pertinent triples from a KG are retrieved and the LLM is
prompted to answer a question based on these triples and
show the reasoning process by generating a “mind map” in
the form of a textual reasoning tree.

Several works discuss graph foundation models [66],
[129]. These works discuss how to – in analogy to LLMs –
devise general models pre-trained on massive amounts of
graph data, that could then be fine-tuned for more specific
applications, and used together with prompting for answer-
ing various graph-related tasks.

Recents schemes illustrate how to run analytics
on graphs using prompting [101]; examples include
GPT4Graph [79], GraphText [229], GraphGPT [181], LLMs-
as-Predictors [44], and others [36], [61], [92], [94], [127], [155],
[186], [187], [216], [222], [223], [227].

Finally, several works [177], [202] describe techniques
for graph prompt learning, which is a class of approaches
for enhanced prompting with graph pre-trained models.
This class of schemes is orthogonal to our work, because it
focuses on prompting for graph-oriented tasks, and it does
not target the LLM structure of reasoning.

13 CONCLUSION

In conclusion, the rise of Large Language Models (LLMs)
has revolutionized machine learning, extending their ap-
plications beyond Natural Language Processing (NLP) into
diverse fields like medicine, logical reasoning, and planning.
Prompt engineering has emerged as a crucial area, democ-
ratizing access to LLMs and offering a cost-effective alter-
native to fine-tuning and pre-training. However, challenges
arise in optimizing LLM queries for complex tasks due to
the inherent limitations of generative Transformer models.

This paper addresses these challenges by introducing
a blueprint and an accompanying taxonomy of prompting
schemes, focusing on the underlying structure of reasoning.
We propose to model a general prompting scheme as a
graph topology, where different classes of graphs, such
as k–ary trees or directed graphs, can be used to reflect
the structure and gain insights into different prompting

21

schemes. The taxonomy is then used to survey and analyze
existing designs, dissecting them into fundamental aspects
such as the representation of the reasoning topology, the
derivation of the topology, or the encoding of the reasoning
schedule. This taxonomy forms a blueprint that can be used
to facilitate designing more effective prompting schemes.

We also conduct an analysis of structure-enhanced
prompting methods in terms of their accuracy and quality
of outcomes, latency, and cost-effectiveness. Our investi-
gation results in different insights into the tradeoffs be-
tween prompting schemes, which facilitate selecting the best
method for a given budget or workload target.

Furthermore, we investigate the preliminary works into
foundations of structured-enhancing prompting, parallel
and scalable designs, and productivity and programmabil-
ity. We also provide valuable insights into open challenges
and potential research directions, navigating the path for
future research avenues into more advanced prompting.

ACKNOWLEDGEMENTS

We thank Hussein Harake, Colin McMurtrie, Mark Klein, An-
gelo Mangili, and the whole CSCS team granting access to
the Ault and Daint machines, and for their excellent technical
support. We thank Timo Schneider for help with infrastructure
at SPCL. This project received funding from the European
Research Council (Project PSAP, No. 101002047), and the Euro-
pean High-Performance Computing Joint Undertaking (JU) un-
der grant agreement No. 955513 (MAELSTROM). This project
was supported by the ETH Future Computing Laboratory
(EFCL), financed by a donation from Huawei Technologies.
This project received funding from the European Union’s HE
research and innovation programme under the grant agreement
No. 101070141 (Project GLACIATION).

REFERENCES

[1] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. PIM-enabled instructions:
a low-overhead, locality-aware processing-in-memory architec-
ture. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture, ISCA ’15, pages 336–348, Portland, Oregon,
2015. Association for Computing Machinery.

[2] A. Amini, S. Gabriel, P. Lin, R. Koncel-Kedziorski, Y. Choi,
and H. Hajishirzi. MathQA: Towards Interpretable Math
Word Problem Solving with Operation-Based Formalisms,, 2019.
arXiv:1905.13319.

[3] G. Angeli, M. J. Johnson Premkumar, and C. D. Manning. Lever-
aging Linguistic Structure For Open Domain Information Extrac-
tion. In C. Zong and M. Strube, editors, Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), ACL-IJCNLP ’15, pages 344–354, Beijing,
China, Jul 2015. Association for Computational Linguistics.

[4] R. Angles and C. Gutierrez. Survey of Graph Database Models.
ACM Comput. Surv., 40(1), Feb 2008.

[5] R. Angles and C. Gutierrez. An Introduction to Graph Data Man-
agement. In G. H. L. Fletcher, J. Hidders, and J. L. Larriba-Pey,
editors, Graph Data Management, Fundamental Issues and Recent
Developments, Data-Centric Systems and Applications, pages 1–
32. Springer, 2018.

[6] D. Arora, A. Kini, S. R. Chowdhury, N. Natarajan, G. Sinha, and
A. Sharma. GAR-meets-RAG Paradigm for Zero-Shot Informa-
tion Retrieval, 2023. arXiv:2310.20158.

[7] A. Asai, Z. Wu, Y. Wang, A. Sil, and H. Hajishirzi. Self-
RAG: Learning to Retrieve, Generate, and Critique through Self-
Reflection, 2023. arXiv:2310.11511.

[8] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Do-
han, E. Jiang, C. Cai, M. Terry, Q. Le, and C. Sutton. Program
Synthesis with Large Language Models, 2021. arXiv:2108.07732.

[9] K. Bertels, A. Sarkar, A. Krol, R. Budhrani, J. Samadi, E. Geoffroy,
J. Matos, R. Abreu, G. Gielen, and I. Ashraf. Quantum Accelerator
Stack: A Research Roadmap, 2021. arXiv:2102.02035.

[10] M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, L. Gianinazzi,
J. Gajda, T. Lehmann, M. Podstawski, H. Niewiadomski, P. Ny-
czyk, and T. Hoefler. Graph of Thoughts: Solving Elaborate
Problems with Large Language Models. In Proceedings of the
Thirty-Eigth AAAI Conference on Artificial Intelligence, AAAI ’24,
Vancouver, Canada, Feb 2024. AAAI Press.

[11] M. Besta, A. Carigiet, K. Janda, Z. Vonarburg-Shmaria, L. Giani-
nazzi, and T. Hoefler. High-Performance Parallel Graph Coloring
with Strong Guarantees on Work, Depth, and Quality. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’20, Atlanta, Georgia, 2020.
IEEE Press.

[12] M. Besta, A. C. Catarino, L. Gianinazzi, N. Blach, P. Nyczyk,
H. Niewiadomski, and T. Hoefler. HOT: Higher-Order Dynamic
Graph Representation Learning with Efficient Transformers. In
Proceedings of the Learning on Graphs Conference, LOG ’23, Nov
2023.

[13] M. Besta, M. Fischer, T. Ben-Nun, D. Stanojevic, J. De Fine Licht,
and T. Hoefler. Substream-Centric Maximum Matchings on
FPGA. ACM Trans. Reconfigurable Technol. Syst., 13(2), Apr 2020.

[14] M. Besta, M. Fischer, V. Kalavri, M. Kapralov, and T. Hoefler.
Practice of Streaming Processing of Dynamic Graphs: Concepts,
Models, and Systems. IEEE Transactions on Parallel and Distributed
Systems, 34(6):1860–1876, Jun 2023.

[15] M. Besta, R. Gerstenberger, N. Blach, M. Fischer, and
T. Hoefler. GDI: A Graph Database Interface Standard.
https://github.com/spcl/GDI-RMA, Nov 2023. (accessed Jan.
15, 2024).

[16] M. Besta, R. Gerstenberger, M. Fischer, M. Podstawski,
N. Blach, B. Egeli, G. Mitenkov, W. Chlapek, M. Michalewicz,
H. Niewiadomski, J. Müller, and T. Hoefler. The Graph Database
Interface: Scaling Online Transactional and Analytical Graph
Workloads to Hundreds of Thousands of Cores. In Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’23, Denver, CO, USA, 2023.
Association for Computing Machinery.

[17] M. Besta, R. Gerstenberger, E. Peter, M. Fischer, M. Podstawski,
C. Barthels, G. Alonso, and T. Hoefler. Demystifying Graph
Databases: Analysis and Taxonomy of Data Organization, System
Designs, and Graph Queries. ACM Comput. Surv., 56(2), Sep 2023.

[18] M. Besta, R. Grob, C. Miglioli, N. Bernold, G. Kwaśniewski,
G. Gjini, R. Kanakagiri, S. Ashkboos, L. Gianinazzi, N. Dryden,
and T. Hoefler. Motif Prediction with Graph Neural Networks.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD ’22, pages 35–45, Washington
DC, USA, 2022. Association for Computing Machinery.

[19] M. Besta, S. M. Hassan, S. Yalamanchili, R. Ausavarungnirun,
O. Mutlu, and T. Hoefler. Slim NoC: A Low-Diameter On-Chip
Network Topology for High Energy Efficiency and Scalability.
SIGPLAN Not., 53(2):43–55, Mar 2018.

[20] M. Besta and T. Hoefler. Slim fly: a cost effective low-diameter
network topology. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
’14, pages 348–359, New Orleans, Louisana, 2014. IEEE Press.

[21] M. Besta and T. Hoefler. Active Access: A Mechanism for High-
Performance Distributed Data-Centric Computations. In Proceed-
ings of the 29th ACM on International Conference on Supercomputing,
ICS ’15, pages 155–164, Newport Beach, California, USA, 2015.
Association for Computing Machinery.

[22] M. Besta and T. Hoefler. Parallel and Distributed Graph Neural
Networks: An In-Depth Concurrency Analysis. IEEE Transactions
on Pattern Analysis and Machine Intelligence, pages 1–20, 2024.

[23] M. Besta, P. Iff, F. Scheidl, K. Osawa, N. Dryden, M. Podstawski,
T. Chen, and T. Hoefler. Neural Graph Databases. In Proceedings of
the First Learning on Graphs Conference, volume 198 of Proceedings
of Machine Learning Research, pages 31:1–31:38. PMLR, 2022.

[24] M. Besta, R. Kanakagiri, G. Kwaśniewski, R. Ausavarungnirun,
J. Beránek, K. Kanellopoulos, K. Janda, Z. Vonarburg-Shmaria,
L. Gianinazzi, I. Stefan, J. G. Luna, J. Golinowski, M. Copik,
L. Kapp-Schwoerer, S. Di Girolamo, N. Blach, M. Konieczny,
O. Mutlu, and T. Hoefler. SISA: Set-Centric Instruction Set Archi-

22

tecture for Graph Mining on Processing-in-Memory Systems. In
Proceedings of the 54th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO ’21, pages 282–297. Association for
Computing Machinery, 2021.

[25] M. Besta, C. Miglioli, P. Sylos Labini, J. Tětek, P. Iff, R. Kanak-
agiri, S. Ashkboos, K. Janda, M. Podstawski, G. Kwaśniewski,
N. Gleinig, F. Vella, O. Mutlu, and T. Hoefler. ProbGraph:
High-Performance and High-Accuracy Graph Mining with Prob-
abilistic Set Representations. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, SC ’22, Dallas, Texas, 2022. IEEE Press.

[26] M. Besta, M. Podstawski, L. Groner, E. Solomonik, and T. Hoefler.
To Push or To Pull: On Reducing Communication and Synchro-
nization in Graph Computations. In Proceedings of the 26th In-
ternational Symposium on High-Performance Parallel and Distributed
Computing, HPDC ’17, pages 93–104, Washington, DC, USA, 2017.
Association for Computing Machinery.

[27] M. Besta, P. Renc, R. Gerstenberger, P. Sylos Labini, A. Ziogas,
T. Chen, L. Gianinazzi, F. Scheidl, K. Szenes, A. Carigiet, P. Iff,
G. Kwaśniewski, R. Kanakagiri, C. Ge, S. Jaeger, J. Was, F. Vella,
and T. Hoefler. High-Performance and Programmable Atten-
tional Graph Neural Networks with Global Tensor Formulations.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’23, Denver, CO,
USA, 2023. Association for Computing Machinery.

[28] M. Besta, D. Stanojevic, J. De Fine Licht, T. Ben-Nun, and T. Hoe-
fler. Graph Processing on FPGAs: Taxonomy, Survey, Challenges,
2019. arXiv:1903.06697.

[29] M. Besta, D. Stanojevic, T. Zivic, J. Singh, M. Hoerold, and T. Hoe-
fler. Log(Graph): A near-Optimal High-Performance Graph Rep-
resentation. In Proceedings of the 27th International Conference
on Parallel Architectures and Compilation Techniques, PACT ’18,
Limassol, Cyprus, 2018. Association for Computing Machinery.

[30] M. Besta, Z. Vonarburg-Shmaria, Y. Schaffner, L. Schwarz,
G. Kwaśniewski, L. Gianinazzi, J. Beranek, K. Janda, T. Holen-
stein, S. Leisinger, P. Tatkowski, E. Ozdemir, A. Balla, M. Copik,
P. Lindenberger, M. Konieczny, O. Mutlu, and T. Hoefler. Graph-
MineSuite: Enabling High-Performance and Programmable
Graph Mining Algorithms with Set Algebra. Proc. VLDB Endow.,
14(11):1922–1935, Jul 2021.

[31] A. Bonifati, G. Fletcher, H. Voigt, and N. Yakovets. Data Models.
In Querying Graphs, Synthesis Lectures on Data Management
(SDLM), pages 3–14. Springer International Publishing, 2018.

[32] R. Brate, M.-H. Dang, F. Hoppe, Y. He, A. Meroño-Peñuela, and
V. Sadashivaiah. Improving Language Model Predictions via
Prompts Enriched with Knowledge Graphs. In Proceedings of the
Workshop on Deep Learning for Knowledge Graphs, DL4KG@ISWC
’22, Oct 2022.

[33] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-
dergheynst. Geometric Deep Learning: Going beyond Euclidean
data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[34] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei. Language Models are
Few-Shot Learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems (NeurIPS ’20), volume 33, pages 1877–1901.
Curran Associates, 2020.

[35] L. Cao. Enhancing Reasoning Capabilities of Large Lan-
guage Models: A Graph-Based Verification Approach, 2023.
arXiv:2308.09267.

[36] Z. Chai, T. Zhang, L. Wu, K. Han, X. Hu, X. Huang, and
Y. Yang. GraphLLM: Boosting Graph Reasoning Ability of Large
Language Model, 2023. arXiv:2310.05845.

[37] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy.
Machine Learning on Graphs: A Model and Comprehensive
Taxonomy, 2020. arXiv:2005.03675.

[38] B. Chen, Z. Zhang, N. Langrené, and S. Zhu. Unleashing the
potential of prompt engineering in Large Language Models: a
comprehensive review, 2023. arXiv:2310.14735.

[39] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto,
J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray,
R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin,
B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser,

M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings,
M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss,
A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji,
S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam,
V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage,
M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei,
S. McCandlish, I. Sutskever, and W. Zaremba. Evaluating Large
Language Models Trained on Code, 2021. arXiv:2107.03374.

[40] W. Chen, H. Hu, X. Chen, P. Verga, and W. W. Cohen. MuRAG:
Multimodal Retrieval-Augmented Generator for Open Question
Answering over Images and Text, 2022. arXiv:2210.02928.

[41] W. Chen, X. Ma, X. Wang, and W. W. Cohen. Program of
Thoughts Prompting: Disentangling Computation from Reason-
ing for Numerical Reasoning Tasks. Transactions on Machine
Learning Research, Nov 2023.

[42] Z. Chen, W. Chen, C. Smiley, S. Shah, I. Borova, D. Langdon,
R. Moussa, M. Beane, T.-H. Huang, B. Routledge, and W. Y. Wang.
FinQA: A Dataset of Numerical Reasoning over Financial Data.
In M.-F. Moens, X. Huang, L. Specia, and S. W.-t. Yih, editors,
Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP ’21, pages 3697–3711, Punta Cana,
Dominican Republic, Nov 2021. Association for Computational
Linguistics.

[43] Z. Chen, S. Li, C. Smiley, Z. Ma, S. Shah, and W. Y. Wang.
ConvFinQA: Exploring the Chain of Numerical Reasoning in
Conversational Finance Question Answering. In Y. Goldberg,
Z. Kozareva, and Y. Zhang, editors, Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP
’22, pages 6279–6292, Abu Dhabi, United Arab Emirates, Dec
2022. Association for Computational Linguistics.

[44] Z. Chen, H. Mao, H. Li, W. Jin, H. Wen, X. Wei, S. Wang,
D. Yin, W. Fan, H. Liu, and J. Tang. Exploring the Potential of
Large Language Models (LLMs) in Learning on Graphs, 2023.
arXiv:2307.03393.

[45] Z. Chen, K. Zhou, B. Zhang, Z. Gong, W. X. Zhao, and J.-R.
Wen. ChatCoT: Tool-Augmented Chain-of-Thought Reasoning
on Chat-based Large Language Models. In H. Bouamor, J. Pino,
and K. Bali, editors, Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 14777–14790, Singapore, Dec
2023. Association for Computational Linguistics.

[46] W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng,
S. Zhuang, Y. Zhuang, J. E. Gonzalez, I. Stoica, and E. P. Xing.
Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%
ChatGPT Quality. https://lmsys.org/blog/2023-03-30-vicuna/,
Mar 2023. (accessed Dec. 15, 2023).

[47] Z. Chu, J. Chen, Q. Chen, W. Yu, T. He, H. Wang, W. Peng, M. Liu,
B. Qin, and T. Liu. A Survey of Chain of Thought Reasoning:
Advances, Frontiers and Future, 2023. arXiv:2309.15402.

[48] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser,
M. Plappert, J. Tworek, J. Hilton, R. Nakano, C. Hesse, and
J. Schulman. Training Verifiers to Solve Math Word Problems,
2021. arXiv:2110.14168.

[49] M. Copik, G. Kwaśniewski, M. Besta, M. Podstawski, and T. Hoe-
fler. SeBS: A Serverless Benchmark Suite for Function-as-a-
Service Computing. In Proceedings of the 22nd International Mid-
dleware Conference, Middleware ’21, pages 64–78, Québec City,
Canada, 2021. Association for Computing Machinery.

[50] A. Creswell and M. Shanahan. Faithful Reasoning Using Large
Language Models, 2022. arXiv:2208.14271.

[51] A. Creswell, M. Shanahan, and I. Higgins. Selection-Inference:
Exploiting Large Language Models for Interpretable Logical Rea-
soning, 2022. arXiv:2205.09712.

[52] B. Dalvi, P. Jansen, O. Tafjord, Z. Xie, H. Smith, L. Pi-
patanangkura, and P. Clark. Explaining Answers with Entailment
Trees. In M.-F. Moens, X. Huang, L. Specia, and S. W.-t. Yih,
editors, Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, EMNLP ’21, pages 7358–7370,
Punta Cana, Dominican Republic, Nov 2021. Association for
Computational Linguistics.

[53] A. Davoudian, L. Chen, and M. Liu. A Survey on NoSQL Stores.
ACM Comput. Surv., 51(2), Apr 2018.

[54] J. De Fine Licht, M. Besta, S. Meierhans, and T. Hoefler. Trans-
formations of High-Level Synthesis Codes for High-Performance
Computing. IEEE Transactions on Parallel and Distributed Systems,
32(5):1014–1029, May 2020.

[55] S. Di Girolamo, D. De Sensi, K. Taranov, M. Malesevic, M. Besta,
T. Schneider, S. Kistler, and T. Hoefler. Building Blocks for

23

Network-Accelerated Distributed File Systems. In Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’22, Dallas, Texas, 2022. IEEE
Press.

[56] S. Di Girolamo, K. Taranov, A. Kurth, M. Schaffner, T. Schneider,
J. Beránek, M. Besta, L. Benini, D. Roweth, and T. Hoefler.
Network-Accelerated Non-Contiguous Memory Transfers. In
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’19, Denver, Colorado,
2019. Association for Computing Machinery.

[57] R. Ding, C. Zhang, L. Wang, Y. Xu, M. Ma, W. Zhang, S. Qin,
S. Rajmohan, Q. Lin, and D. Zhang. Everything of Thoughts:
Defying the Law of Penrose Triangle for Thought Generation,
2023. arXiv:2311.04254.

[58] A. Drozdov, N. Schärli, E. Akyürek, N. Scales, X. Song, X. Chen,
O. Bousquet, and D. Zhou. Compositional Semantic Parsing with
Large Language Models, 2022. arXiv:2209.15003.

[59] D. Dua, S. Gupta, S. Singh, and M. Gardner. Successive Prompt-
ing for Decomposing Complex Questions. In Y. Goldberg,
Z. Kozareva, and Y. Zhang, editors, Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP
’22, pages 1251–1265, Abu Dhabi, United Arab Emirates, Dec
2022. Association for Computational Linguistics.

[60] D. Dua, Y. Wang, P. Dasigi, G. Stanovsky, S. Singh, and M. Gard-
ner. DROP: A Reading Comprehension Benchmark Requiring
Discrete Reasoning Over Paragraphs. In J. Burstein, C. Doran,
and T. Solorio, editors, Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long and Short
Papers), NAACL ’19, pages 2368–2378, Minneapolis, Minnesota,
Jun 2019. Association for Computational Linguistics.

[61] B. Fatemi, J. Halcrow, and B. Perozzi. Talk like a Graph: Encoding
Graphs for Large Language Models, 2023. arXiv:2310.04560.

[62] C. Feng, X. Zhang, and Z. Fei. Knowledge Solver: Teaching LLMs
to Search for Domain Knowledge from Knowledge Graphs, 2023.
arXiv:2309.03118.

[63] M. Fey and J. E. Lenssen. Fast Graph Representation Learning
with PyTorch Geometric. In Proceedings of the Representation
Learning on Graphs and Manifolds Workshop, RLGM@ICLR ’19,
2019.

[64] Y. Freund and R. E. Schapire. Experiments with a New Boosting
Algorithm. In Proceedings of the Thirteenth International Conference
on International Conference on Machine Learning, ICML ’96, pages
148–156, Bari, Italy, 1996. Morgan Kaufmann.

[65] Y. Fu, P. Bailis, I. Stoica, and H. Zhang. Breaking the Sequen-
tial Dependency of LLM Inference Using Lookahead Decod-
ing. https://lmsys.org/blog/2023-11-21-lookahead-decoding/,
Nov 2023. (accessed Dec. 23, 2023).

[66] M. Galkin, X. Yuan, H. Mostafa, J. Tang, and Z. Zhu. To-
wards Foundation Models for Knowledge Graph Reasoning,
2023. arXiv:2310.04562.

[67] L. Gao, A. Madaan, S. Zhou, U. Alon, P. Liu, Y. Yang, J. Callan,
and G. Neubig. PAL: Program-aided Language Models, 2022.
arXiv:2211.10435.

[68] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, and
H. Wang. Retrieval-Augmented Generation for Large Language
Models: A Survey, 2023. arXiv:2312.10997.

[69] N. Garcia, C. Ye, Z. Liu, Q. Hu, M. Otani, C. Chu, Y. Nakashima,
and T. Mitamura. A Dataset and Baselines for Visual Question
Answering on Art. In A. Bartoli and A. Fusiello, editors, Computer
Vision – ECCV 2020 Workshops, volume 12536 of Lecture Notes in
Computer Science, pages 92–108. Springer, Jan 2020.

[70] R. Gerstenberger, M. Besta, and T. Hoefler. Enabling Highly-
Scalable Remote Memory Access Programming with MPI-3 One
Sided. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’13,
Denver, Colorado, 2013. Association for Computing Machinery.

[71] M. Geva, D. Khashabi, E. Segal, T. Khot, D. Roth, and J. Berant.
Did Aristotle Use a Laptop? A Question Answering Benchmark
with Implicit Reasoning Strategies. Transactions of the Association
for Computational Linguistics, 9:346–361, 2021.

[72] S. Ghose, A. Boroumand, J. S. Kim, J. Gómez-Luna, and O. Mutlu.
Processing-in-Memory: A Workload-driven Perspective. IBM
Journal of Research and Development, 63(6):3:1–3:19, Nov 2019.

[73] L. Gianinazzi, T. Ben-Nun, M. Besta, S. Ashkboos, Y. Baumann,
P. Luczynski, and T. Hoefler. The spatial computer: A model for
energy-efficient parallel computation, 2022. arXiv:2205.04934.

[74] L. Gianinazzi, M. Besta, Y. Schaffner, and T. Hoefler. Parallel
Algorithms for Finding Large Cliques in Sparse Graphs. In
Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’21, pages 243–253. Association for Com-
puting Machinery, 2021.

[75] L. Gianinazzi, M. Fries, N. Dryden, T. Ben-Nun, M. Besta, and
T. Hoefler. Learning Combinatorial Node Labeling Algorithms,
2021. arXiv:2106.03594.

[76] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh.
Making the V in VQA Matter: Elevating the Role of Image Under-
standing in Visual Question Answering, 2016. arXiv:1612.00837.

[77] J. Gu, Z. Han, S. Chen, A. Beirami, B. He, G. Zhang, R. Liao,
Y. Qin, V. Tresp, and P. Torr. A Systematic Survey of Prompt
Engineering on Vision-Language Foundation Models, 2023.
arXiv:2307.12980.

[78] J. Gu, E. Stefani, Q. Wu, J. Thomason, and X. Wang. Vision-
and-Language Navigation: A Survey of Tasks, Methods, and
Future Directions. In S. Muresan, P. Nakov, and A. Villavicencio,
editors, Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL ’22,
pages 7606–7623, Dublin, Ireland, May 2022. Association for
Computational Linguistics.

[79] J. Guo, L. Du, and H. Liu. GPT4Graph: Can Large Language
Models Understand Graph Structured Data? An Empirical Eval-
uation and Benchmarking, 2023. arXiv:2305.15066.

[80] M. Hahn and N. Goyal. A Theory of Emergent In-Context
Learning as Implicit Structure Induction, 2023. arXiv:2303.07971.

[81] W. L. Hamilton, R. Ying, and J. Leskovec. Representation Learn-
ing on Graphs: Methods and Applications. Bulletin of the Technical
Committee on Data Engineering, 40(3):52–74, Sept. 2017.

[82] S. Han, H. Schoelkopf, Y. Zhao, Z. Qi, M. Riddell, L. Benson,
L. Sun, E. Zubova, Y. Qiao, M. Burtell, D. Peng, J. Fan, Y. Liu,
B. Wong, M. Sailor, A. Ni, L. Nan, J. Kasai, T. Yu, R. Zhang,
S. Joty, A. R. Fabbri, W. Kryscinski, X. V. Lin, C. Xiong, and
D. Radev. FOLIO: Natural Language Reasoning with First-Order
Logic, 2022. arXiv:2209.00840.

[83] M. Hartmann and D. Sonntag. A survey on improving NLP
models with human explanations. In J. Andreas, K. Narasimhan,
and A. Nematzadeh, editors, Proceedings of the First Workshop on
Learning with Natural Language Supervision, pages 40–47, Dublin,
Ireland, May 2022. Association for Computational Linguistics.

[84] J. He-Yueya, G. Poesia, R. E. Wang, and N. D. Goodman. Solving
Math Word Problems by Combining Language Models With
Symbolic Solvers, 2023. arXiv:2304.09102.

[85] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song,
and J. Steinhardt. Measuring Massive Multitask Language Un-
derstanding. In Proceedings of the International Conference on
Learning Representations, ICLR ’21, 2021.

[86] D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang,
D. Song, and J. Steinhardt. Measuring Mathematical Problem
Solving With the MATH Dataset. In Proceedings of the Thirty-fifth
Conference on Neural Information Processing Systems: Datasets and
Benchmarks Track, NeurIPS ’21, 2021.

[87] X. Ho, A.-K. Duong Nguyen, S. Sugawara, and A. Aizawa. Con-
structing A Multi-hop QA Dataset for Comprehensive Evaluation
of Reasoning Steps. In D. Scott, N. Bel, and C. Zong, editors,
Proceedings of the 28th International Conference on Computational
Linguistics, COLING ’20, pages 6609–6625, Barcelona, Spain, Dec
2020. International Committee on Computational Linguistics.

[88] M. J. Hosseini, H. Hajishirzi, O. Etzioni, and N. Kushman. Learn-
ing to Solve Arithmetic Word Problems with Verb Categorization.
In A. Moschitti, B. Pang, and W. Daelemans, editors, Proceedings
of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP ’14, pages 523–533, Doha, Qatar, Oct 2014.
Association for Computational Linguistics.

[89] H. Hu, H. Lu, H. Zhang, W. Lam, and Y. Zhang. Chain-of-
Symbol Prompting Elicits Planning in Large Langauge Models,
2023. arXiv:2305.10276.

[90] L. Hu, Z. Liu, Z. Zhao, L. Hou, L. Nie, and J. Li. A Survey
of Knowledge Enhanced Pre-Trained Language Models. IEEE
Transactions on Knowledge and Data Engineering, pages 1–19, 2023.

[91] P. Hu, J. Qi, X. Li, H. Li, X. Wang, B. Quan, R. Wang, and Y. Zhou.
Tree-of-Mixed-Thought: Combining Fast and Slow Thinking for
Multi-hop Visual Reasoning, 2023. arXiv:2308.09658.

[92] Y. Hu, Z. Zhang, and L. Zhao. Beyond Text: A Deep Dive into
Large Language Models’ Ability on Understanding Graph Data,
2023. arXiv:2310.04944.

24

[93] J. Huang and K. C.-C. Chang. Towards Reasoning in Large
Language Models: A Survey. In A. Rogers, J. Boyd-Graber, and
N. Okazaki, editors, Findings of the Association for Computational
Linguistics: ACL 2023, pages 1049–1065, Toronto, Canada, Jul
2023. Association for Computational Linguistics.

[94] J. Huang, X. Zhang, Q. Mei, and J. Ma. Can LLMs Effectively
Leverage Graph Structural Information: When and Why, 2023.
arXiv:2309.16595.

[95] P. Iff, M. Besta, M. Cavalcante, T. Fischer, L. Benini, and T. Hoefler.
HexaMesh: Scaling to Hundreds of Chiplets with an Optimized
Chiplet Arrangement. In Proceedings of the 60th ACM/IEEE Design
Automation Conference, DAC ’23, pages 1–6, San Francisco, CA,
USA, Jul 2023.

[96] P. Iff, M. Besta, M. Cavalcante, T. Fischer, L. Benini, and T. Hoe-
fler. Sparse Hamming Graph: A Customizable Network-on-
Chip Topology. In Proceedings of the 2023 60th ACM/IEEE Design
Automation Conference, DAC ’23, pages 1–6, San Francisco, CA,
USA, Jul 2023.

[97] Jesse Dodge and Andreea Gane and Xiang Zhang and Antoine
Bordes and Sumit Chopra and Alexander Miller and Arthur
Szlam and Jason Weston. Evaluating Prerequisite Qualities for
Learning End-to-End Dialog Systems, 2016. arXiv:1511.06931.

[98] H. Jiang. A Latent Space Theory for Emergent Abilities in Large
Language Models, 2023. arXiv:2304.09960.

[99] S. Jiang, Z. Shakeri, A. Chan, M. Sanjabi, H. Firooz, Y. Xia, B. Aky-
ildiz, Y. Sun, J. Li, Q. Wang, and A. Celikyilmaz. Resprompt:
Residual Connection Prompting Advances Multi-Step Reasoning
in Large Language Models, 2023. arXiv:2310.04743.

[100] Z. Jiang, F. Xu, L. Gao, Z. Sun, Q. Liu, J. Dwivedi-Yu, Y. Yang,
J. Callan, and G. Neubig. Active Retrieval Augmented Gener-
ation. In H. Bouamor, J. Pino, and K. Bali, editors, Proceedings
of the 2023 Conference on Empirical Methods in Natural Language
Processing, EMNLP ’23, pages 7969–7992, Singapore, Dec 2023.
Association for Computational Linguistics.

[101] B. Jin, G. Liu, C. Han, M. Jiang, H. Ji, and J. Han. Large
Language Models on Graphs: A Comprehensive Survey, 2023.
arXiv:2312.02783.

[102] J. Jung, L. Qin, S. Welleck, F. Brahman, C. Bhagavatula, R. Le Bras,
and Y. Choi. Maieutic Prompting: Logically Consistent Reasoning
with Recursive Explanations. In Y. Goldberg, Z. Kozareva, and
Y. Zhang, editors, Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, EMNLP ’22, pages 1266–
1279, Abu Dhabi, United Arab Emirates, Dec 2022. Association
for Computational Linguistics.

[103] D. Keysers, N. Schärli, N. Scales, H. Buisman, D. Furrer,
S. Kashubin, N. Momchev, D. Sinopalnikov, L. Stafiniak, T. Tihon,
D. Tsarkov, X. Wang, M. van Zee, and O. Bousquet. Measuring
Compositional Generalization: A Comprehensive Method on Re-
alistic Data. In Proceedings of the Eigth International Conference on
Learning Representations, ICLR ’20, Apr 2020.

[104] T. Khot, K. Richardson, D. Khashabi, and A. Sabharwal. Hey
AI, Can You Solve Complex Tasks by Talking to Agents? In
S. Muresan, P. Nakov, and A. Villavicencio, editors, Findings of the
Association for Computational Linguistics: ACL 2022, pages 1808–
1823, Dublin, Ireland, May 2022. Association for Computational
Linguistics.

[105] T. Khot, H. Trivedi, M. Finlayson, Y. Fu, K. Richardson, P. Clark,
and A. Sabharwal. Decomposed Prompting: A Modular Ap-
proach for Solving Complex Tasks. In Proceedings of the Eleventh
International Conference on Learning Representations, ICLR ’23, May
2023.

[106] G. Kim, S. Kim, B. Jeon, J. Park, and J. Kang. Tree of Clarifications:
Answering Ambiguous Questions with Retrieval-Augmented
Large Language Models. In H. Bouamor, J. Pino, and K. Bali,
editors, Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, EMNLP ’23, pages 996–1009, Singa-
pore, Dec 2023. Association for Computational Linguistics.

[107] J. Kim, W. J. Dally, and D. Abts. Flattened Butterfly: A Cost-
efficient Topology for High-radix Networks. In Proceedings of
the 34th Annual International Symposium on Computer Architecture,
ISCA ’07, pages 126–137, San Diego, California, USA, 2007.
Association for Computing Machinery.

[108] J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-Driven,
Highly-Scalable Dragonfly Topology. In Proceedings of the 35th
Annual International Symposium on Computer Architecture, ISCA
’08, pages 77–88, Beijing, China, 2008. IEEE Computer Society.

[109] N. Kim and T. Linzen. COGS: A Compositional Generalization
Challenge Based on Semantic Interpretation. In B. Webber,
T. Cohn, Y. He, and Y. Liu, editors, Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP
’20, pages 9087–9105. Association for Computational Linguistics,
Nov 2020.

[110] S. Kim, S. Moon, R. Tabrizi, N. Lee, M. W. Mahoney, K. Keutzer,
and A. Gholami. An LLM Compiler for Parallel Function Calling,
2023. arXiv:2312.04511.

[111] T. N. Kipf and M. Welling. Semi-Supervised Classification with
Graph Convolutional Network. In Proceedings of the 5th Interna-
tional Conference on Learning Representations, ICLR ’17, Apr 2017.

[112] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa. Large
Language Models are Zero-Shot Reasoners. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems (NeurIPS ’22),
volume 35, pages 22199–22213. Curran Associates, 2022.

[113] R. Koncel-Kedziorski, S. Roy, A. Amini, N. Kushman, and
H. Hajishirzi. MAWPS: A Math Word Problem Repository. In
K. Knight, A. Nenkova, and O. Rambow, editors, Proceedings of
the 2016 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies,
NAACL-HLT ’16, pages 1152–1157, San Diego, California, Jun
2016. Association for Computational Linguistics.

[114] D. Kumar, V. Gupta, S. Sharma, and S. Zhang. Realistic Data
Augmentation Framework for Enhancing Tabular Reasoning. In
Y. Goldberg, Z. Kozareva, and Y. Zhang, editors, Findings of
the Association for Computational Linguistics: EMNLP 2022, pages
4411–4429, Abu Dhabi, United Arab Emirates, Dec 2022. Associ-
ation for Computational Linguistics.

[115] B. Lake and M. Baroni. Generalization without Systematicity:
On the Compositional Skills of Sequence-to-Sequence Recurrent
Networks. In J. Dy and A. Krause, editors, Proceedings of the
35th International Conference on International Conference on Machine
Learning (ICML ’18), volume 80 of Proceedings of Machine Learning
Research, pages 2873–2882. PMLR, Jul 2018.

[116] K. Lakhotia, M. Besta, L. Monroe, K. Isham, P. Iff, T. Hoefler, and
F. Petrini. PolarFly: a cost-effective and flexible low-diameter
topology. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’22,
Dallas, Texas, 2022. IEEE Press.

[117] K. Lakhotia, K. Isham, L. Monroe, M. Besta, T. Hoefler, and
F. Petrini. In-network Allreduce with Multiple Spanning Trees on
PolarFly. In Proceedings of the 35th ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA ’23, pages 165–176, Orlando,
FL, USA, 2023. Association for Computing Machinery.

[118] K. Lakhotia, L. Monroe, K. Isham, M. Besta, N. Blach, T. Hoefler,
and F. Petrini. PolarStar: Expanding the Scalability Horizon of
Diameter-3 Networks, 2023. arXiv:2302.07217.

[119] B. Lei, p.-H. Lin, C. Liao, and C. Ding. Boosting Logical Reason-
ing in Large Language Models through a New Framework: The
Graph of Thought, 2023. arXiv:2308.08614.

[120] Leo Breiman, Jerome Friedman, Charles J. Stone, R.A. Olshen.
Classification and Regression Trees. Chapman and Hall, 1984.

[121] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li,
A. Paszke, J. Smith, B. Vaughan, P. Damania, and S. Chintala.
PyTorch Distributed: Experiences on Accelerating Data Parallel
Training. Proc. VLDB Endow., 13(12):3005–3018, Aug 2020.

[122] Y. Li, Z. Li, P. Wang, J. Li, X. Sun, H. Cheng, and J. X. Yu. A
Survey of Graph Meets Large Language Model: Progress and
Future Directions, 2023. arXiv:2311.12399.

[123] Y. Li, Z. Lin, S. Zhang, Q. Fu, B. Chen, J.-G. Lou, and W. Chen.
Making Language Models Better Reasoners with Step-Aware
Verifier. In A. Rogers, J. Boyd-Graber, and N. Okazaki, editors,
Proceedings of the 61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL ’23, pages 5315–
5333, Toronto, Canada, Jul 2023. Association for Computational
Linguistics.

[124] J. Lin, M. Diesendruck, L. Du, and R. Abraham. BatchPrompt:
Accomplish more with less, 2023. arXiv:2309.00384.

[125] W. Ling, D. Yogatama, C. Dyer, and P. Blunsom. Program In-
duction by Rationale Generation: Learning to Solve and Explain
Algebraic Word Problems. In R. Barzilay and M.-Y. Kan, editors,
Proceedings of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), ACL ’17, pages 158–
167, Vancouver, Canada, Jul 2017. Association for Computational
Linguistics.

25

[126] Z. Ling, Y. Fang, X. Li, Z. Huang, M. Lee, R. Memisevic, and
H. Su. Deductive Verification of Chain-of-Thought Reasoning.
In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt,
and S. Levine, editors, Advances in Neural Information Processing
Systems (NeurIPS ’23), volume 36, pages 36407–36433. Curran
Associates, 2023.

[127] C. Liu and B. Wu. Evaluating Large Language Models on
Graphs: Performance Insights and Comparative Analysis, 2023.
arXiv:2308.11224.

[128] J. Liu, L. Cui, H. Liu, D. Huang, Y. Wang, and Y. Zhang. LogiQA:
A Challenge Dataset for Machine Reading Comprehension with
Logical Reasoning. In C. Bessiere, editor, Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI
’20, pages 3622–3628. International Joint Conferences on Artificial
Intelligence Organization, Jul 2020.

[129] J. Liu, C. Yang, Z. Lu, J. Chen, Y. Li, M. Zhang, T. Bai, Y. Fang,
L. Sun, P. S. Yu, and C. Shi. Towards Graph Foundation Models:
A Survey and Beyond, 2023. arXiv:2310.11829.

[130] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig. Pre-
Train, Prompt, and Predict: A Systematic Survey of Prompting
Methods in Natural Language Processing. ACM Comput. Surv.,
55(9), Jan 2023.

[131] T. Liu, Q. Guo, Y. Yang, X. Hu, Y. Zhang, X. Qiu, and Z. Zhang.
Plan, Verify and Switch: Integrated Reasoning with Diverse X-of-
Thoughts. In H. Bouamor, J. Pino, and K. Bali, editors, Proceedings
of the 2023 Conference on Empirical Methods in Natural Language
Processing, EMNLP ’23, pages 2807–2822, Singapore, Dec 2023.
Association for Computational Linguistics.

[132] Z. Liu, Z. Lai, Z. Gao, E. Cui, X. Zhu, L. Lu, Q. Chen, Y. Qiao,
J. Dai, and W. Wang. ControlLLM: Augment Language Models
with Tools by Searching on Graphs, 2023. arXiv:2310.17796.

[133] J. Long. Large Language Model Guided Tree-of-Thought, 2023.
arXiv:2305.08291.

[134] R. Long, P. Pasupat, and P. Liang. Simpler Context-Dependent
Logical Forms via Model Projections. In K. Erk and N. A. Smith,
editors, Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL ’16,
pages 1456–1465, Berlin, Germany, Aug 2016. Association for
Computational Linguistics.

[135] P. Lu, S. Mishra, T. Xia, L. Qiu, K.-W. Chang, S.-C. Zhu, O. Tafjord,
P. Clark, and A. Kalyan. Learn to Explain: Multimodal Reason-
ing via Thought Chains for Science Question Answering. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, editors, Advances in Neural Information Processing Systems
(NeurIPS ’22), volume 35, pages 2507–2521. Curran Associates,
2022.

[136] P. Lu, B. Peng, H. Cheng, M. Galley, K.-W. Chang, Y. N. Wu, S.-
C. Zhu, and J. Gao. Chameleon: Plug-and-Play Compositional
Reasoning with Large Language Models. In A. Oh, T. Neumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors,
Advances in Neural Information Processing Systems (NeurIPS ’23),
volume 36, pages 43447–43478. Curran Associates, 2023.

[137] P. Lu, L. Qiu, K.-W. Chang, Y. N. Wu, S.-C. Zhu, T. Rajpuro-
hit, P. Clark, and A. Kalyan. Dynamic Prompt Learning via
Policy Gradient for Semi-structured Mathematical Reasoning.
In Proceedings of the Eleventh International Conference on Learning
Representations, ICLR ’23, May 2023.

[138] L. Luo, Y.-F. Li, G. Haffari, and S. Pan. Reasoning on Graphs:
Faithful and Interpretable Large Language Model Reasoning,
2023. arXiv:2310.01061.

[139] A. Ma, X. Wang, J. Li, C. Wang, T. Xiao, Y. Liu, H. Cheng, J. Wang,
Y. Li, Y. Chang, J. Li, D. Wang, Y. Jiang, L. Su, G. Xin, S. Gu,
Z. Li, B. Liu, D. Xu, and Q. Ma. Single-cell biological network
inference using a heterogeneous graph transformer. Nature Com-
munications, 14(1), 2023.

[140] A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegr-
effe, U. Alon, N. Dziri, S. Prabhumoye, Y. Yang, S. Gupta,
B. P. Majumder, K. Hermann, S. Welleck, A. Yazdanbakhsh, and
P. Clark. Self-Refine: Iterative Refinement with Self-Feedback,
2023. arXiv:2303.17651.

[141] A. Madaan and A. Yazdanbakhsh. Text and Patterns: For
Effective Chain of Thought, It Takes Two to Tango, 2022.
arXiv:2209.07686.

[142] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and
D. McClosky. The Stanford CoreNLP Natural Language Pro-
cessing Toolkit. In K. Bontcheva and J. Zhu, editors, Proceedings
of 52nd Annual Meeting of the Association for Computational Lin-

guistics: System Demonstrations, ACL ’14, pages 55–60, Baltimore,
Maryland, Jun 2014. Association for Computational Linguistics.

[143] R. Mirzaee and P. Kordjamshidi. Transfer Learning with Syn-
thetic Corpora for Spatial Role Labeling and Reasoning. In
Y. Goldberg, Z. Kozareva, and Y. Zhang, editors, Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP ’22, pages 6148–6165, Abu Dhabi, United Arab
Emirates, Dec 2022. Association for Computational Linguistics.

[144] S. Mittal. A survey of FPGA-based accelerators for convolutional
neural networks. Neural Computing and Applications, 32(4):1109–
1139, Feb 2020.

[145] S. Mo and M. Xin. Tree of Uncertain Thoughts Reasoning for
Large Language Models, 2023. arXiv:2309.07694.

[146] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun.
A Modern Primer on Processing in Memory. In M. M. S. Aly
and A. Chattopadhyay, editors, Emerging Computing: From Devices
to Systems - Looking Beyond Moore and Von Neumann, Computer
Architecture and Design Methodologies (CADM), pages 171–243.
Springer Nature Singapore, 2023.

[147] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun.
Processing Data Where It Makes Sense: Enabling In-Memory
Computation. Microprocessors and Microsystems, 67:28–41, Jun
2019.

[148] X. Ning, Z. Lin, Z. Zhou, H. Yang, and Y. Wang. Skeleton-of-
Thought: Large Language Models Can Do Parallel Decoding,
2023. arXiv:2307.15337.

[149] S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, and X. Wu. Unifying
Large Language Models and Knowledge Graphs: A Roadmap,
2023. arXiv:2306.08302.

[150] S. Pan, Y. Zheng, and Y. Liu. Integrating Graphs with Large Lan-
guage Models: Methods and Prospects, 2023. arXiv:2310.05499.

[151] A. Patel, S. Bhattamishra, and N. Goyal. Are NLP Mod-
els really able to Solve Simple Math Word Problems? In
K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tur,
I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou,
editors, Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL ’21, pages 2080–2094. Association
for Computational Linguistics, Jun 2021.

[152] O. Press, M. Zhang, S. Min, L. Schmidt, N. Smith, and M. Lewis.
Measuring and Narrowing the Compositionality Gap in Lan-
guage Models. In H. Bouamor, J. Pino, and K. Bali, editors,
Findings of the Association for Computational Linguistics: EMNLP
2023, pages 5687–5711, Singapore, Dec 2023. Association for
Computational Linguistics.

[153] R. Puri, D. S. Kung, G. Janssen, W. Zhang, G. Domeniconi,
V. Zolotov, J. Dolby, J. Chen, M. Choudhury, L. Decker, V. Thost,
L. Buratti, S. Pujar, S. Ramji, U. Finkler, S. Malaika, and F. Reiss.
CodeNet: A Large-Scale AI for Code Dataset for Learning a
Diversity of Coding Tasks, 2021. arXiv:2105.12655.

[154] J. Qi, Z. Xu, Y. Shen, M. Liu, D. Jin, Q. Wang, and L. Huang.
The Art of SOCRATIC QUESTIONING: Recursive Thinking with
Large Language Models, 2023. arXiv:2305.14999.

[155] C. Qian, H. Tang, Z. Yang, H. Liang, and Y. Liu. Can Large Lan-
guage Models Empower Molecular Property Prediction?, 2023.
arXiv:2307.07443.

[156] S. Qiao, Y. Ou, N. Zhang, X. Chen, Y. Yao, S. Deng, C. Tan,
F. Huang, and H. Chen. Reasoning with Language Model
Prompting: A Survey. In A. Rogers, J. Boyd-Graber, and
N. Okazaki, editors, Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
ACL ’23, pages 5368–5393, Toronto, Canada, Jul 2023. Association
for Computational Linguistics.

[157] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever.
Language Models are Unsupervised Multitask Learners. https://
openai.com/research/better-language-models, 2019. (accessed:
Dec. 4, 2023).

[158] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu. Exploring the Limits of Trans-
fer Learning with a Unified Text-to-Text Transformer, 2023.
arXiv:1910.10683.

[159] A. Rasouli, I. Kotseruba, T. Kunic, and J. Tsotsos. PIE: A Large-
Scale Dataset and Models for Pedestrian Intention Estimation
and Trajectory Prediction. In Proceedings of the 2019 IEEE/CVF
International Conference on Computer Vision, ICCV ’19, pages 6261–
6270, 2019.

https://openai.com/research/better-language-models
https://openai.com/research/better-language-models

26

[160] T. B. Richards. AutoGPT: build & use AI agents - Github.
https://github.com/Significant-Gravitas/AutoGPT, Mar 2023.
(accessed Jan. 23, 2024).

[161] S. Roy and D. Roth. Solving General Arithmetic Word Problems.
In L. Màrquez, C. Callison-Burch, and J. Su, editors, Proceedings
of the 2015 Conference on Empirical Methods in Natural Language
Processing, EMNLP ’15, pages 1743–1752, Lisbon, Portugal, Sep
2015. Association for Computational Linguistics.

[162] S. Saha, O. Levy, A. Celikyilmaz, M. Bansal, J. Weston, and
X. Li. Branch-Solve-Merge Improves Large Language Model
Evaluation and Generation, 2023. arXiv:2310.15123.

[163] M. Sakarvadia, A. Ajith, A. Khan, D. Grzenda, N. Hudson,
A. Bauer, K. Chard, and I. Foster. Memory Injections: Correcting
Multi-Hop Reasoning Failures during Inference in Transformer-
Based Language Models, 2023. arXiv:2309.05605.

[164] A. Saparov and H. He. Language Models Are Greedy Rea-
soners: A Systematic Formal Analysis of Chain-of-Thought. In
Proceedings of the Eleventh International Conference on Learning
Representations, ICLR ’23, May 2023.

[165] T. Schick, J. Dwivedi-Yu, R. Dessı̀, R. Raileanu, M. Lomeli,
L. Zettlemoyer, N. Cancedda, and T. Scialom. Toolformer:
Language Models Can Teach Themselves to Use Tools, 2023.
arXiv:2302.04761.

[166] B. Sel, A. Al-Tawaha, V. Khattar, L. Wang, R. Jia, and M. Jin.
Algorithm of Thoughts: Enhancing Exploration of Ideas in Large
Language Models, 2023. arXiv:2308.10379.

[167] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry.
Ambit: In-memory accelerator for bulk bitwise operations using
commodity DRAM technology. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO
’17, pages 273–287, Cambridge, Massachusetts, 2017. Association
for Computing Machinery.

[168] N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, and S. Yao.
Reflexion: Language agents with verbal reinforcement learning.
In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt,
and S. Levine, editors, Advances in Neural Information Processing
Systems (NeurIPS ’23), volume 36, pages 8634–8652. Curran Asso-
ciates, 2023.

[169] M. Shridhar, X. Yuan, M.-A. Côté, Y. Bisk, A. Trischler, and
M. Hausknecht. ALFWorld: Aligning Text and Embodied En-
vironments for Interactive Learning. In Proceedings of the Interna-
tional Conference on Learning Representations, ICLR ’21, 2021.

[170] C. Singh, J. Morris, A. Rush, J. Gao, and Y. Deng. Tree Prompting:
Efficient Task Adaptation without Fine-Tuning. In H. Bouamor,
J. Pino, and K. Bali, editors, Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, EMNLP ’23,
pages 6253–6267, Singapore, Dec 2023. Association for Computa-
tional Linguistics.

[171] C. Singh, J. X. Morris, J. Aneja, A. M. Rush, and J. Gao. Explaining
Patterns in Data with Language Models via Interpretable Auto-
prompting, 2022. arXiv:2210.01848.

[172] A. Srivastava et al. Beyond the Imitation Game: Quantifying and
extrapolating the capabilities of language models. Transactions on
Machine Learning Research, 2023.

[173] I. Stelmakh, Y. Luan, B. Dhingra, and M.-W. Chang.
ASQA: Factoid Questions Meet Long-Form Answers, 2022.
arXiv:2204.06092.

[174] A. Strausz, F. Vella, S. Di Girolamo, M. Besta, and T. Hoefler.
Asynchronous Distributed-Memory Triangle Counting and LCC
with RMA Caching. In Proceedings of the IEEE International Parallel
and Distributed Processing Symposium, IPDPS ’22, pages 291–301,
Lyon, France, Jun 2022.

[175] A. Suhr, M. Lewis, J. Yeh, and Y. Artzi. A Corpus of Natural
Language for Visual Reasoning. In R. Barzilay and M.-Y. Kan,
editors, Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), ACL ’17,
pages 217–223, Vancouver, Canada, Jul 2017. Association for
Computational Linguistics.

[176] J. Sun, C. Xu, L. Tang, S. Wang, C. Lin, Y. Gong, H.-Y. Shum,
and J. Guo. Think-on-Graph: Deep and Responsible Reason-
ing of Large Language Model on Knowledge Graph, 2023.
arXiv:2307.07697.

[177] X. Sun, J. Zhang, X. Wu, H. Cheng, Y. Xiong, and J. Li. Graph
Prompt Learning: A Comprehensive Survey and Beyond, 2023.
arXiv:2311.16534.

[178] Y. Sun and J. Han. Mining Heterogeneous Information Networks:
Principles and Methodologies. Synthesis Lectures on Data Mining
and Knowledge Discovery (SLDMKD). Springer International
Publishing, 2012.

[179] O. Tafjord, B. Dalvi, and P. Clark. ProofWriter: Generating Im-
plications, Proofs, and Abductive Statements over Natural Lan-
guage. In C. Zong, F. Xia, W. Li, and R. Navigli, editors, Findings
of the Association for Computational Linguistics: ACL-IJCNLP 2021,
pages 3621–3634. Association for Computational Linguistics, Aug
2021.

[180] A. Talmor, J. Herzig, N. Lourie, and J. Berant. Common-
senseQA: A Question Answering Challenge Targeting Common-
sense Knowledge. In J. Burstein, C. Doran, and T. Solorio, editors,
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), NAACL ’19, pages
4149–4158, Minneapolis, Minnesota, Jun 2019. Association for
Computational Linguistics.

[181] J. Tang, Y. Yang, W. Wei, L. Shi, L. Su, S. Cheng, D. Yin, and
C. Huang. GraphGPT: Graph Instruction Tuning for Large
Language Models, 2023. arXiv:2310.13023.

[182] A. J. Thirunavukarasu, D. S. J. Ting, K. Elangovan, L. Gutierrez,
T. F. Tan, and D. S. W. Ting. Large language models in medicine.
Nature Medicine, 29(8):1930–1940, Jul 2023.

[183] Y. Tian, H. Song, Z. Wang, H. Wang, Z. Hu, F. Wang, N. V.
Chawla, and P. Xu. Graph Neural Prompting with Large Lan-
guage Models, 2023. arXiv:2309.15427.

[184] H. Trivedi, N. Balasubramanian, T. Khot, and A. Sabharwal.
MuSiQue: Multihop Questions via Single-hop Question Compo-
sition. Transactions of the Association for Computational Linguistics,
10:539–554, 2022.

[185] R. Tutunov, A. Grosnit, J. Ziomek, J. Wang, and H. Bou-Ammar.
Why Can Large Language Models Generate Correct Chain-of-
Thoughts?, 2023. arXiv:2310.13571.

[186] H. Wang, S. Feng, T. He, Z. Tan, X. Han, and Y. Tsvetkov. Can
Language Models Solve Graph Problems in Natural Language?
In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt,
and S. Levine, editors, Advances in Neural Information Processing
Systems (NeurIPS ’23), volume 36, pages 30840–30861. Curran
Associates, 2023.

[187] H. Wang, Y. Gao, X. Zheng, P. Zhang, H. Chen, and J. Bu. Graph
Neural Architecture Search with GPT-4, 2023. arXiv:2310.01436.

[188] L. Wang, W. Xu, Y. Lan, Z. Hu, Y. Lan, R. K.-W. Lee, and E.-P.
Lim. Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-
Thought Reasoning by Large Language Models. In A. Rogers,
J. Boyd-Graber, and N. Okazaki, editors, Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL ’23, pages 2609–2634, Toronto,
Canada, Jul 2023. Association for Computational Linguistics.

[189] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,
L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang. Deep
Graph Library: A Graph-Centric, Highly-Performant Package for
Graph Neural Networks, 2020. arXiv:1909.01315.

[190] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, and D. Zhou. Self-
Consistency Improves Chain of Thought Reasoning in Language
Models. In Proceedings of the Eleventh International Conference on
Learning Representations, ICLR ’23, May 2023.

[191] X. Wang, Q. Yang, Y. Qiu, J. Liang, Q. He, Z. Gu, Y. Xiao, and
W. Wang. KnowledGPT: Enhancing Large Language Models
with Retrieval and Storage Access on Knowledge Bases, 2023.
arXiv:2308.11761.

[192] Y. Wang, N. Lipka, R. A. Rossi, A. Siu, R. Zhang, and T. Derr.
Knowledge Graph Prompting for Multi-Document Question An-
swering, 2023. arXiv:2308.11730.

[193] Z. Wang, S. Cai, G. Chen, A. Liu, X. S. Ma, and Y. Liang. De-
scribe, Explain, Plan and Select: Interactive Planning with LLMs
Enables Open-World Multi-Task Agents. In A. Oh, T. Neumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors,
Advances in Neural Information Processing Systems (NeurIPS ’23),
volume 36, pages 34153–34189. Curran Associates, 2023.

[194] Z. Wang, G. Zhang, K. Yang, N. Shi, W. Zhou, S. Hao, G. Xiong,
Y. Li, M. Y. Sim, X. Chen, Q. Zhu, Z. Yang, A. Nik, Q. Liu, C. Lin,
S. Wang, R. Liu, W. Chen, K. Xu, D. Liu, Y. Guo, and J. Fu.
Interactive Natural Language Processing, 2023. arXiv:2305.13246.

[195] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and
D. Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large
Language Models, 2022. arXiv:2201.11903.

27

[196] X. Wei, S. Wang, D. Zhang, P. Bhatia, and A. Arnold. Knowledge
Enhanced Pretrained Language Models: A Compreshensive Sur-
vey, 2021. arXiv:2110.08455.

[197] Y. Wen, Z. Wang, and J. Sun. MindMap: Knowledge Graph
Prompting Sparks Graph of Thoughts in Large Language Models,
2023. arXiv:2308.09729.

[198] Y. Weng, M. Zhu, F. Xia, B. Li, S. He, S. Liu, B. Sun, K. Liu, and
J. Zhao. Large Language Models are Better Reasoners with Self-
Verification. In H. Bouamor, J. Pino, and K. Bali, editors, Findings
of the Association for Computational Linguistics: EMNLP 2023, pages
2550–2575, Singapore, Dec 2023. Association for Computational
Linguistics.

[199] J. Weston and S. Sukhbaatar. System 2 Attention (is something
you might need too), 2023. arXiv:2311.11829.

[200] N. Wies, Y. Levine, and A. Shashua. The Learnability of In-
Context Learning, 2023. arXiv:2303.07895.

[201] T. Wu, E. Jiang, A. Donsbach, J. Gray, A. Molina, M. Terry, and
C. J. Cai. PromptChainer: Chaining Large Language Model
Prompts through Visual Programming. In Extended Abstracts of
the Conference on Human Factors in Computing Systems, CHI EA ’22,
New Orleans, LA, USA, May 2022. Association for Computing
Machinery.

[202] X. Wu, K. Zhou, M. Sun, X. Wang, and N. Liu. A Survey of Graph
Prompting Methods: Techniques, Applications, and Challenges,
2023. arXiv:2303.07275.

[203] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A Com-
prehensive Survey on Graph Neural Networks. IEEE Transactions
on Neural Networks and Learning Systems, 32(1):4–24, 2021.

[204] S. M. Xie, A. Raghunathan, P. Liang, and T. Ma. An Expla-
nation of In-context Learning as Implicit Bayesian Inference.
In Proceedings of the Tenth International Conference on Learning
Representations, ICLR ’22, Apr 2022.

[205] Y. Xie, K. Kawaguchi, Y. Zhao, J. X. Zhao, M.-Y. Kan, J. He, and
M. Xie. Self-Evaluation Guided Beam Search for Reasoning.
In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt,
and S. Levine, editors, Advances in Neural Information Processing
Systems (NeurIPS ’23), volume 36, pages 41618–41650. Curran
Associates, 2023.

[206] B. Xu, Q. Wang, Z. Mao, Y. Lyu, Q. She, and Y. Zhang.
kNN Prompting: Beyond-Context Learning with Calibration-
Free Nearest Neighbor Inference. In Proceedings of the Eleventh
International Conference on Learning Representations, ICLR ’23, May
2023.

[207] C. Xu, Q. Sun, K. Zheng, X. Geng, P. Zhao, J. Feng, C. Tao, and
D. Jiang. WizardLM: Empowering Large Language Models to
Follow Complex Instructions, 2023. arXiv:2304.12244.

[208] C. Yang, D. Bo, J. Liu, Y. Peng, B. Chen, H. Dai, A. Sun, Y. Yu,
Y. Xiao, Q. Zhang, C. Wang, Y. Guo, and C. Shi. Data-centric
Graph Learning: A Survey, 2023. arXiv:2310.04987.

[209] J. Yang, G. Xiao, Y. Shen, W. Jiang, X. Hu, Y. Zhang, and J. Peng.
A Survey of Knowledge Enhanced Pre-trained Models, 2021.
arXiv:2110.00269.

[210] L. Yang, H. Chen, Z. Li, X. Ding, and X. Wu. Chat-
GPT is not Enough: Enhancing Large Language Models with
Knowledge Graphs for Fact-aware Language Modeling, 2023.
arXiv:2306.11489.

[211] Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. Cohen, R. Salakhutdinov,
and C. D. Manning. HotpotQA: A Dataset for Diverse, Explain-
able Multi-hop Question Answering. In E. Riloff, D. Chiang,
J. Hockenmaier, and J. Tsujii, editors, Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing,
EMNLP ’18, pages 2369–2380, Brussels, Belgium, Nov 2018. As-
sociation for Computational Linguistics.

[212] F. Yao, C. Tian, J. Liu, Z. Zhang, Q. Liu, L. Jin, S. Li, X. Li, and
X. Sun. Thinking Like an Expert: Multimodal Hypergraph-of-
Thought (HoT) Reasoning to boost Foundation Modals, 2023.
arXiv:2308.06207.

[213] S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and
K. Narasimhan. Tree of Thoughts: Deliberate Problem Solving
with Large Language Models. In A. Oh, T. Neumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine, editors, Advances in
Neural Information Processing Systems (NeurIPS ’23), volume 36,
pages 11809–11822. Curran Associates, 2023.

[214] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. R. Narasimhan, and
Y. Cao. ReAct: Synergizing Reasoning and Acting in Language
Models. In Proceedings of the Eleventh International Conference on
Learning Representations, ICLR ’23, May 2023.

[215] Y. Yao, Z. Li, and H. Zhao. Beyond Chain-of-Thought, Effective
Graph-of-Thought Reasoning in Large Language Models, 2023.
arXiv:2305.16582.

[216] R. Ye, C. Zhang, R. Wang, S. Xu, and Y. Zhang. Natural Language
is All a Graph Needs, 2023. arXiv:2308.07134.

[217] Y. Ye, B. Hui, M. Yang, B. Li, F. Huang, and Y. Li. Large Language
Models Are Versatile Decomposers: Decomposing Evidence and
Questions for Table-Based Reasoning. In Proceedings of the 46th
International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’23, pages 174–184, Taipei, Taiwan,
2023.

[218] J. Yu, R. He, and R. Ying. Thought Propagation: An Analogical
Approach to Complex Reasoning with Large Language Models,
2023. arXiv:2310.03965.

[219] L. Zeit-Altpeter. Forward Looking Active Retrieval Augmented
Generation. In Proceedings of the AI Summer School at Uni Jena
(Poster), 2023.

[220] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla.
Heterogeneous Graph Neural Network. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD ’19, pages 793–803, Anchorage, AK, USA,
2019. Association for Computing Machinery.

[221] H. Zhang, L. H. Li, T. Meng, K.-W. Chang, and G. V. den
Broeck. On the Paradox of Learning to Reason from Data, 2022.
arXiv:2205.11502.

[222] J. Zhang. Graph-ToolFormer: To Empower LLMs with Graph
Reasoning Ability via Prompt Augmented by ChatGPT, 2023.
arXiv:2304.11116.

[223] Y. Zhang, Z. Chen, W. Zhang, and H. Chen. Making Large Lan-
guage Models Perform Better in Knowledge Graph Completion,
2023. arXiv:2310.06671.

[224] Y. Zhang, J. Yang, Y. Yuan, and A. C.-C. Yao. Cumulative
Reasoning with Large Language Models, 2023. arXiv:2308.04371.

[225] Z. Zhang, P. Cui, and W. Zhu. Deep Learning on Graphs: A
Survey. IEEE Transactions on Knowledge and Data Engineering,
34(1):249–270, Jan 2022.

[226] Z. Zhang, H. Li, Z. Zhang, Y. Qin, X. Wang, and W. Zhu.
Graph Meets LLMs: Towards Large Graph Models, 2023.
arXiv:2308.14522.

[227] Z. Zhang, X. Wang, Z. Zhang, H. Li, Y. Qin, S. Wu, and W. Zhu.
LLM4DyG: Can Large Language Models Solve Problems on
Dynamic Graphs?, 2023. arXiv:2310.17110.

[228] Z. Zhang, Y. Yao, A. Zhang, X. Tang, X. Ma, Z. He, Y. Wang,
M. Gerstein, R. Wang, G. Liu, and H. Zhao. Igniting Language
Intelligence: The Hitchhiker’s Guide From Chain-of-Thought
Reasoning to Language Agents, 2023. arXiv:2311.11797.

[229] J. Zhao, L. Zhuo, Y. Shen, M. Qu, K. Liu, M. Bronstein, Z. Zhu,
and J. Tang. GraphText: Graph Reasoning in Text Space, 2023.
arXiv:2310.01089.

[230] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min,
B. Zhang, J. Zhang, Z. Dong, Y. Du, C. Yang, Y. Chen, Z. Chen,
J. Jiang, R. Ren, Y. Li, X. Tang, Z. Liu, P. Liu, J.-Y. Nie,
and J.-R. Wen. A Survey of Large Language Models, 2023.
arXiv:2303.18223.

[231] X. Zhao, M. Li, W. Lu, C. Weber, J. H. Lee, K. Chu, and S. Wermter.
Enhancing Zero-Shot Chain-of-Thought Reasoning in Large Lan-
guage Models through Logic, 2023. arXiv:2309.13339.

[232] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang,
Z. Lin, Z. Li, D. Li, E. Xing, H. Zhang, J. E. Gonzalez, and I. Stoica.
Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena.
In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt,
and S. Levine, editors, Advances in Neural Information Processing
Systems (NeurIPS ’23), volume 36, pages 46595–46623. Curran
Associates, 2023.

[233] D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schu-
urmans, C. Cui, O. Bousquet, Q. V. Le, and E. H. Chi. Least-to-
Most Prompting Enables Complex Reasoning in Large Language
Models. In Proceedings of the Eleventh International Conference on
Learning Representations, ICLR ’23, May 2023.

[234] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li,
and M. Sun. Graph neural networks: A review of methods and
applications. AI Open, 1:57–81, 2020.

[235] Y. Zhu, X. Wang, J. Chen, S. Qiao, Y. Ou, Y. Yao, S. Deng, H. Chen,
and N. Zhang. LLMs for Knowledge Graph Construction and
Reasoning: Recent Capabilities and Future Opportunities, 2023.
arXiv:2305.13168.

28

[236] Y. Zong, O. Mac Aodha, and T. Hospedales. Self-Supervised
Multimodal Learning: A Survey, 2023. arXiv:2304.01008.

APPENDIX A
DETAILED DESCRIPTIONS OF CHAIN SCHEMES

We study prompting schemes that use chain topologies. We
list them and determine their relationship to our blueprint
in Table 1.

A.1 Single-Prompt Schemes
Chain-based reasoning can be conducted within a single
prompt, potentially containing multiple in-context exam-
ples. It is used in both textual and visual reasoning tasks.

In the seminal Chain-of-Thought (CoT) [195] scheme,
in-context examples consisting of intermediate reasoning
steps for a given complex question are introduced to prompt
the LLM to generate a similar multi-step reasoning chain.
This chain is used to improve the quality of the LLM answer
compared to basic IO prompting.

Zero-shot-CoT was proposed by Kojima et al. [112]. It
comes with multi-step reasoning without in-context exam-
ples, by simply prompting the LLM with one sentence,
“Let’s think step by step”, or using other similar statements.
This zero-shot prompting improves upon other zero-shot
methods in terms of the accuracy of reasoning outcomes.

SelfAsk [152] is a single-prompt scheme similar to CoT
which augments the in-context examples with intermediate
questions. Instead of only providing a step-by-step rea-
soning chain in the examples, each step in this chain is
expanded to pose a follow-up question and then answer it,
e.g., “Superconductivity was discovered in 1911.” is augmented
to “Follow up: When was superconductivity discovered? Interme-
diate answer: Superconductivity was discovered in 1911”.

Plan-and-Solve (PS) Prompting [188] builds a chain
based on a devised plan, harnessing Zero-shot CoT. It first
divides the complex task into a list of sub-tasks and then
executes the stepwise plan for the solution. PS can be
extended to PS+ by adding instructions in the prompt to
request the LLM to extract variables and explicitly calculate
the intermediate values. PS+ has no impact on the length of
the chain.

Program of Thoughts (PoT) [41] is a single-prompt
scheme similar to CoT which generates code to solve a
question. Rather than the natural-language-based examples
used in CoT, the LLM is prompted by code exemplars,
where each statement refers to one intermediate step in the
reasoning chain. Zero-shot prompting can also be applied,
e.g., “Let’s write a Python program step by step and return the
result. Firstly we need to define the variables.”. The final result
is obtained by executing the generated code.

A.2 Multi-Prompt Schemes
Elicited by multiple rounds of prompting, the LLM reason-
ing process can be a chain consisting of several messages.

Selection-Inference (SI) [51] aims to address multi-step
logical reasoning problems where all necessary informa-
tion is provided within the input context. Each reasoning
step in SI involves two distinct sub-tasks: selection and
inference. Firstly, the selection sub-task is responsible for

identifying and selecting relevant information needed for
the subsequent reasoning step, effectively pruning the con-
text. Following this, the inference sub-task generates a new
intermediate piece of information, thereby performing the
actual reasoning step. This newly generated information
then becomes available for use in subsequent reasoning
steps for the selection sub-task. The length of the chain is
bounded to a fixed number of steps, and the prompts for
both sub-tasks include relevant few-shot examples.

Chain-of-symbol (CoS) [89] is a multi-prompt scheme
utilizing two prompts for solving spatial planning tasks
in natural language. Prompted in a zero-shot manner, the
LLM initially generates CoT-like in-context exemplars and
modifies them by replacing the spatial relationships with
symbols. For example, the navigational task “Start at bank A.
There are two stores on the map, store B and store G. The road from
bank A to store B goes through bank C, house H, and cinema F to
store B, totaling 600 meters.” is succinctly converted into the
symbol sequence “bank A / bank C / house H / cinema F / store
B, (200 + 100 + 100 + 200 = 600).”. Exemplars simplified in
this way are then provided as prompts for LLMs to conduct
CoT-based reasoning.

A.2.1 Multi-Prompt Chains with Decomposition
The introduction of a node for decomposition at the start of
a reasoning chain can not only determine the chain’s depth,
but also facilitate more detailed reasoning approaches in
the subsequent sub-steps. This allows for a finer-grained
resolution of sub-questions, enriching the overall reasoning
process. Apart from the schemes described below, similar
strategies are applied in works [59], [102], [217].

Least-to-Most Prompting [233] grows a reasoning chain,
where the decomposition of complex tasks is conducted in
the first node and the sub-tasks are solved in the subsequent
nodes. Prompted with few-shot examples showcasing the
decomposition of questions into lists of sub-questions, the
LLM firstly generates a sequence of sub-questions given an
original question. Then the solving process starts by provid-
ing the LLM with example solutions for simple questions.
Subsequently during each sub-step, the LLM generates the
sub-solution, given the question for this step and the list
of previously solved questions with the generated answers.
The chain terminates when the final answer is returned after
solving all sub-problems in the list.

Decomposed Prompting [105] is a modular framework
for a detailed decomposition of complex tasks. To generate
a reasoning chain, the LLM is prompted by demonstrations
comprised of sequential question-operation triplets, which
form “sub-questions”. The growth of the chain follows the
autoregressive pattern of CoT, while each sub-step captures
the input and passes the output through the contextual
environment. Under the limited scope of the tasks, the
types of operation functions are fixed, enabling the LLM to
conduct in-context learning for operations before inference.

A.2.2 Multi-Prompt Chains with Verification
The introduction of verification enables the reasoning
frameworks to iteratively refine the generated context. With
this strategy, the execution of chain-based reasoning is effec-
tively extended with loops, with conditions on how many
times one can loop over a node (based on the number

29

of iterations or some terminal conditions). Apart from the
schemes described below, similar strategies are applied in
works [123], [126], [198].

LogiCoT [231] is a zero-shot, multi-prompt framework
that leverages iterative verification to minimize cumulative
errors in the reasoning chain. After generating a reasoning
chain through few-shot CoT, this framework systematically
navigates the reasoning chain with zero-shot prompts to
pinpoint the first instance where the original reasoning de-
viated. It preserves the accurate part of the reasoning chain
up to the erroneous node and then prompts the LLM to
diagnose and correct this specific misstep, thereby forming
an alternative reasoning chain. This process repeats until a
fully verified reasoning chain is established, with each node
passing the verification.

SELF-REFINE [140] adopts a distinct approach to itera-
tive refinement compared to LogiCoT. Instead of focusing
on pinpointing and correcting errors within a reasoning
chain, it initially generates a complete output and then
enters a cyclical process, alternating between generating
specific feedback with concrete actions for enhancement and
applying this feedback to refine the output.

Similar to SELF-REFINE, Reflexion [168] employs the
concept of iterative refinement through generating and ap-
plying feedback, but introduces a modular approach to the
process, segmenting the refinement into specialized stages.
It starts with an initial output by the LLM, followed by
an evaluation through task-specific grading functions, and
then generates informative feedback, which is subsequently
applied. This reasoning chain continues looping until the
evaluation stage confirms that the output is correct.

Reasoning Graph Verifier (RGV) [35] is a framework
that addresses arithmetic questions. Their approach is a
variant of CoT-SC, in which they employ a trainable verifier
module to decide on the best CoT solution.

A.2.3 Multi-Prompt Chains with External Tools

To better integrate multiple execution methods, some
schemes opt to devise a plan that specifies tools for handling
each sub-task, before executing the reasoning chain.

Plan, Verify and Switch (PVS) [131] iteratively engages
in planning, verification, and switching among different
methods until the acquisition of the final answer. Initially,
the LLM is prompted with definitions of three chain-based
reasoning methods, which include CoT, PoT, and a method
using the solution of linear equations to represent the rea-
soning process (named EoT). Then, at the first stage of each
iteration, the LLM selects a reasoning method according
to the input question and subsequently follows in-context
examples on the application of the method to complete a
reasoning chain accordingly. Then, the verification module
acquires conditional information and the intermediate vari-
ables from the sub-steps of the chain and executes calcula-
tions, validating the correctness of the final answer. If the
verification fails, the next iteration is activated, in which the
LLM selects a new method from the non-selected ones and
generates a new chain without memories of the previous
reasoning process. The planning module facilitates the dy-
namic switch of reasoning methods, thereby integrating the
strengths of different paradigms.

Chameleon [136] is a reasoning framework that pro-
vides the LLM with access to various external tools, such
as programming interpreters and table readers. Given the
question, tool descriptions, and tool usage examples, the
LLM generates a plan for the reasoning chain, in which each
node corresponds to a tool used in the sub-step. During the
execution of the chain, the output of previous steps together
with the cached tool execution results are taken as the input
of each current step. The nodes of the chain are executed
sequentially until the final result is returned.

There are also tool-based chain schemes with no plan-
ning module; they dynamically select the reasoning method.

ChatCoT [45] realizes tool-based reasoning chains
through multi-round conversations with the LLM. Initially,
the LLM is shown how to decompose CoT reasoning as a
multi-turn conversation, in order to learn problem-solving
in a step-by-step, autoregressive conversational way. Addi-
tionally, the knowledge of tools and relevant examples are
included in the context to elicit their selection and correct
usage. During inference, the chain proceeds and unfolds
without a premature plan until the problem is solved, while
the LLM simultaneously selects and executes appropriate
tools during the multi-turn conversation. The conversation
is constrained to a maximum number of turns, thereby
constraining the maximum reasoning depth, while ensuring
all previous turns are kept within the context window.

APPENDIX B
DETAILED DESCRIPTIONS OF TREE SCHEMES

We next analyze works that harness trees as the prompting
topology. We structure the discussion based on the har-
nessed topology variants, see Figure 9.

B.1 Trees of Chains
While harnessing trees as prompting topologies has been ex-
plicitly established in the works by Long [133] and Yao [213],
this idea has been present earlier. Specifically, Chain-of-
Thought with Self-Consistency (CoT-SC) [190] is an early
scheme that harnesses the tree structure to a certain degree.
Here, multiple CoTs originate from the same initial (root)
prompt, forming a “tree of chains”. The chain providing the
best outcome to the initial question, is selected as the final
answer.

B.2 Single-Level Trees
Skeleton-of-Thought (SoT) [148] is a prompting scheme
aiming to reduce the end-to-end generation latency of
LLMs, caused by their inherent sequential decoding. Instead
of generating one long continuous answer, this scheme uses
a divide-and-conquer approach. In a first prompt, the LLM
is instructed to generate a skeleton of the answer, i.e., a
list of points that are independently answerable. Then, for
each of these points, a new prompt is issued in parallel to
answer just this specific part of the question. As these points
are processed in parallel, the overall latency is reduced.
One can additionally include a prompt at the beginning
which lets the LLM decide on solving the question via
independent points, or – whenever reasonable – by using
a single continuous answer.

30

B.3 k–Ary Trees

First, the Tree-of-Thought (ToT) design by Long [133]
utilizes a tree structure to decompose a problem into sub-
problems and solve them using separate LLM prompts. Af-
ter the LLM suggests possible next steps and corresponding
partial solutions, a checker module decides if any of these
solutions is valid, whether it can be selected as the final
one, or whether it should backtrack to the previous step. All
issued prompts and answers are explicitly stored as a tree
structure and navigated through using a controller module.
The LLM prompting is only used to generate the next
individual steps (i.e., hops) in this tree, whereas the overall
problem solving process is coordinated by the controller.

Tree of Thoughts (ToT) by Yao et al. [213] differs from
the above ToT approach in using the LLM itself as a solution
evaluator with access to all generated solutions, instead of
using a programmed or learned evaluator module. This
allows to rate states individually or vote across intermediate
solutions to select the most promising one to continue with
the search. Both mentioned ToT approaches are a general-
ization of the IO, CoT, and CoT-SC prompting schemes.

B.3.1 Pre-ToT Schemes

Thought Decomposition [205] is a multi-prompt scheme
based on stochastic beam search and self-evaluation. At
each level (reasoning step), n new intermediate nodes are
generated for each of the (usually) k input nodes. Each node
of this set of nk nodes is evaluated and then the set is pruned
down to k output nodes via sampling with stochastic beam
search. For both the generation and the evaluation prompts,
few-shot examples are used with a focus on textual or
program-aided reasoning, depending on the dataset used
for evaluation.

Creswell and Shanahan [50] describe an extension of
the chain-based Selection-Inference [51], which is used to
answer multiple-choice questions by chaining together cor-
rect reasoning steps over a predefined context, i.e., a set
of statements (the provided statements are sufficient to
derive the answer to the question). The space of all possible
reasoning chains forms a tree rooted at the initial question.
Each node represents a reasoning step that is derived by
(1) selecting a subset of statements from the context and
then (2) inferring a new statement, which is then added to
the context. For both steps, the authors use separately fine-
tuned LMs. This tree is explored using beam search, where
another fine-tuned LM assesses the value of the current
node, and the search ends as soon as a halter-LM decides
that the question can be answered with the current context
and then answers it.

Dynamic Least-to-Most Prompting [58] extends least-
to-most prompting with a tree-based problem decomposi-
tion and a dynamic external tree-based few-shot example
selection. The goal is to turn natural language questions into
formal representations such as SPARQL queries. Initially the
input question is decomposed into sub-problems using a
series of prompts. This process yields an arbitrary decision
tree for the input in contrast to a chain in traditional least-to-
most prompting. This decision tree is used to dynamically
select few-shot examples by externally matching that tree
against a precomputed decision tree for examples. In the

final step, the decision tree is linearized into a sequence
of sub-problems with increasing complexity which are then
translated by using prompts enhanced with the respective
examples selected in the second step.

B.3.2 Post-ToT Schemes
Different schemes have extended the initial ToT designs.
Algorithm of Thoughts (AoT) [166] is a single-prompt
approach that utilizes in-context examples formulated in
an algorithmic fashion. Instead of providing step-by-step
examples as in CoT prompting, AoT harnesses algorithmic
reasoning steps in the examples, that explore the solution
space (tree) with either DFS or BFS. As opposed to ToT, AoT
uses only a single prompt.

Tree of Uncertain Thought (TouT) [145] extends ToT
with local “uncertainty scores” by incorporating the vari-
ance of multiple LLM responses into the state evaluation
function.

Tree-of-Mixed-Thought (TomT) [91] uses ToT-based
prompting to answer questions on visual scene graphs, e.g.,
“Does the red chair have the same number of legs as the table
in front of it?”. The LLM is tasked to generate Python code
that solves the question using a set of provided functions
to extract and reason on the data of the scene graph. This
prompting scheme uses a DFS variant of ToT where each
individual node generates up to s consecutive reasoning
steps, i.e. lines of code, opposed to the original ToT where
s = 1. Evaluating the correctness of the reasoning steps
is done as in ToT for each node, where one checks if the
generated code so far can (1) run correctly, and (2) the
interactions with the scene graph are consistent with the
existing elements in the scene.

Tree of Clarifications (ToC) [106] enables to answer
ambiguous questions by first retrieving pertinent external
information and then recursively prompting an LLM to con-
struct a tree of disambiguations for the initial question. This
tree is explored using BFS and after no more ambiguations
exist, a long form answer is generated, by combining all the
previously explored nodes.

Tree Prompting [170] is a high-level approach that
proposes the training of a binary decision tree to clas-
sify text during inference. Several mechanisms to construct
the prompts that make up the nodes of the decision tree
during learning are proposed: prompts based on few-shot
examples, human curated instruction prompts, dynamic
prompts constructed with discrete prompt search methods
like iPrompt [171], and kNN prompting [206], which con-
structs new nodes based on the nearest neighbors. kNN
prompting can result in multiple prompts per decision tree
node with the other mechanisms using only a single prompt.
Additional improvements can be made by employing tree
ensembles such as random forests [120] or gradient-boosted
trees [64]. During inference the number of prompts is bound
by the depth of the decision tree, where as the training can
be resource intensive.

B.4 Analysis & Comparison of Designs

We now broadly discuss and analyze tree designs with
respect to different aspects of our blueprint. A detailed
analysis can be found in Appendix E.2.

31

B.4.1 Topology & Its Construction
The key novel architectural feature of tree schemes is explo-
ration of a step, i.e., the ability to generate multiple new
steps based on a given single one. The vast majority of
tree schemes are multi-prompt. Most multi-prompt schemes
use a dynamic approach to building the tree topology. The
details of how the topology is exactly shaped depend on the
specific question. For most multi-prompt approaches, the
user can adapt the tree topology to a certain degree, i.e., by
varying the branching factor and limiting the depth of the
tree.

B.4.2 Performance
Increasing the branching factor often leads to more di-
versity of outcomes, which can be beneficial for accuracy,
but also increases the number of prompts, i.e., compu-
tational cost. The most advantageous branching factor is
hard to find and often depends on the specific problem
to solve. Easily decomposable problems may benefit less
from more branching than complex problems. Specifically,
more complicated problems profit more from decomposing
them into many/diverse sub-problems (e.g., this ensures
enough diversity for self-consistency to work better). In
contrast, a question that has clearly only two sub-parts does
not benefit from many more subdivisions, as the additional
branches can either be redundant or wrong. Single-prompt
approaches can perform better on some problems than
multi-prompt approaches, while using only a single prompt
compared to possibly hundreds.

APPENDIX C
DETAILED DESCRIPTIONS OF GRAPH SCHEMES

We finally describe schemes with topologies beyond trees
or chains. We observe that they can be further grouped
into subclasses, based on the harnessed class of graphs. We
picture different types of graph-based schemes in Figure 9.

C.1 Special Classes of Graphs
Different schemes harness certain classes of graphs.

Branch-Solve-Merge (BSM) [162] employs a 1–level
double tree structure to first divide a problem into indepen-
dently solvable sub-problems, and then combine them into a
final solution. The first prompt instructs the LLM to propose
sub-problems, which are then solved independently. The
final prompt instructs the LLM to merge the results of the
sub-problems into a single output.

Thought Propagation (TP) [218] employs a multi–level
double tree structure for prompting the LLM. This approach
follows the idea that multi-step problems are easier to solve
with access to example solutions of similar problems. This
is done in three steps. In the first step, given an input
problem the LLM is prompted to propose a set of related
problems. The main idea here is that solving these related
problems can then be used as reference examples for solving
the input problem instead of reasoning from scratch. Ad-
ditionally, solving similar problems can lead to high-level
plans for the input problem and allows TP to rectify errors
during planning. The LLM is prompted using in-context
examples to generate related problems for both situations.

In the second step, the LLM is prompted to solve the input
problem as well as the related problems. For this prompt,
existing prompting techniques, e.g., CoT, ToT, etc., can be
used. Even though the solutions to the related problems
are not expert-level, they can be refined in the next step.
In the last step, the LLM is prompted to come up with new
solutions for the initial problem based on the solutions from
the related problems. Additionally, the LLM is prompted to
derive high-level plans to solve the input problem using the
solutions of the related problems. This process can also be
extended to recursively generate further related problems,
which yields in the general form a double tree structure
with depth k.

Socratic Questioning [154] is a prompting scheme that
models recursive exploration of the thought space using a
tree structure. Hereby, the original question is recursively
decomposed into sub-tasks until all tasks can be solved
with high confidence. These results are then aggregated
and propagated back up the tree to answer the original
question. This results in an overall double tree reasoning
topology. Additionally, the approach also provides a model
to generate an image caption related to the text prompt and
thus allows multi-modal reasoning.

C.2 Directed Graphs
Some schemes embrace a general directed graph model.

Graph of Thoughts (GoT) [10] uses a multi-prompt
approach to improve the LLM problem solving perfor-
mance by decomposing a given task into sub-tasks that
form a graph. This decomposition is specified as a Graph
of Operations (GoO). The GoO coordinates how the LLM is
prompted and how the results, which form a separate graph
called Graph Reasoning State (GRS), are further used in the
reasoning process.

Graph of Thought [119] presents a multi-prompt ap-
proach where a graph is constructed recursively in a DFS
manner by starting at the question node that represents the
question to be answered by the LLM. From this node,
possible reasoning paths are generated by the LLM. For
each path, new nodes, i.e., intermediate reasoning steps,
are generated by the LLM and are then used to grow the
graph. To limit the size of the graph, the scheme uses a depth
limit and requires a set of condition nodes to be provided at
the start. These nodes represent axioms for the reasoning
process that form initial nodes in the reasoning paths. After
the graph construction, a path from the condition nodes
to the question node is searched, and a checker module
validates each reasoning step along this path. This checking
is done by a series of calls to the LLM and only passes with
a positive score, if all calls agree on the validity of the step.
If no valid path is found, the graph is updated to enable
valid reasoning paths. In the first step of the update, all
nodes only depending on condition nodes (via a valid step)
are added to the condition set. Then, new nodes and edges
are added to the existing graph in the same DFS manner as
when creating the graph from scratch. These graph updates
are repeated until a valid path to the question node is found
and therefore a solution to the initial question.

Graph-of-Thought [215] describes a two-stage frame-
work to answer multi-modal questions, i.e., textual ques-
tions accompanied by images. In the first stage, the model

32

generates natural language rationales based on the input
text, which provide additional context and knowledge to
support answering the given question. This rationale gen-
eration is learned as part of the overall model pipeline.
In the second stage, these rationales are then appended to
the initial question and passed again through the model to
predict an answer. The prediction consists of multiple steps.
First, subject-verb-object triples are extracted from the input
question using the Stanfords OpenIE system [3]. Using these
triples, a Graph-of-Thought is constructed by first convert-
ing each triple to a 3–node path and then merging similar
nodes using the Stanford CoreNLP system [142]. Next, the
input text and the accompanying image are encoded using a
Transformer encoder and a vision encoder, respectively. The
Graph-of-Thought is encoded using a GAN. The resulting
features from text and image are then combined using cross-
attention and passed through a gated fusion layer before
passing them to the final Transformer decoder that predicts
the rationales in the first stage and the answers in the second
stage. The scheme uses the pre-trained T5 [158] model and
fine-tunes it for the rationale generation.

ControlLLM [132] is a framework that allows answering
multi-modal queries, e.g. understanding and generating
images, videos, and audio. First, the LLM is prompted to de-
compose the query into predefined sub-tasks, e.g., ”image-
processing” or ”video-generation”. Hereby, the LLM also in-
fers appropriate input and output types, e.g., text or image,
from a predefined set for each sub-task. In a next step, a so
called Tool Graph is constructed by using the generated sub-
tasks and the input resources, e.g. video or text, as nodes.
Connections between the nodes are drawn for all compatible
input/output types. Nodes corresponding to sub-tasks or
resources are called tool nodes or resource nodes respectively.
In a next step, the graph is searched in a DFS manner until
a solution, i.e., path from input to output resource node,
is found. The authors evaluated different heuristics for the
DFS, i.e., greedy search, beam search, adaptive beam search
and exhaustive search. The graph traversal is guided by
the LLM and in each step the LLM is prompted to rate the
relevance of the connected tool nodes for solving the overall
task, this rating is then used as the heuristic. In a last step,
the found solution, i.e., path from input to output in the tool
graph, is executed to retrieve the requested output. Finally,
the LLM is prompted to summarize the result for the user.
The overall approach is similar to GoT [10], with the main
difference being that each node can access and use a tool
and the graph traversal uses a LLM-based heuristic.

Cumulative Reasoning [224] describes a paradigm to
solve multi-step problems by iteratively constructing a di-
rected acyclic graph (DAG). A proposer module suggest a
next deduction step based on any previous steps, a verifier
module evaluates the proposed step and finally, a reporter
module checks if a valid solution has been reached and
otherwise a next step is proposed. In this approach, one
manually writes problem specific prompts that follow this
paradigm. One also manually provides the implementation
on how the individual modules interact, i.e., how the DAG
is formed. Conceptually, this approach is an extension of
ToT as it allows each step to use all previously derived
results, meaning different sub trees can be connected to form
a DAG.

Everything of Thoughts (XoT) [57] is a two-stage frame-
work utilizing a reinforcement learning model trained using
Monte Carlo Tree Search on specific problem sets to generate
graphs of thoughts as well as iteratively prompting the LLM
to revise and infer solutions based on these graphs. First, the
model has to be trained in advance and can be applied to
solve problems with clear intermediate steps and solution
states, e.g., Game of 24 or 2x2 pocket cube. This model is
then used to infer a graph of thought where paths leading to
a solved state of the problem are converted to text and fed to
an LLM as assisting knowledge to solve the initial question.
The LLM is instructed to review the steps and refine them if
necessary, hereby iteratively refining the solution graph by
applying the first stage to replace incorrect nodes.

ResPrompt [99] is a single-prompt approach extending
CoT by augmenting the few-shot examples with residual
links, i.e., previously derived results. If a current reason-
ing step depends on previous results, these results are
referenced verbatim in parentheses, effectively forming an
arbitrary reasoning graph. Later stages can explicitly rely
on multiple previous results as opposed to a single previous
result.

C.3 Hypergraphs
Finally, we also consider a hypergraph, which generalizes
a graph by enabling edges to connect arbitrary subsets
of nodes instead of being links between just two nodes.
We include hypergraphs in the taxonomy, because prelimi-
nary works already harness them for multi-modal prompt-
ing [212].

Hypergraph-of-Thought (HoT) [212] is a multi-modal
reasoning paradigm modeling the thought process as a
hypergraph. First, a graph-of-thoughts as in [215] is con-
structed. Then a textual hypergraph is constructed, sharing
the same nodes. The hyperedges are then defined as node
triples, e.g., ”(Lionel Messi, place of birth, Rosario)”. Addi-
tionally, a visual hypergraph-of-thought is constructed by
performing k-means clustering on image patches, where a
cluster corresponds to a hyperedge. Both hypergraphs are
then encoded and combined to perform graph learning.

C.4 Analysis & Comparison of Designs
We now broadly discuss and analyze graph designs with
respect to different aspects of our blueprint. A detailed
analysis can be found in Appendix E.3.

C.4.1 Topology & Its Construction
Firstly, the considered schemes exhibit a blend of single-
and multi-prompt aspects, allowing for a high degree of
flexibility and control over the prompting process. This
is evident in the diverse approaches taken by different
schemes such as GoT, ControlLLM, and Cumulative Rea-
soning, each offering unique ways of constructing and
utilizing graphs for problem-solving. Secondly, the user’s
control over the topology of the graph is significant in most
schemes, enabling customization of the reasoning process
based on specific needs, such as setting branching factors or
defining the depth of the graph. Thirdly, the role of the LLM
in these graph-based schemes is multifaceted, involving the
generation, evaluation, and modification of nodes within

33

the graph, as well as determining the conclusion of the
reasoning process. Lastly, there is a notable variation in the
degree of user and LLM influence on the topology across
different schemes, with some allowing direct user control,
while others rely on predefined heuristics or the LLM’s
decision-making capabilities.

C.4.2 Performance
The considered works universally show improvements
in effectiveness of graph-based prompting schemes over
chains and trees across various tasks, suggesting a promis-
ing direction for future research and application in the field
of AI and machine learning.

APPENDIX D
BENCHMARKS

In this section, we introduce benchmarks designed to test
the reasoning capabilities of LLMs. These benchmarks will
be instrumental in the performance analysis discussion in
the following section.

D.1 Arithmetic Reasoning
Arithmetic reasoning tasks, also called math word problems,
focus on narrative-based mathematical questions where the
model must extract and solve numerical equations from
a given text-based scenario. In the datasets, each item
is presented as question-answering (QA) pairs, in which
the answers are formatted as direct answers or multiple
choice. Frequently used datasets include GSM8K (Grade
School Math) [48], SVAMP (Simple Variations on Arith-
metic Math word Problems) [151], MAWPS (MAth Word
ProblemS) [113], MultiArith [161], AddSub [88], DROP (Dis-
crete Reasoning Over the content of Paragraphs) [60] and
AQUA [125].

Based on these benchmarks, datasets enhanced for
more comprehensive textual understanding and more com-
plex calculations were developed. GSM-hard [67] extends
GSM8K by introducing calculations of much larger num-
bers. AQUA-RAT [125] requires more detailed rationales
in answering than AQUA. MathQA [2] selects the QAs
from AQUA and provides operation programs. MATH [86]
is built on the problem sets from math competitions and
includes LATEX representations. ALGEBRA [84] focuses on
the algebraic domain.

Researchers take specific domains into consideration.
FinQA (Financial Question Answering) [42] involves the
analysis and interpretation of financial data, reports, and
tables. ConvFinQA [43] presents the financial questions in a
conversational manner. To test the comprehension of struc-
tured data, TabMWP [137] collects math word problems that
involve tabular data.

D.2 Commonsense and Logical Reasoning
In commonsense reasoning, benchmarks test the abili-
ties to understand text and to generate responses that
align with human-like commonsense knowledge. Follow-
ing that principal, group of datasets composed of multi-
hop questions are constructed, including HotPotQA [211],
StrategyQA [71], MuSiQue [184], Bamboogle [152], and

CommaQA-E (Communicating with Agents for QA) [104].
Apart from the complexity of the questions, more QA
datasets incorporating stepwise explanations for the an-
swers are built, such as 2WikiMultiHopQA (2Wiki stands
for Wikipedia and Wikidata) [87], ProofWriter [179], En-
tailmentBank [52]. SocialQA [172] focuses on daily social
events.

Logical reasoning tasks aim to test the ability to under-
stand contextually cause-and-effect relationships. CauseEf-
fect [172] tasks the model with determining the causal event
given descriptions of two events.

D.3 Symbolic Reasoning and Other Domains

There are several tasks involving manipulations of symbols
in different domains. For Last Letter Concatenation [195],
the model concatenates the last the letters of two given
words into an abbreviation. Coin Clipping [195] tasks the
model with determining, whether the head side of a coin
faces up after a group of ”flip/not flip” commands.

In the domain of spatial planning tasks, Brick World [89]
asks the model to acquire a specific brick after sequen-
tially grabbing group of bricks in 2D/3D scenarios. SCAN
(Simplified version of the CommAI Navigation tasks) [115]
consists of sets of compositional navigation commands
paired with the corresponding action sequences. Other text-
based spatial tasks are also popular, such as NLVR-based
Manipulation [175] and SPARTUN [143]

Semantic parsing datasets focus on the ability of
the models to generalize from knowledge about com-
ponents. Examples include CFQ (Compositional Freebase
Questions) [103], COGS (COmpositional Generalization
Challenge based on Semantic Interpretation) [109], and
Alchemy [134].

Other benchmarks are intended for special domains,
such as coding (CodeNet [153]) or pedestrian traffic be-
havior (PIE (Pedestrian Intention Estimation) [159]) for au-
tonomous driving.

Benchmarks that target multiple domains like MT-
Bench [232] and MMLU (Massive Multitask Language Un-
derstanding) [85] measure how broad the knowledge of a
model is. Sometimes just multiple areas of a single domain
are targeted, for example with ScienceQA [135]. ASQA (An-
swer Summaries for Questions which are Ambiguous) [173]
focuses on ambiquous questions in the context of long-
form question answering. Several benchmarks such as ALF-
World [169] and VQA-V2 (Visual Question Answering) [76]
look into visual tasks, while others target logical reasoning
such as LogiQA [128] and FOLIO [82]. AutoTNLI [114]
consists of counterfactual entity-based tables.

Other evaluation methods also include puzzles, like the
Game of 24 (given four numbers, find the combination of
those numbers and the four basic mathematical operations,
so that the end result is 24), the 8-Puzzle (3x3 board with
a missing piece, goal is to slide the pieces to their target
location) or 2x2 pocket cube (smaller version of the Rubik’s
cube).

34

APPENDIX E
DETAILED ANALYSES

E.1 Chain

E.1.1 Performance Analysis
Chain-structured prompting methods have been applied to
solve questions in diverse fields. We conduct a qualitative
comparison of these methods in different domains.

E.1.1.1 Arithmetic Reasoning: IO prompting ex-
hibits very low performance on mathematical tasks. Com-
pared with IO prompting, CoT attains an accuracy of around
60% (40% higher) on GSM8K [48], 80% (10% higher) on
SVAMP [151] and 90% (14% higher) on MAWPS [113]. The
accuracy of the rationales significantly increases with the
scale of LLMs. Zero-shot-CoT does not outperform CoT
on arithmetic tasks, but obtains a 60% gain in accuracy
on MultiArith [161] over IO prompting, simultaneously ex-
ceeding IO prompting on GSM8K, AQUA [69] and SVAMP
tasks. Compared with CoT, PoT with few-shot examples
improves on GSM8K and AQUA by more than 8% and
4% on SVAMP. For the financial datasets FinQA [42] and
ConvFinQA [43], few-shot PoT reaches a roughly 20% im-
provement over CoT. In comparison with CoT, schemes that
employ decomposition demonstrate a modest advantage on
math reasoning tasks. Least-to-Most Prompting increases
the accuracy on DROP [60] by 10% because of the strong
decomposability of the problems in the dataset. Although
Least-to-Most Prompting only shows a slight average im-
provement on GSM8K, it significantly enhances accuracy
(by 5%) for problems within GSM8K that require more than
5 inference steps to solve. PS+ prompting yields at least
5% improvement on MultiArith, AQUA, AddSub [88], and
SVAMP, but only a slight gain on GSM8K due to the high
complexity and low decomposability of the problems in
GSM8K. Schemes incorporating reflection nodes show lim-
ited advancement in math-related tasks, yet exhibit promis-
ing capabilities in contextual and textual comprehension.
Tested on all math-related benchmarks mentioned above,
PVS exhibits a 5.5% improvement on average. Moreover,
PVS shows an improvement of accuracy larger than 10% on
ALGEBRA [84] and GSM-hard [67] that contain algebraic
calculations with large numbers, due to the integration of
PoT and EoT methods. With the plug-in of the table reader
tools, Chameleon increases the accuracy of answering by
8% over CoT in the math questions represented in tabular
context on the TabMWP [137] dataset.

E.1.1.2 Commonsense Reasoning: CoT outper-
forms IO prompting in terms of accuracy (75.6% vs 69.4%)
on the StrategyQA [71] dataset, and performs 20% better
on sports understanding tasks than experienced humans.
Zero-shot-CoT does not provide performance gains on com-
monsense reasoning benchmarks over IO prompting. The
evaluation of SelfAsk focuses on multi-hop questions that
require composing multiple facts to solve and improves
over CoT by smaller margins on 2WikiMultiHopQA [87]
and MuSiQue [184], but by 11% on Bamboogle [152] without
heavy token usage. Tested on bAbI QA [97] and ProofWriter
OWA [179] datasets, the SI framework enabled, on average,
a 7B LLM (58.75% accuracy) to outperform a 280B LLM
(44.03%) within the scope of CoT frameworks. Taking CoT
as the baseline, schemes with decomposition show varying

levels of performance on commonsense reasoning tasks. The
problems in SCAN [115] require the conversion of single
textual commands into action sequences, which suits the
schemes that incorporate decomposition nodes. Here, Least-
to-Most achieves 99.7% accuracy compared to just 16.2% for
CoT. While PS+ shows limited improvement on StrategyQA
due to the simple guidance from zero-shot prompting, De-
composed Prompting attains a 20% improvement on the
CommaQA-E [104] dataset and a 30% improvement on
2WikiMultiHopQA and Musique, which stem from the de-
signed retrieval function. With the retrieval and calculation
tools, ChatCoT obtains a 20% gain on the HotPotQA [211]
dataset compared with CoT.

Refinement improves incorrect thoughts, leading to
higher reasoning abilities of LLMs. Reflexion’s success rate
on HotPotQA progressively improves with the accumula-
tion of refinement iterations and surpasses 70% after six
attempts, while CoT maintains a steady success rate of
around 30%. LogiCoT also exhibits enhancement in rea-
soning tasks related with contextual understanding and
causality inference, achieving an improvement of around
10% on the SocialQA [172] and CauseEffect [172] datasets.

E.1.1.3 Symbolic Reasoning: In the task of concate-
nating the last letters of words, CoT achieves almost 100%
accuracy on cases that were part of the in-context exemplars
and around 70% accuracy on out-of-domain (OOD) cases,
while IO prompting shows nearly no accuracy on both
cases. For coin flipping, IO prompting with a 540B LLM
achieves nearly 100% on in-domain cases, but is inferior to
CoT (50% vs 90%) on OOD cases. The problem-solving rate
of Zero-shot-CoT is lower than CoT, but higher than IO on
coin flip and last letter concatenation tasks. In the domain
of spatial reasoning, CoS exhibites an increase of accuracy
ranging from 2% to 40% on Brick World, NLVR-based Ma-
nipulation [175], Natural Language Navigation [78] and the
spatial QA dataset SPARTUN [143], which completely ex-
ceeds the performance of CoT while using a lower number
of tokens. The use of decomposition enables multi-prompt
chain schemes to outperform CoT on OOD cases of the
last letter concatenation task, where the length of the tested
words exceeds those in the exemplars. The accuracy of the
LLM gradually decreases from 94% to 74% as word length
increases from 4 to 12. In contrast, CoT’s accuracy drops
from 70% to 32%. The accuracy of the zero-shot method
PS+ is still 10% higher than few-shot CoT’s. Moreover,
in the more complex task of concatenating the kth letter,
Decomposed Prompting shows higher accuracy (more than
96%) than CoT (around 70%) and Least-to-Most (around
12%).

E.1.1.4 Reasoning in Special Domains: The per-
formance evaluation of the schemes in special domains is
only selectively and qualitatively detailed here, due to the
non-uniform, artificially designed metrics utilized in the
assessment. Refinement schemes perform well in the code-
related tasks. SELF-REFINE successfully increases readabil-
ity of code on the CodeNet [153] dataset, and obtains higher
speedup than the IO prompting methods on code opti-
mization with the PIE [159] dataset. Meanwhile Reflexion
achieves high accuracy in code generation on MBPP [8] and
HumanEval [39].

35

User:
Question: There are a set of bricks. Brick E is on top of brick A. Now we have

to get a specific brick. The bricks must be grabbed from top to bottom, and
if the lower brick is to be grabbed, the upper brick must be removed first.
How to get brick A?

Answer: Let us think step by step:

LLM:
1. To get brick A, we find E is on top of A.
2. We find E is on the top.
3. We need to remove brick E first, as it is on top of brick A.
4. Brick A is now accessible and can be grabbed.
So we get the result as E, A.

Listing 1: An example implicit single-prompt chain topology, encoded with
text. It shows the CoT example of a Brick World problem from [89] with a linear
sequence of four connected nodes followed by the final solution node.

E.1.2 Representations of Topology & Schedule
Listing 1 shows an example chain topology from [89].

E.2 Tree
We now broadly discuss and analyze tree designs with
respect to different aspects of our blueprint.

E.2.1 Topology & Its Construction
E.2.1.1 Multi-Prompt Schemes: The vast majority

of schemes are multi-prompt [50], [58], [91], [106], [133],
[145], [148], [170], [190], [205], [213]. In all these schemes,
the topology is to a certain degree dynamically constructed
by the LLM (within the set boundaries of the user and the
defined approach). The role of the LLMs can be summarised
as (1) generating new child nodes, (2) evaluating given
nodes and (3) deciding when we reached a final solution
and reporting the results. Then, the user to a large degree also
controls the construction process. In ToT by Long [133], the user
provides a step limit as well as a checker module (rule-based
or as a DNN) that decides if a reasoning step is valid or if
backtracking to a previous node is necessary. ToT by Yao et
al. [213] allows the user to choose the number of samples
to generate at each node from which the most promising
b candidates are kept for BFS, here b defines the branching
factor of the tree. When using DFS, the user provides a value
threshold, so when a node evaluates to a lower score than
the threshold, one backtracks to the parent and continues
from there. For both presented exploration schemes (BFS
and DFS) the user provides an upper bound on the total
number of nodes. Thought Decomposition [205] explores
the tree using stochastic beam search. Hereby, the tree is
constructed level by level and, in each level, k candidates
are kept (the beam size) and n new nodes are generated
for each candidate. The randomness in the stochastic beam
search is controlled by a user-defined parameter, similarly,
the user sets the temperature for generating new samples
from the LLM. The total number of steps in the search, i.e.,
the tree depth, is capped at 16. In CoT-SC [190], the user
simply provides the number of CoT samples that should
be generated, resulting in a depth–1 tree. Creswell and
Shanahan [50] use beam search to explore the tree, letting
the user choose the number of candidate nodes to generate
on each level, the beam size as well as the maximum depth
of the tree. In Dynamic Least-to-Most Prompting [58], the
user has no direct influence on the structure of the tree
topology. The topology is entirely based on the results of the

LLMs decomposition of the input. TouT [145] has the same
user parameters as ToT by Yao et al. [213], but additionally
uses an uncertainty threshold for DFS to backtrack from
nodes where the uncertainty gets too large. In TomT [91],
the user can influence the tree topology by limiting the total
number of nodes, setting a branching factor and selecting
a block size k which indirectly limits the depth of the
tree by generating k consecutive reasoning steps for each
node instead of using one node per reasoning step as in
the ordinary ToT [213]. ToC [106] limits the tree size by
an upper node limit as well as setting a maximum depth.
The user can choose a branching factor k which is used
to dynamically select k-shot in-context examples for the
generation prompt such that the appropriate number of
child nodes are generated. Finally, in SoT [148] the depth–
1 tree topology is only influenced by the response of the
LLM (i.e., how the LLM determines the number of child
nodes). The user can only indirectly influence this topology
by possibly altering the node generation prompt itself.

E.2.1.2 Single-Prompt Schemes: Only AoT [166]
exclusively uses a single-prompt tree topology. Here, in-
context examples are designed such that the reasoning
follows a tree structure, i.e., the examples show algorithmic
reasoning steps such as trying out different solutions with
DFS on the solution space, to make the LLM search for the
solution in a similar tree-structured fashion. Thus, while
in-context examples are provided by the user as guidance,
the topology for solving the input question is constructed
dynamically on-the-fly solely by the LLM.

E.2.1.3 Beyond Single- and Multi-Prompt: In all
the above schemes, the root node holds the initial ques-
tion and remaining nodes represent intermediate or final
solutions. Contrarily, Tree Prompting [170] builds its topology
during an initial learning phase, by learning the structure of a
binary decision tree through training samples, with the goal
of text classification. During inference, the tree structure is
fixed and independent of the specific input. The user can in-
directly influence the tree topology by manually providing
the prompt-candidates used for learning the binary decision
tree at the training stage.

E.2.2 Performance
We perform a qualitative performance evaluation of differ-
ent tree schemes. We consider what problems or datasets the
approach is evaluated on, how the quality of answers scales
with respect to the number of prompts (or tokens), and what
the trade-offs in quality are with respect to different tree
topologies or reasoning schedules.

E.2.2.1 Considered Problems & Datasets: ToT by
Long [133], ToT by Yao et al. [213], AoT [166], and TouT [145]
evaluate their performance on problems that can be simply
decomposed in a tree-structured way, such as 5x5 Sudoku
puzzles in ToT by Long, and Game of 24 or 5x5 Crossword
puzzle for the other three approaches. Thought Decom-
position [205] and CoT-SC [190] perform their evaluation
on arithmetic reasoning, e.g, GSM8K [48], symbolic rea-
soning, e.g., object counting or last letter concatenation, as
well as on commonsense reasoning tasks such as Com-
monsenseQA [180] and StrategyQA [71]. The scheme of
Creswell and Shanahan [50] assumes access to an exist-
ing context to reason on and evaluate their approach on

36

ProofWriter [179] and EntailmentBankQA [52]. Dynamic
Least-to-Most Prompting [58] is evaluated on semantic
parsing datasets (CFQ [103] and COGS [109]), TomT [91]
create a new synthetic visual question answering dataset for
evaluation by combining two existing datasets, ToC [106] is
evaluated on a long-form QA dataset (ASQA [173]), Tree
Prompting [170] uses 13 text classification datasets and
SoT [148] is evaluated on diverse questions from [46], [207].

E.2.2.2 Accuracy vs. #prompts, topology variant,
& reasoning schedule: Long [133] does not discuss per-
formance evaluation and the scheme is executed until a
solution is found or a maximum of 100 prompts are issued.
Yao et al. [213] evaluate their approach on Game of 24 using
BFS on a tree of depth 3 with a branch factor of 5 and scoring
each node 3 times, on Creative Writing using a tree of depth
2, branch factor of 5 and selecting the best node in each level
by scoring 5 times, and finally on solving 5× 5 Crosswords
with a ToT of depth 5 to 10 using DFS, a branch factor of
5 and at most 100 DFS steps. Thought Decomposition [205]
performs beam search on a ToT with branching factor 16
and beam size 5, essentially generating 5·16 = 80 samples at
each tree level, while the depth is limited to 16. The authors
find out that increasing the branching factor leads to more
diversity and thus improves performance when using ma-
jority voting on the last level. This increase comes at the cost
of using more tokens. In CoT-SC [190], the authors evaluate
the number of reasoning chains to sample, i.e., using a tree
of depth one with a branching factor of 1 up to 40 while
reporting the average over 10 runs. Sampling more outputs
improves accuracy, but also increases computational cost;
most gains are realized after sampling 5 to 10 CoT-paths
in practice. The approach of Creswell an Shanahan [50]
assumes access to a context, i.e., a set of statements, to reason
on. The individual LMs (selection, inference, two different
halter modules, and correctness prediction of a step) need
to be fine-tuned separately in advance, which makes this
approach very specific and incurs a setup cost. Dynamic
Least-to-Most Prompting [58] comes with no explicit dis-
cussion about the number of tokens used, but the number of
prompts varies with the decomposition of the specific input
phrase and so does the number of in-context exemplars. The
authors claim a speedup of over a factor 2 compared to CoT-
SC prompting as only a single result is generated and no
majority voting is necessary as in CoT-SC. AoT [166] uses a
single prompt for the Game of 24 (reporting 9% out of token
errors) and two prompts for the 5x5 Crossword puzzle. The
authors claim that ToT uses many more prompts, i.e., over
100 rsp. 200, for the two problem setups. Hereby, AoT is
reported to perform better than ToT for the Game of 24.
The authors show that the impact of more exploration steps
inside the examples leads to longer prompt generations, i.e.,
slower inference for the same number of games. TouT [145]
sample 20 LLM responses per ToT node to compute lo-
cal variances and claim improved performance to ToT for
both Game of 24 and 5x5 Crossword puzzles and further
increasing or decreasing the number of samples leads to
degrading performance. In TomT [91], the DFS is limited
to 30 steps with their ToT-One-Stop and the reference ToT
implementation using a branching factor of 3. The authors
report improved accuracy for ToT-One-Stop compared to
ToT while using approximately half of the number of steps.

ToC [106] claims comparable performance to Cot-SC with
using less than 20 LLM calls. According to the published
results, Tree Prompting [170] enables smaller models to
outperform larger models and the accuracy can be improved
at the cost of more LLM calls; the number of LLM calls for
the experiments is limited to 40. Finally, SoT [148] reports
end-to-end latency speedups across different task categories
and LLMs. The authors compare the two step decoding
process of SoT, i.e., creating short bullet point style answers
which are expanded in the second step, against “normal
decoding”, where a continuous answer is generated in one
go. There are a varying number of bullet points generated
with the average being 9 bullet points. The authors as-
sess the answer quality with the help of two LLM judges
(FastChat and LLMZoo) using different metrics. SoT reports
a high token overhead of roughly 60x to 90x, which can be
optimized down to roughly 30x.

E.3 Graph

We now broadly discuss and analyze graph designs with
respect to different aspects of our blueprint.

E.3.1 Topology & Its Construction
Most graph schemes combine to a certain degree single- and
multi-prompt aspects. GoT by Besta et al. [10] requires a
problem specific graph of operations for solving a problem
in a multi-prompting fashion. One has complete freedom
over the individual prompts to the LLM and can incorporate
arbitrary single-prompting schemes. GoT by Lei et al. [119]
dynamically constructs the graph, at the time of this writing
no code or prompt templates have been published, so it is
not clear to what extend single-prompting is used. GoT by
Yao et al. [215] uses a NLP approach to construct a graph
of thought and uses an LM as part of the AI-pipeline to
learn how to use these graphs of thought for predicting an
answer. ControlLLM [132] is similar to GoT [10] in the sense
that all nodes in the Tool Graph correspond to nodes in the
GoT with access to tools. Cumulative Reasoning [224] is a
conceptual extension of ToT with access to all previously
derived results, i.e., nodes, resulting in a DAG. XoT [57] uses
a problem-specific pre-trained RL-model to create a graph
of thought and uses the LLM to review and summarize the
results.

In graph schemes, the user has significant control over
the topology and its creation. In BSM [162], the topology is
a double tree with one intermediate level. The user can
set either the number of branches, or its upper bound by
specifying the number of sub-problems to generate inside
a single prompt. In Thought Propagation [218], the user
specifies the branching factor in a single prompt to gener-
ate analogous problems, and can predefine the number of
levels of the double tree to grow the topology. The user in
Socratic Questioning [154] defines the branching factor of
the topology by specifying its value, lower limit, or upper
limit within a single prompt. Furthermore, the user can
limit the growth of the topology by defining the maximum
tree depth. In Graph of Thoughts (GoT) [10], the user
defines the complete topology of reasoning across multiple
prompts for a given use case, including, but not limited
to, the branching factor, the maximum depth of tree, and

37

the number of child nodes to keep. The topology in Graph
of Thought (GoT) [119] is influenced by a user-defined
depth limit. In Cumulative Reasoning [224], the user can
influence the total number of nodes as the proposer (LLM)
iteratively generates a new node until a user-specified limit
is reached. In ControlLLM [132], the user does not define
the number of nodes during the task decomposition stage
for solving a given task. However, a user may have implicit
influence on the number of nodes via prompting, e.g., by
adding the phrase “Parse out as few tasks as possible”. The
user in Everything of Thoughts (XoT) [57] can indirectly
influence the topology by defining the number of times
the LLM is prompted to review and refine the solution
graph. In ResPrompt [99], the user simply provides in-
context examples which directly dictate the basis of the
topology. Differing from previous schemes, users in two-
stage frameworks such as Graph-of-Thought (GoT) [215]
and Hypergraph-of-Thought (HoT) [212] do not influence
the topology as the (hyper)graph-of-thought is constructed
by predefined heuristics.

Similar to prompting with trees, the LLM may also influ-
ence the topology of prompting with graphs within user-defined
boundaries. The role of the LLM can be summarized as (1)
generating new child nodes, (2) evaluating given nodes, (3)
deleting or backtracking from a new node (e.g., based on
evaluation results), and (4) determining when the reasoning
process should be concluded.

E.3.2 Performance

E.3.2.1 Considered Problems & Datasets:
BSM [162] evaluates its performance on answering
questions from multiple areas by using MT-Bench [232].
TP [218] performs shortest-path reasoning, creative writing
and LLM-Agent Planning on ALFWorld [169]. Socratic
Questioning [154] evaluates their method on both, text-
only datasets (e.g. MMLU [85] and MATH [86]), logical
reasoning questions (LogiQA [128]), as well as multi-
modal visual QA datasets such as VQA-V2 [76] and two
others. GoT by Besta et al. [10] performs integer sorting
with duplicates, set intersections, keyword counting and
document merging. GoT by Lei et al. [119] measures its
performance on the Game of 24, solving higher-degree
polynomial equations as well as deriving formulas for
recursive sequences. GoT by Yao et al. [215] evaluates on
the arithmetic reasoning benchmark GSM8K [48] and on
ScienceQA [135], which contains science questions with
images. ControlLLM [132] provides its own benchmark
containing tasks for image editing and perception, visual
QA and the usage of over 20 different common tools.
Cumulative Reasoning [224] evaluates its approach on
FOLIO [82], AutoTNLI [114], Game of 24, as well as
mathematical reasoning on the MATH [86] dataset.
XoT [57] evaluates on Game of 24, 8-Puzzle and on a
2x2 pocket cube. ResPrompt [99] uses multiple math
reasoning benchmarks for evaluation, i.e., GSM8K [48],
AQUA-RAT [125], MathQA [2] and SVAMP [151], as
well as the sequential reasoning benchmark SCONE-
Alchemy [134] and commonsense reasoning questions from
StrategyQA [71]. HoT [212] evaluates their approach on
ScienceQA [135].

In summary, there is no clear set of benchmarks that
is used consistently with all approaches, but most include
math reasoning problems or some common reasoning tasks
such as Game of 24.

E.3.2.2 Accuracy vs. #prompts, topology variant, &
reasoning schedule: BSM [162] uses a branching factor of 5
for its experiments and outperforms zero-shot prompting
and CoT-SC (sampling 5 times). BSM makes LLaMA-2-
70B-chat competitive with zero-shot GPT-4 for the turn-1
questions. BSM has similar computational requirements as
CoT-SC, but yields higher scores. Additionally, BSM benefits
smaller models (LLaMA-2-7B), where CoT-SC is ineffective.
The benefits of increasing the branching factor seems to be
saturated at 4, but depends on the specific problem. TP [218]
for shortest-path reasoning makes significant performance
gains over all the baselines (IO, CoT, ToT) for all evaluated
models, i.e., PaLM-2, GPT-3.5 and GPT-4. The authors report
that there is only a marginal difference between 1-shot and
5-shot prompting without further exploration. The perfor-
mance can directly be influenced by the number of layers
used for TP. Hereby, 1-layer TP has competitive performance
to ToT with a similar amount of tokens used. Socratic
Questioning [154] is compared against IO, CoT, CoT-SC and
ToT prompting. The authors report 3-4% absolute gain over
other methods. The reported ToT accuracy is relatively low
compared to the other baselines. GoT by Besta et al. [10]
significantly improves upon IO, CoT, and ToT on all four
tasks using GPT-3.5. The accuracy enhancement of GoT over
the best-performing baseline (ToT) is achieved with lower or
comparable number of tokens. The performance advantages
of GoT over the baselines increase with the problem size.

	Introduction
	Evolution of Reasoning Topologies
	Essence of General Prompt Execution
	Basic Prompting Pipeline
	Functional Formulation & Building Blocks
	Implementing Building Blocks

	Essence of Reasoning Topologies
	What Is a Thought and a Reasoning Topology?
	Semantic Roles of Thoughts & Topologies
	Fundamental Use Cases of Thoughts & Topologies
	Functional Formulation of Reasoning Topologies
	A Blueprint for LLM Reasoning
	Topology of Reasoning
	Reasoning Schedule
	Beyond Prompting

	Reasoning with Chains
	Multi-Step Reasoning
	Zero-Shot Reasoning Instructions
	Planning & Task Decomposition
	Task Preprocessing
	Iterative Refinement
	Tool Utilization
	Analysis & Comparison of Designs
	Topology & Its Construction
	Representations of Topology & Schedule
	Performance

	Reasoning with Trees
	Trees of Chains
	Single-Level Trees
	k–Ary Trees
	Analysis & Comparison of Designs
	Topology & Its Construction
	Representations of Topology & Schedule
	Performance

	Reasoning with Graphs
	Special Classes of Graphs
	Directed Graphs
	Hypergraphs
	Analysis & Comparison of Designs
	Topology & Its Construction
	Representations of Topology & Schedule
	Performance

	Chains vs. Trees vs. Graphs of Thoughts
	Design Architectures
	Design Architecture
	Productivity & Programmability
	Scalability & Parallelizability

	Foundations & Theory
	Research Opportunities
	Related Work
	General Prompt Engineering
	Graph-Related Generative AI

	Conclusion
	References
	Appendix A: Detailed Descriptions of Chain Schemes
	Single-Prompt Schemes
	Multi-Prompt Schemes
	Multi-Prompt Chains with Decomposition
	Multi-Prompt Chains with Verification
	Multi-Prompt Chains with External Tools

	Appendix B: Detailed Descriptions of Tree Schemes
	Trees of Chains
	Single-Level Trees
	k–Ary Trees
	Pre-ToT Schemes
	Post-ToT Schemes

	Analysis & Comparison of Designs
	Topology & Its Construction
	Performance

	Appendix C: Detailed Descriptions of Graph Schemes
	Special Classes of Graphs
	Directed Graphs
	Hypergraphs
	Analysis & Comparison of Designs
	Topology & Its Construction
	Performance

	Appendix D: Benchmarks
	Arithmetic Reasoning
	Commonsense and Logical Reasoning
	Symbolic Reasoning and Other Domains

	Appendix E: Detailed Analyses
	Chain
	Performance Analysis
	Representations of Topology & Schedule

	Tree
	Topology & Its Construction
	Performance

	Graph
	Topology & Its Construction
	Performance

