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ABSTRACT
Many parallel applications suffer from latent performance
limitations that may prevent them from scaling to larger
machine sizes. Often, such scalability bugs manifest them-
selves only when an attempt to scale the code is actually be-
ing made—a point where remediation can be difficult. How-
ever, creating analytical performance models that would al-
low such issues to be pinpointed earlier is so laborious that
application developers attempt it at most for a few selected
kernels, running the risk of missing harmful bottlenecks. In
this paper, we show how both coverage and speed of this
scalability analysis can be substantially improved. Generat-
ing an empirical performance model automatically for each
part of a parallel program, we can easily identify those parts
that will reduce performance at larger core counts. Using a
climate simulation as an example, we demonstrate that scal-
ability bugs are not confined to those routines usually chosen
as kernels.

Keywords
scalability, performance analysis, performance modeling,
Scalasca

1. INTRODUCTION
When scaling their codes to larger numbers of processors,
many HPC application developers face the situation that all
of a sudden a part of the program starts consuming an exces-
sive amount of time. Unfortunately, discovering latent scal-
ability bottlenecks through experience is painful and expen-
sive. Removing them requires not only potentially numer-
ous large-scale experiments to track them down, prolonged
by the scalability issue at hand, but often also major code
surgery in the aftermath. All too often, this happens at a
moment when the manpower is needed elsewhere. This is es-
pecially true for applications on the path to exascale, which
have to address numerous technical challenges simultane-
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ously, ranging from heterogeneous computing to resilience.
Since such problems usually emerge at a later stage of the
development process, dependencies between their source and
the rest of the code that have grown over time can make re-
mediation even harder. One way of finding scalability bot-
tlenecks earlier is through analytical performance modeling.
An analytical scalability model expresses the execution time
or other resources needed to complete the program as a func-
tion of the number of processors. Unfortunately, the laws
according to which the resources needed by the code change
as the number of processors increases are often laborious to
infer and may also vary significantly across individual parts
of complex modular programs. This is why analytical perfor-
mance modeling—in spite of its potential—is rarely used to
predict the scaling behavior before problems manifest them-
selves. As a consequence, this technique is still confined to
a small community of experts.

If today developers decide to model the scalability of their
code, and many shy away from the effort, they first ap-
ply both intuition and tests at smaller scales to identify so-
called kernels, which are those parts of the program that
are expected to dominate its performance at larger scales.
This step is essential because modeling a full application
with hundreds of modules manually is not feasible. Then
they apply reasoning in a time-consuming process to cre-
ate analytical models that describe the scaling behavior of
their kernels more precisely. In a way, they have to solve
a chicken-and-egg problem: to find the right kernels, they
require a pre-existing notion of which parts of the program
will dominate its behavior at scale—basically a model of
their performance. However, they do not have enough time
to develop models for more than a few pre-selected candi-
date kernels, inevitably exposing themselves to the danger
of overlooking unscalable code.

In this paper, we introduce a novel tool that eliminates this
dilemma. Instead of modeling only a small subset of the
program manually, we generate an empirical performance
model for each part of the target program automatically, sig-
nificantly increasing not only the coverage of the scalability
check but also its speed. All it takes to search for scalability
issues even in full-blown codes is to run a manageable num-
ber of small-scale performance experiments, launch our tool,
and compare the extrapolated performance of the worst in-
stances to expectations. To make this possible, we exploit



several assumptions:

1. We take advantage of the observation that the space of
the function classes underlying these models is usually
small enough to be searched by a computer program.
An iterative refinement process maximizes both the
efficiency of the search and the accuracy of our models.

2. We abandon model accuracy as the primary success
metric and rather focus on the binary notion of scal-
ability bugs. Similar to a thread checker, every scala-
bility problem we identify is a success as long as false
positives that send us in a wrong direction are rare.
False negatives are, of course, undesirable but accept-
able as long as the number of scalability bugs we find
justifies the effort.

3. We create requirements models alongside execution-
time models. A comparison between the two can illu-
minate the nature of a scalability problem. Also, the
generation of requirements models is less affected by
performance variations.

Given that our tool relies on standard performance-
measurement infrastructure, the extra software that we de-
veloped is so lightweight that it is economically feasible to
provide it in production-level quality. Finally, we generate
not only a list of potential bugs but human-readable models
that can be further elaborated to conduct a variety of deeper
analyses such as investigating the possibility of cache spills.

The remainder of the paper is structured as follows. In the
next section, we outline our approach and present the de-
tails of the underlying mathematical framework. We then
briefly explain its integration in a production-level perfor-
mance analysis toolset in Section 3. In Section 4, we show
in experiments that we cannot only reproduce models that
exist in the literature, but also find scalability problems in
code for which no model is available. Finally, we compare
our approach to earlier work in Section 5, before we sum-
marize our findings and discuss further steps in Section 6.

2. APPROACH
The primary objective of our approach is the identification
of scalability bugs. A scalability bug is a part of the pro-
gram whose scaling behavior is unintentionally poor, that is,
much worse than expected. As computing hardware moves
towards exascale, developers need early feedback on the scal-
ability of their software design so that they can adapt it to
the requirements of larger problem and machine sizes. Al-
though in general our method can also be applied to strong
scaling, this paper concentrates on weak scaling. In addition
to searching for performance bugs, the models our tool pro-
duces also support projections that can be helpful when ap-
plying for the compute time needed to solve the next larger
class of problems. Finally, because we model both execution
time and requirements alongside each other, our results can
also assist in software-hardware co-design or help uncover
growing wait states. Note that although our approach can
be easily generalized to cover many programming models,
this paper focuses exclusively on message-passing programs.

The input of our tool is a set of performance measurements
on different processor counts {p1, . . . , pmax} in the form of
parallel profiles. The output of our tool is a list of pro-
gram regions, ranked by their predicted execution time at

a target scale of pt > pmax processors. We call these re-
gions kernels because they define the code granularity at
which we generate our models. Users who want to know
their application’s scalability at exascale will likely choose
pt � pmax. In our evaluation in Section 4, we demonstrate
reasonably accurate projections for pt = 128 · pmax. If only
the asymptotic behavior is of interest (i.e., pt → ∞), the
ranking can be based exclusively on the growth function
class itself. We do not claim that our ranking will be 100%
accurate—especially when the ranking is based on the times
predicted for a specific scale pt � pmax. However, it will
usually be good enough to draw attention to the right ker-
nels. Of course, false negatives, which are program regions
that are not identified because they wrongly appear too far
at the bottom, may occur if a phenomenon relevant at scale
is not captured in our data. Nevertheless, given that we
provide confidence information along with our models, we
assert that false positives are extremely unlikely. In a fi-
nal step, the user needs to compare the projected with the
expected behavior for each kernel. This has to be done man-
ually because we cannot predict user expectations nor can
we assume that the user has precise expectations for every
kernel we identify. To formulate expectations users may, for
example, rely on the isoefficiency metric [13].

In general, our underlying mathematical framework can ac-
commodate more or simply different independent parame-
ters than just the number of processors p. For example, in
Section 4.2 we show how to obtain highly accurate perfor-
mance predictions when varying the problem size per pro-
cess while keeping p constant. Nevertheless, the emphasis
of this study is on varying p only, while assuming that all
other input parameters either depend on p or remain stable.
Note that violations of this assumption do not preclude the
application of our method, they simply lower the accuracy
with which we identify scalability bugs.

Figure 1 gives an overview of the different steps necessary
to find scalability bugs, whose details we explain further be-
low. To ensure a statistically relevant set of performance
data, profile measurements may have to be repeated several
times—at least on systems subject to jitter. This is done
in the optional statistical quality control step. Once this is
accomplished, we apply regression to obtain a coarse per-
formance model for every possible program region. These
models then undergo an iterative refinement process until
the model quality has reached a saturation point. To ar-
range the program regions in a ranked list, we extrapolate
the performance either to a specific target scale pt or to in-
finity, which means we use the asymptotic behavior as the
basis of our comparison. Finally, if the granularity of our
program regions is not sufficient to arrive at an actionable
recommendation, performance measurements, and thus the
kernels under investigation, can be further refined via more
detailed instrumentation.

2.1 Performance measurements
We generate the parallel profiles needed as input to our tool
using Scalasca [12], which records the execution time plus
various performance counters, including hardware counters
such as the number of floating point instructions and soft-
ware counters such as the number of bytes an MPI function
sends or receives. All metrics are broken down by call path
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Figure 1: Workflow of scalability-bug detection. Solid boxes represent actions or transformations, and banners their inputs
and outputs. Dashed arrows indicate optional paths taken after user decisions.

and process. We define a call path as a program region
plus its calling context such as main→ foo→MPI Send.
Going beyond purely static program regions will allow scal-
ability problems to be pinpointed more precisely. To keep
the code covered by a call path small, performance metrics
are collected with exclusive semantics, that is, for each call
path without including its children. Scalasca’s default in-
strumentation delivers performance data at the granularity
of functions as call-chain elements. However, manual instru-
mentation can be added to distinguish lower-level constructs
such as loops, which may be needed during kernel refine-
ment. In any case, at the default granularity, computational
call paths are already clearly distinguished from communi-
cation, ensuring that communication is modeled separately
from computation. In the next step, we collapse the pro-
cess dimension via maximum reduction, keeping one value
per call path and metric. The target function we want to
model is thus the maximum wall-clock time per call path.
We choose the maximum because it enables us to capture
bottlenecks even if they are confined to a small subset of
the processes. However, the user can also select other re-
duction functions such as the arithmetic or geometric mean
or median that are less sensitive to statistical outliers but
may pose the risk of hiding performance bugs. Of course,
aggregation across all processes assumes bulk synchronous
parallel (BSP) programs. For irregular programs, such as
some graph computations or task-based execution models,
we would have to resort to a hierarchical scheme that only
summarizes subsets of processes with similar behavior. Of
course, this would increase the number of performance mod-
els.

The metrics we collect include both requirements-based met-
rics and time-based metrics. Requirements-based metrics
such as the number of arithmetic operations or the number
of messages sent or received are usually a function of the
execution configuration and therefore more or less determin-
istic. As a welcome side effect, they are largely immune to
system noise [17]. We call them requirements-based because
they reflect the requirements of the program rather than
the resources mustered to satisfy them. Requirements-based
metrics play an important role in our approach because—
supported by their deterministic nature—they can often be
used to determine the function class underlying our perfor-
mance models more easily. Frequently, this function class is
known a priori or a known function can be used as a good
approximation. Time-based metrics, such as the wall-clock
time spent in communication, in contrast, are needed to de-
termine the coefficients of our model functions or the model

functions themselves when they cannot be expressed as a
function of requirements-based metrics. We discuss discrep-
ancies between time-based and requirements-based models
later in Section 2.3. In any case, time-based metrics are in-
dispensable when we want to extrapolate execution times to
a specific pt.

2.2 Statistical quality control
On many systems, performance measurements are subject
to serious run-to-run variation as a consequence of OS jit-
ter, network contention, and other nondeterministic factors.
Although not an intrinsic element of our approach, we antic-
ipate such noise and account for it by calculating confidence
intervals. For this purpose, the user can repeat measure-
ments until the variance stabilizes. Then, our tool performs
a final check to ensure that the deviation is not prohibitive.
An extreme example of such a case would be a system where
the deviation across repeated measurements with the same
input configuration is greater than the difference across dif-
ferent configurations, rendering any subsequent modeling
meaningless.

2.3 Model generation
Model generation forms the core of our method. Below, we
explain the different aspects and their underlying ideas in
more detail.

Arriving at a model hypothesis. When generating per-
formance models, we exploit the observation that they are
usually composed of a finite number n of predefined terms,
involving powers and logarithms of p (or some other param-
eter):

f(p) =

n∑
k=1

ck · pik · logjk2 (p) (1)

This representation is, of course, not exhaustive, but works
in most practical scenarios since it is a consequence of how
most computer algorithms are designed. We call it the per-
formance model normal form (PMNF). Moreover, our expe-
rience suggests that neither the sets I, J ⊂ Q from which
the exponents ik and jk are chosen nor the number of terms
n have to be arbitrarily large or random to achieve a good
fit. Thus, instead of deriving the models through reasoning,
we only need to make reasonable choices for n, I, and J
and then simply try all assignment options one by one. A
possible assignment of all ik and jk in a PMNF expression
is called a model hypothesis. Trying all hypotheses one by
one means that for each of them we find coefficients ck with
optimal fit. Then we apply cross-validation [29] to select



the hypothesis with the best fit across all candidates. Of
course, the computational effort required to calculate our
model depends on n, |I|, and |J |. On the other hand, a
larger number n of constituent terms does not necessarily
imply a better model. To strike a good balance, our mod-
els are generated in an iterative refinement process, which
we outline in Section 2.4. As a default, we select n = 5,
I =

{
0
2
, 1
2
, 2
2
, 3
2
, 4
2
, 5
2
, 6
2

}
, and J = {0, 1, 2}. Given that the

tuples (i, j) ∈ I × J can be ordered by their corresponding
asymptotic behavior, our choices for I and J reflect a range
of behaviors from perfect to poor scalability in 21 steps.
Scalability worse than p3 · log2(p) is not distinguished. If
the behavior of the application is already known to some
degree, the sets I and J can be extended to provide more
detail in a given range. For example, adding more fractional
exponents in the (0,1) interval such as

{
1
4
, 1
3
, 2
3
, 3
4

}
for appli-

cations where the goal is not to find out whether they scale
at all but rather how well they scale can provide additional
insight.

Modeling requirements alongside time. Another key as-
pect of our approach is that we build requirements mod-
els alongside execution-time models and compare them to
each other. In essence, we build empirical requirements
models, which we subsequently try to match with the mea-
sured execution time. As we will explain further below, the
quality of this match can reveal important facts about the
application—regardless of whether the models are in agree-
ment or show discrepancies. Since requirements-based met-
rics are much less prone to jitter than time-based metrics,
they are much more likely to capture the asymptotic be-
havior correctly. This is because requirements models are
closer to algorithmic complexities than empirical models de-
rived exclusively from time-based metrics. In fact, an empir-
ical requirements model alone can provide valuable insights
when compared to developer expectations. The general idea
of a requirements model is to account for all major cost fac-
tors. For computational call paths, these are the different
types of operations such as floating-point operations, loads,
stores, etc. Of course, in empirical models these operations
have to be mapped onto the instruction set and the hardware
counters available on the target system. For communication
call paths, the cost factors are the number and the size of
messages. We measure them using the standardized PMPI
interface, which is portable across all MPI implementations.

We try to choose our metrics such that each cost factor is
counted only once, although a certain degree of overlap can
be tolerated. For the sake of simplicity, we assume that
the total costs within a certain cost category (e.g., floating-
point operations) rise linearly with the corresponding met-
ric. That is, twice as many operations will take twice as
long. Of course, some costs may disappear through latency
hiding, prefetching etc. Nevertheless, we believe that this
inaccuracy matters much less when our primary question
only refers to the behavior at scale. Taken to an extreme,
the asymptotic complexity of the scaling function does not
improve simply because we can execute four floating-point
operations and two loads or stores at once.

To express the execution time of a call path as a function
of its requirements, we distinguish between local and global
operations. Recall that the maximum aggregation across all

processes we perform essentially results in a process-local
metric. For the execution time of local operations, which
cover computation and point-to-point communication, we
therefore assume a linear relationship. This is because all
processes can carry out their local operations in parallel.
For example, the time it takes to send a certain number
of messages m of size s is t = m(c1 + c2 · s). Of course,
the number of messages a process sends may depend on the
input configuration. For global operations, which currently
cover only collectives, we resort to typical known algorithmic
complexities. For example, to model the global broadcast of
a message of size s, we would try t = c1 + c2 · s+ c3 · log(p).
Lacking records of individual message sizes in our profiles,
we rely on averages for s.

Thus, for a given call path, we first model each of the
requirements-based metrics separately, generating a full re-
gression model for each metric. To match those with the
execution time, we add the resulting models to obtain a
model hypothesis for this particular call path. Finally, we
map this hypothesis onto the execution time, determining
new time-aligned coefficients through regression. Now, we
calculate the deviation between the two. If they are in good
agreement, the user can draw conclusions about the primary
factor contributing to the time (e.g., number of messages or
floating-point operations). If not, the user can regard this as
a sign that the execution time does not exclusively depend
on the requirements and may be prolonged by wait states.
An extreme example is serialized code. There, the maxi-
mum execution time across all processes, which forms the
basis of our analysis, may remain constant, while waiting
time dilates the overall execution linearly with p. Another
example is collectives whose execution times are extended by
jitter [17]. A very common source of wait states is load im-
balance, a problem that particularly affects irregular codes.

Determining the fit. To measure the fit we use cross-
validation. This involves dividing the performance data into
training and evaluation sets (i.e., sets of profiles). We use
the training sets to create the model and the evaluation sets
to calculate the fit. This has the advantage of protecting
against overfitting, which may result in a model that tightly
fits the input data points but does not accurately represent
the asymptotic behavior. This problem is often encountered
when fitting a polynomial of an order higher than or equal to
that of the number of available data points. Specifically, we
apply k-fold cross-validation, including the variants of hold-
out and leave-one-out [4, 14, 29, 41]. k-fold cross-validation
divides the input into k sets of equal size. One of the sets is
used for validation and all others for training. The holdout
method divides the data into two sets of equal size (k = 2),
using one as the training and the other as the evaluation set.
The leave-one-out-cross-validation (LOOCV) method uses,
as its name suggests, a single data point (i.e., profile) for val-
idation and all others for training. LOOCV is the slowest
because it requires as many cross-validation passes as there
are data points. On the other hand, it provides good results
for very small numbers of data points (< 10). Holdout is
faster but requires more data points. We implemented the
general algorithm allowing k to have arbitrary values. Our
experiments suggest that the holdout method delivers the
best time-accuracy tradeoff and as such we propose k = 2
as a default, but we provide the option of changing it to suit
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the user’s needs. When creating the sets we assign adjacent
data points to different sets.

2.4 Model refinement
To arrive quickly at a suitable model hypothesis and to pro-
tect against overfitting, we start with a coarse approxima-
tion that we successively refine until we reach the point of
statistical shrinkage [8]. This is the point after which the
model starts to lose predictive power outside the range of
samples. The whole refinement process is summarized in
Figure 2. At the beginning, we allow a maximum of one
term in our hypothesis chosen via cross-validation, as de-
scribed earlier. We then compute the adjusted coefficient
of determination R̄2 [8] of the best model we can find. In
the next iteration, we allow a maximum of two terms in the
hypothesis. We repeat the cross-validation to find the best
model and compute the new adjusted R̄2. If the new value
computed for the adjusted R̄2 is smaller than the previous
one, indicating that adding more terms to the hypothesis
would lead to statistical shrinkage, then the iterative process
stops. Otherwise, we continue adding terms to the model
until we reach either the shrinkage point or a configurable
limit, which may be the maximum time we are prepared to
invest or the maximum number of terms we want to consider.
Since our method avoids counterproductive refinement and
can impose a cap on the iteration depth, we can tackle even
larger multi-parameter modeling problems.

2.5 Performance extrapolation
Once we have reached this point in our workflow, we have a
model describing the scaling behavior of each call path in our
application. Now, we can evaluate the scaling function for a
target scale pt or just look at the asymptotic behavior. We
can either extrapolate execution time or requirements (e.g.,
bytes sent/received or floating point operations). The latter
can also be helpful in finding roofline models [36], which take
resource limitations into account that become effective only

at larger scales, an extension of our method which is already
in progress. Extrapolating requirements is also relevant to
system design because it allows the hardware resources to
be optimally balanced according to an application’s future
needs. Of course, the model we create can only reflect infor-
mation and phenomena present in the data. As such, any
projections will not account for effects that only come into
play outside the scope of the experiment. A simple example
is the speed-up effect achieved when the data of a strong-
scaling application fits completely into the cache. Unless
this occurs within the experimental data the method will
not predict its effect on performance. Regardless of whether
the user chooses a specific target scale pt or is just inter-
ested in the asymptotic behavior, we are now in a position
to rank all call paths by their expected performance impact.
Those at the top of the list are the kernels whose models the
user should compare to his or her expectations and analyze
further if serious discrepancies arise.

2.6 Kernel refinement
Once the kernels relevant at the target scale have been de-
termined, the user may find the granularity of these ker-
nels too coarse and, as a consequence, the resulting per-
formance model too complex to draw meaningful conclu-
sions. This can happen if the default instrumentation of
Scalasca, which is typically applied at the level of functions,
is not fine-grained enough to pinpoint pieces of code that
are small enough for inspection by a human user. In this
case, the instrumentation around the kernels of interest can
be narrowed or the kernels split into multiple pieces to be
modeled separately. At the same time, the instrumenta-
tion around those parts of the program that our analysis
classifies as irrelevant can be lifted to reduce instrumenta-
tion overhead. Then the whole process starts over again:
this time with more targeted measurements that exploit the
knowledge gained in the previous iteration.

2.7 Effort
The required computational effort consists of two
components—running the input experiments and run-
ning the model generator. As long as only one model
parameter is used, as done throughout this study, the
latter takes less than a minute on a single processor and is
therefore negligible. The cost of the input experiments can
be quantified in relation to experiments at the target scale,
which our method helps to avoid. In weak scaling mode,
the compute time of a perfectly scaling code in node hours
is proportional to the number of processors. Assuming
that the number of processors is always a power of two,
running experiments at input scales {20, . . . , 2m} together
is thus less expensive than a single run at pt = 2m+1. If the
code scales poorly or the target scale grows beyond 2m+1,
the amortization factor can increase substantially. Jitter
may require more experiments per input scale, but to be
conclusive experiments at the target scale would have to be
repeated as well.

3. INTEGRATION IN SCALASCA
To make the development of our tool as cost-efficient as
possible, it relies on a standard performance-measurement
infrastructure, only adding the performance analytics de-
scribed in the previous section on top of this. Specifically,



it has been designed as an extension of Scalasca [12], a well-
established open-source toolset that supports the perfor-
mance optimization of parallel programs by measuring and
analyzing their runtime behavior. There, the tool is embed-
ded in the performance algebra framework [32], which is a
data model and format for parallel performance profiles plus
utilities (i.e., so-called operators) for their manipulation.

As input, the tool takes a list of profiles and the target
scale. The output is currently textual and includes analyt-
ical models plus extrapolated execution time and require-
ments metrics for each call path. Details of the modeling
process are specified in a configuration file that defines pa-
rameters such as the number of terms and the exponents to
be used in hypothesis creation and so forth. Defaults geared
towards single-parameter scalability performance modeling
ensure that the tool works out of the box for first-time users
interested in finding scalability bugs. To include other model
parameters besides the number of processes, users would
specify their values for each input run. The number of pro-
cesses itself do not need to be mentioned explicitly as this
information can be extracted from the profile. Of course,
the constituent terms of the hypothesis can be different for
each model parameter. A major goal of this tool is to pro-
vide a powerful “push-button” mechanism that works with-
out assuming prior experience in the field of performance
modeling, while providing all relevant levers for control and
steering of the process to advanced users who wish to cus-
tomize it.

4. EVALUATION
We illustrate the capabilities of our tool using three MPI
applications. Specifically, we demonstrate that our tool

• identifies a scalability issue in a code that is known to
have one,

• does not identify a scalability issue in a code that is
known to have none, and

• identifies two scalability issues in a code that was
thought to have only one.

In the first two cases, we find the models we generate au-
tomatically to be in good agreement with manually cre-
ated models previously reported in the literature. In the
third case, we are not aware of any pre-existing performance
model. In the second case, we further show that we can pro-
duce accurate models for model parameters other than the
number of processes.

We performed our experiments on the IBM BlueGene/Q sys-
tem Juqueen and the Sun cluster Juropa at the Jülich Super-
computing Centre. Juqueen is a large leadership supercom-
puter with almost 500,000 cores, ranked 7th in the TOP500
list as of June 2013. Each node features one PowerPC A2
processor with 16 cores running at 1.6 GHz. Juropa is a com-
pute cluster composed of 2,208 nodes, each equipped with
two Intel Xeon X5570 (Nehalem-EP) quad-core processors
running at 2.93 GHz. Unless otherwise stated, we always
used the default settings for n, I, J specified in Section 2.3.
We ran the model generator on several desktop systems and
front-end nodes, where model generation for a single but full
code never exceeded one minute.
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Figure 3: Measured vs. predicted execution time of the
two receive operations involved in the wavefront process of
Sweep3D on Juqueen.

4.1 SWEEP3D
In this example, we show how our tool helps identify and
explain a scalability problem, providing a first impression
of the user experience. The Sweep3D benchmark [23] is a
compact application that solves a 1-group time-independent
discrete ordinates neutron transport problem. It was ex-
tracted from a real ASCI code. The program calculates the
flux of neutrons through a three-dimensional grid along sev-
eral angles of travel. To partition the problem, the code
maps the three-dimensional domain onto a two-dimensional
grid of processes. Parallelism is achieved through a pipelined
wavefront process that propagates data along diagonal lines
through the grid. The particular angle being processed at
a given moment determines the direction of the wavefront,
which can originate from any of the four grid corners. The
pipeline organization enables multiple wavefronts to follow
each other along the same direction, although the inability of
a process to satisfy horizontal and vertical neighbors at the
same time introduces propagating delays. Parallel efficiency
drops further whenever the pipeline has to be refilled after
the direction has changed. In both cases, the consequences
are wait states that materialize in receive operations.

The literature mentions accurate models [19, 35] that de-
scribe the performance behavior of wavefront processes as
they occur in Sweep3D on various architectures. The LogGP
model reported in [19] characterizes the communication time
as follows:

tcomm = [2(px + py − 2) + 4(nsweep − 1)] · tmsg (2)

px and py denote the lengths of the process-grid edges,
nsweep the number of wavefronts to be computed, and tmsg

the time needed for a one-way nearest-neighbor communi-
cation. Given that both nsweep and tmsg are largely inde-
pendent of the number of processes p and that in our exper-
iments px = py and p = px · py, we can rewrite Equation (2)
as:

tcomm = c · √p (3)

The (combined) model generated by our tool for the two



Table 1: The most time-consuming Sweep3D kernels (i.e., call paths) ranked by their predicted execution time at the target
scale pt = 262, 144 processes. The values and models reflect exclusive execution times without callees. The predictive error
applies only to pt. On the left we used training data with up to 2,048 processes (pt = 128 · pmax), on the right with up to
8,192 processes (pt = 32 · pmax).

Kernel
Runtime [%] Increase P1 (pi ≤ 2, 048) P2 (pi ≤ 8, 192)

pt = 262k
t(p = 262k) Model [s] Predictive Model [s] Predictive

t(p = 64) t = f(p) error [%] t = f(p) error [%]
sweep → MPI_Recv 65.35 16.54 3.99 · √p 6.16 4.03 · √p 5.10
sweep 20.87 0.23 582.19 0.01 582.19 0.01
global_int_sum → MPI_Allreduce 12.89 18.68 0.94

√
p + 0.04

√
p log p 23.00 1.06

√
p + 0.03

√
p log p 13.60

sweep → MPI_Send 0.40 0.23 11.66 29.00 11.49 + 0.09
√
p log p 15.40

source 0.25 0.04 6.86 + 9.68 · 10−5 log p 0.01 6.86 + 9.13 · 10−5 log p 0.01

receive operations involved in the wavefront process (sweep
→ MPI Recv) is 3.99 · √p and, thus, consistent with Equa-
tion (3). As Figure 3 illustrates, it also matches our mea-
surements on Juqueen quite accurately. The two receive
operations are modeled together because Scalasca’s default
instrumentation merges them into one call path. Note that
we do not need large application runs to accurately deter-
mine the model. The figure presents results based on only
six training and evaluation data points with the process
counts P1 =

{
26, 27, 28, 29, 210, 211

}
and we extrapolate up

to 262k processes. The difference between prediction and
measurement never exceeds 7%. Using more training and
evaluation data points by adding measurements such that
P2 = P1 ∪

{
212, 213

}
, the model becomes even more precise.

That the requirements models for both the number of bytes
and the number of messages received predict constant val-
ues independent of the number of processes suggests that
any increase in communication time is caused by wait states.
Because the wavefront travels along the diagonal of the pro-
cess grid, waiting times proportional to the square root of
the number of processes can actually be expected. Having
waiting time grow with

√
p means that every quadrupling of

p will double its amount, which can hardly be classified as
scalable.

Table 1 lists the five kernels that would consume most of the
time at the target scale pt = 262, 144 processes, ranked by
their predicted execution time. To underline that indeed the
right kernels appear at the top, we show their measured exe-
cution time in terms of both their relative contribution at pt
and the increase factor of their execution time in comparison
to p = 64. The latter offers some intuition on how seriously
the performance is affected. Together, all five kernels ac-
count for more than 99% of the overall runtime. Although
our predictions based on training data with up to 8k pro-
cesses are closer to measured values, even predictions based
on training data with up to 2k still show the same gen-
eral trend. In particular, the ranking remains unchanged.
Note that adding more data points does not change the
model hypothesis for four of the five kernels, only their coef-
ficients vary slightly to reflect the increased precision allowed
by the additional training points. The changing model for
sweep → MPI Send reflects that the new training points
manifest a new effect which was previously impossible to see
at smaller scales. In this specific case, the runs at 2k pro-
cesses and beyond allow the latency effect of communication
leaving the node board to be observed.

Because the amount of waiting time in Sweep3D, which is
responsible for the bulk of the time spent in MPI at larger
scales, depends on the progress of the wavefront computa-
tion, earlier studies [19, 35] concluded that single-node per-
formance is the most serious impediment to the scalability
of Sweep3D—and not, for example, the saturation of net-
work resources. To see whether we arrive at the same con-
clusion using our automated approach, we also conducted
experiments on Juropa, whose cores are much more power-
ful than Juqueen’s. Results for the two platforms obtained
with training data from runs with up to 2,048 processes are
again consistent with manually developed models. While
the sweep() routine, where the wavefront computation takes
place, is about eight times faster on Juropa, the receive in-
side, where the wait states accumulate, is eight times slower
on Juqueen. Otherwise, the models we generate for the two
kernels on Juqueen and Juropa are identical.

On a final note, this relationship sheds light also on a perfor-
mance phenomenon observed in a more recent experimental
study of Sweep3D [38], which analyzes the consequences of
load imbalance between a central rectangular region and the
rest of the process grid, which is caused by a corrective func-
tion invoked only during certain iterations. Since overload
has effects similar to processors with lower speed, it is likely
to enlarge only the coefficient of the

√
p term in the model of

the dominant receives and, thus, to have only little bearing
on the general scalability. Applying our tool to the affected
iterations only, we found this coefficient to be enlarged by
20% but otherwise observed the same scaling behavior.

4.2 MILC
In this case study, we show that our tool characterizes also a
scalable application correctly. In addition, we show how our
tool derives time and requirements models for model param-
eters beyond the number of processes. MILC is a set of codes
written in C for studying quantum chromodynamics (QCD)

Table 2: Automatically generated models of selected func-
tions in MILC when varying the number of processes. The
prediction errors were computed with resepct to a target
scale of 65,536 processes.

Kernel
Model [s] |1− R2| Predictive
t = f(p) error [%]

CGSF 0.024 0.000 0.43

MPI_Allreduce 6.30 · 10−6 · log2 p 0.084 12.77
MASFL 0.004 0.000 0.04



Table 3: Automatically generated models of selected functions in MILC when varying the number of grid points per process.
For the underlying experiments, we used the following parameters: meas=5, warms=0, trajecs=1, traj_between_meas=1,
steps_per_trajectory=10.

Kernel

Flops Invocations Flops/invocation

Model |1− R2| Model |1− R2| Model |1− R2|

flops = f(V ) [·10−3] invocations = f(V ) [·10−3] flops
invoc. = f(V ) [·10−3]

load_lnglinks 5.64 · 104 · V 0.030 2.31 · 103 0.000 24.42 · V 0.030
load_fatlinks_cpu 1.95 · 106 · V 0.210 7.14 · 104 0.000 27.36 · V 0.210

ks_congrad 1.16 · 108 + 3.24 · 105 · V
5
4 0.292 5.11 · 104 + 1.38 · 104 · V

1
4 4.000 15.94 · V 0.143

imp_gauge_force_cpu 1.65 · 106 · V 0.015 7.40 · 104 0.000 22.28 · V 0.015
eo_fermion_force_twoterms_site 4.02 · 106 · V 0.002 1.27 · 105 0.000 31.61 · V 0.002

via parallel simulations of the SU(3) lattice gauge theory on
a four-dimensional lattice. In earlier work [16], analytical
models were manually created that describe the behavior of
MILC/su3 rmd, one of the MILC codes, by characterizing
its most important components with respect to a number
of parameters. We now show that our modeling tool chain
allows similar models to be derived automatically.

We first consider weak scaling runs on Juqueen, increasing
the number of processes linearly with the problem size. The
existing models suggest that MILC is highly scalable code,
that is, the time per process should remain constant ex-
cept for a rather small logarithmic term caused by global
convergence checks. As we show below, our method cor-
rectly determines the most important features of this model.
Specifically, we demonstrate the tool’s ability to derive scal-
ability models for the execution time of three representa-
tive kernels: compute gen staple field, g vecdoublesum→
MPI Allreduce, and mult adj su3 fieldlink lathwvec,
which we abbreviate as CGSF, MPI Allreduce, and MASFL,
respectively. Given that MILC is known to scale
well, we refined the default setting for I by adding{

1
4
, 1
3
, 2
3
, 3
4

}
, as suggested in Section 2.3. We collected

five data points for each function at the scales P3 ={
27, 28, 29, 210, 211, 212, 213, 214, 215, 216

}
with a local lattice

size of V = 94 per process. All model functions generated
for Juqueen are shown in Table 2. We use the residual sum
of squares, a quality-of-fit metric, as an indicator for the
quality (and thus confidence) of our model. For a fit of n
variables with measurement values yi and fitted hypothesis
model f(xi) (1 ≤ i < n), RSS =

∑n
i=1(yi − f(xi))

2. We

calculate the coefficient of determination R2 = 1 − RSS
TSS

as

a measure of fit, where TSS =
∑n

i=1(yi − ȳ)2. If R2 = 1,
the model fits the data exactly. For ease of understanding,
we show |1 − R2|, the absolute difference between R2 and
the optimum, which can be considered a normalized error,
in the table.

Beyond scalability in terms of the number of processes, we
also derive requirements models for the size and number of
MPI point-to-point messages as a function of grid points
per process. This demonstrates the ability of our tool to
generate models for different input parameters—in this
example to predict the effects of different process-local
grid sizes. For four different performance-critical kernels,
the handcrafted model characterizes the message size as
18s

4
√
V 3 bytes, with s being the size of a floating-point

value in bytes and V being the number of grid points

per process. Our input measurements, which we took on
Juropa with its more generous memory per node, were made
with a fixed number of processes p = 32, single precision
(s = 4 bytes), and a varying number of grid points V =
{81, 256, 400, 625, 900, 1080, 1296, 1512, 1764, 2058, 2401}.
Since there is no performance variation in these require-
ments measurements, the quality of the automated fit
(and thus the confidence) is high, resulting in a model
that matches the handcrafted counterpart exactly. Our
method also found the number of messages in each kernel
to be invariant regardless of the lattice size, which further
matches the models in [16]. Another metric analyzed was
the number of floating-point operations in each invocation
of the time-intensive kernels as a function of the number
of grid points per process. The results in Table 3 show
that the number of floating-point operations per kernel
invocation is proportional to the number of grid points
(rightmost column), which is again consistent with [16].
All kernels but the conjugate-gradient kernel (ks_congrad)
have a constant number of invocations, whereas the number
of times the conjugate-gradient kernel is invoked depends
for this particular input matrix on the number of grid
points (middle column).

In summary, our method was able to reproduce the most sig-
nificant parts of the models that were manually created to
describe the behavior of MILC as a function of the number
of processes or the local volume. The requirement models
for the number of messages, their sizes, and the number of
floating-point operations per lattice point can be very useful
for architecture co-design. We did not show additional mod-
els for cache misses and other metrics because they follow
the same principle. Our results demonstrate that automa-
tion can lead to good performance models with low manual
effort.

4.3 HOMME
To showcase how our tool helps to find hidden scalability
bugs in a production code for which no performance model
was available, we applied it to HOMME [11], the dynamical
core of the Community Atmospheric Model (CAM) being
developed at the National Center for Atmospheric Research
(NCAR). HOMME, which was designed with scalability in
mind, employs spectral element and discontinuous Galerkin
methods on a cubed sphere tiled with quadrilateral elements.
While experiences in the past did not indicate any scalability
issues with up to 100,000 processes, HOMME was never sub-
jected to a systematic scalability study. All the results we



Table 4: Models of the kernels of HOMME derived from smaller and larger-scale input configurations. The predictive error
refers to the target scale of pt = 130k.

Kernel
P4(pi ≤ 15, 000) P5(pi ≤ 43, 350)

Model [s] Predictive Model [s] Predictive
t = f(p) error [%] t = f(p) error [%]

box_rearrange → MPI_Reduce 0.026 + 2.53 · 10−6 · p√p + 1.24 · 10−12 · p3 57.02 3.63 · 10−6 · p√p + 7.21 · 10−13 · p3 30.34

vlaplace_sphere_wk 49.53 99.32 24.44 + 2.26 · 10−7 · p2 4.28

laplace_sphere_wk 44.08 99.32 21.84 + 1.96 · 10−7 · p2 2.34

biharmonic_wk 34.40 99.33 17.92 + 1.57 · 10−7 · p2 3.43

divergence_sphere_wk 16.88 99.31 8.02 + 7.56 · 10−8 · p2 4.25

vorticity_sphere 9.74 99.55 6.51 + 7.09 · 10−8 · p2 8.66

divergence_sphere 15.36 99.33 7.74 + 6.91 · 10−8 · p2 0.95

gradient_sphere 14.77 99.33 6.33 + 6.88 · 10−8 · p2 5.17

advance_hypervis 9.76 99.25 5.5 + 3.91 · 10−8 · p2 1.47
compute_and_apply_rhs 48.68 1.65 49.09 0.83
euler_step 28.08 0.51 28.13 0.33

present here for this code reflect measurements on Juqueen
based on an input configuration suggested by the application
developer team.

Table 4 lists different kernels of the code, ordered by
their asymptotic runtime (pt → ∞). It shows the mod-
els produced for two different sets of input configurations.
The first one includes data points at the scales P4 =
{600, 1176, 4056, 7776, 13824, 14406, 15000}, the second one
P5 = P4 ∪ {15606, 16224, 23814, 31974, 43350} adds more
measurements to the initial set. The order in the table is
based on models determined using P5. The models derived
from P4 show constant runtimes for all kernels except for the
reduce in box rearrange, which grows with p3. Deriving the
models from the larger set introduces a dependence on p2

(with a small factor) for all but one of the hitherto constant
kernels. Obviously, the enlarged set reveals a phenomenon
not visible in the smaller set. If the number of processes is
large enough, both the quadratic and the cubic terms will
turn into serious bottlenecks, contradicting our initial ex-
pectation the code would scale well. The table also shows
the predictive error, which characterizes the deviation of the
prediction from measurement at the taget scale pt = 130k,
highlighting the benefits of including the extra data points.

After looking at the number of times any of the quadratic
kernels was invoked at runtime, a metric we also measure
and model, the quadratic growth was found to be the conse-
quence of an increasing number of iterations inside a particu-
lar subroutine. Interestingly, the formula by which the num-
ber of iterations is computed contained a ceiling term that
limits the number of iterations to one for up to and includ-
ing 15k processes. Beyond this threshold, a term depend-
ing quadratically on the process count causes the number
of iterations executed to grow rapidly, causing a significant
drop in performance. It turned out that the developers were
aware of this issue and had already developed a temporary
solution, involving manual adjustments of their production
code configurations. Specifically, they fix the number of it-
erations and carefully tune other configuration parameters
to ensure numerical stability. Nevertheless, the issue was
correctly detected by our tool. Given the tuning necessary
to ensure numerical stability, a weak scaling analysis of the
workaround is beyond the scope of this paper.

In contrast to the previous problem, the cubic growth of the
time spent in the reduce function was previously unknown.
The reduction is needed to funnel data to dedicated I/O pro-
cesses. The coefficient of the dominant term at scale is very
small (i.e., in the order of 10−13). While not being visible
at smaller scales, it will have an explosive effect on perfor-
mance at larger scales, becoming significant even if executed
just once. The reason why this phenomenon remained un-
noticed until today is that it belongs to the initialization
phase of the code that was not assumed to be performance
relevant in larger production runs. While still not yet crip-
pling in terms of the overall runtime, which is in the order of
days for production runs, the issue already cost more than
one hour in the large-scale experiments we conducted. The
problem was reported to the developers at NCAR, who are
currently working on a solution. The example demonstrates
the advantage of modeling the entire application instead of
only selected candidate kernels expected to be time inten-
sive. Some problems might simply escape attention because
non-linear relationships make our intuition less reliable at
larger scales. Note that coefficients such as 10−13 are small
in view of the typical run-to-run deviation, but have to be
seen in relation to the associated polynomial expression p3,
which became larger than 1012 in our input experiments.
Given that the target scale is usually one or more orders
of magnitude greater than the largest input scale, fully ac-
curate coefficients are therefore secondary when trying to
locate scalability bottlenecks with higher exponents of p.
Moreover, within the scope of our approach the coefficients
of scalable model functions with lower exponents of p are of
minor interest anyway.

Figure 4 summarizes our two findings and compares our pre-
dictions with actual measurements. While the quadratically
growing iteration count seems to be more urgent now, the
reduce might become the more serious issue in the future.

5. RELATED WORK
Analytical performance modeling techniques have been used
to model the performance of numerous important applica-
tions manually [21,25]. It is well understood that analytical
models have the potential of providing important insights
into complex behaviors [30]. Performance models also offer
insight into different parts of the system. For example, Boyd
et al. used performance models to assess the quality of a tool



chain, such as a compiler or runtime system [6]. A very im-
portant motivation for the use of performance models was
presented by Petrini et al. [28]. In their study, the difference
between actual and predicted performance led to the discov-
ery of system noise as the source of seriously degraded per-
formance. In general, there is consensus that performance
modeling is a powerful tool for assessing an application’s
resource consumption and scalability.

Hoefler et al. aimed to further popularize performance mod-
eling by defining a simple six-step process to create applica-
tion performance models [16]. The described method leads
to insight into application scaling behavior but is tedious
to apply to real codes and has not yet been explicitly used
to predict the scaling behavior of applications. Bauer, Got-
tlieb, and Hoefler show how to model performance variations
in this framework using simple statistical tools [3]. They
also describe how to measure the influence of certain system
parameters such as the network topology.

Other approaches focus less on human-readable general-
purpose models but rather on models generated for a very
specific purpose. For example, Ipek et al. propose multi-
layer artificial neural networks to learn application perfor-
mance [20] and Lee et al. compare a set of different schemes
for automated machine-based performance learning and pre-
diction [22]. Zhai, Chen, and Zheng extrapolate single-node
performance to complex parallel machines [40]. Wu and
Müller [37] extrapolate traces to larger process counts and
can thus predict communication operations. Their extrapo-
lation relies on a trace compression scheme that assumes reg-
ular communications. Our method is based on lightweight
profiles which can be generated without making prior as-
sumptions. All these schemes aim to deliver the most accu-
rate prediction but do not try to find the simplest human-
readable scaling function, thus limiting insight.

A second objective of performance modeling is to predict
application performance on a different target architecture.
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Figure 4: Runtime of selected kernels in HOMME as a func-
tion of the number of processes. The graph compares predic-
tions (dashed or contiguous lines) to measurements (small
triangles, squares, and circles).

Carrington et al. propose a model-based prediction frame-
work for applications on different computers [7], Marin and
Mellor-Crummey demonstrate how application models can
be derived semi-automatically to predict performance on dif-
ferent architectures [24], and Yang, Ma, and Müller model
application performance on different architectures by run-
ning kernels on the target architecture [39].

A related line of work uses simulation to predict applica-
tion performance on different systems. Simulators range
from cycle accurate [5, 31] to abstract model-driven mes-
sage passing simulation [18]. Trace-driven simulators such
as SimGrid [9], DIMEMAS [33], and PSINS [34] simulate
more detailed network models. Other simulators, such as
BigSim [42], Silas [15], and MPI-SIM [1], use direct or ker-
nel execution to assess computation or communication times
more accurately. However, direct execution approaches of-
ten have prohibitive memory requirements [26]. As opposed
to our semi-analytic modeling method, simulations require
huge resources for their execution and deliver little insight
into scaling behavior on their own. However, they could
be integrated into our method as a way to generate larger
output predictions.

The PACE toolset [27] provides performance modeling fea-
tures but the techniques are not described in detail and the
tool was not available to us. We argue that our approach is
much simpler to implement in a tool. Coarfa et al. automat-
ically compare pairs of measurements at different scales to
identify scalability bottlenecks [10], whereas our approach
creates explicit predictive models that describe the scaling
behavior beyond the range of measurements. Barnes et al.
use regression analysis to predict the scalability of applica-
tions [2] and is probably the most similar work. The main
differences are that they aim to predict the optimal num-
ber of CPUs to solve a certain problem while we are most
interested in predicting the CPU time consumed for a spe-
cific run. For this, their tool considers strong scaling of the
whole application while we focus on identifying non-scalable
functions in the code. In addition, Barnes et al. assume a
load-balanced application for their run while we are able to
detect the scalability limitations caused by load imbalance.

6. CONCLUSION
Our results confirm that automated performance modeling
is feasible and that the automatically generated models are
accurate enough to identify scalability bugs. In fact, in those
cases where hand-crafted models existed in the literature we
found our models to be competitive. The main lesson that
we learned during our work is that the advantages of mass
production also apply to performance models. First, approx-
imate models are acceptable as long as the effort to create
them is low and they do not mislead the user. Second, code
coverage is as important as model accuracy. Having approxi-
mate models for all parts of the code can be more useful than
having a model with 100% accuracy for just a tiny portion
of the code or no model at all. Extending this argument be-
yond the boundaries of a single application, we believe that
our tool will make scalability modeling accessible to a much
wider audience of HPC developers and applications.

Our tool models only behaviors found in the training data.
We provide direct feedback information regarding the num-



ber of runs required to ensure statistical significance of the
modeling process itself, but there is no automatic way of
determining at what scale particular behaviors start mani-
festing themselves. In the HOMME example, the iteration
count suddenly increased after 15k processes, which was only
detectable through either code analysis or experiments. We
expect that our method will be most effective for regular
problems with repetitive behavior, whereas irregular prob-
lems with strong and potentially non-deterministic dynamic
effects will require enhancements of our method.

The models we generate are primarily designed to allow
projection for scaled-up versions of the current system.
However, the requirements models we create alongside the
execution-time models are largely independent of a specific
hardware architecture. If combined with measured or as-
sumed hardware characteristics, they can be used to make
projections for other existing systems and can suggest how
a system must be designed to maximize the performance of
a given code.

In the future, we plan to use our tool to study the influence
and value of additional hardware information such as cache
size, network bandwidth and latency. Incorporating such ad-
ditional constraints into the modeling process may improve
precision and help in combination with requirements models
to accurately predict jumps and plateaus caused by the satu-
ration of such resources, allowing the formulation of roofline
models. We are also looking into heuristics for traversing
the hypothesis search space more efficiently, which would
improve the modeling speed further and allow the number
of model parameters to be increased.
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