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“We live in a system 
of approximations” —
Ralph Waldo Emerson
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we conducted a detailed analysis of 

graph processing on FPGAs
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[1] S. Salihoglu and J. Widom, 
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Pregel-like systems”. VLDB. 2014.

“(...) implementing graph 
algorithms efficiently on 
Pregel-like systems (...) 
can be surprisingly 
difficult and require 
careful optimizations.” [1]

+ other issues

What programming 
paradigm and why?

To be able to utilize pipelining 
well, we really want to use 

streaming (aka edge-centric)
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“pass”. Repeat it a certain (algorithm-

dependent) number of times

…How to minimize the number of “passes” over edges? This can get 
really bad in the “traditional” edge-centric approach (e.g., BFS needs 

D passes; D = diameter [1]).

What programming 
paradigm and why?

[1] A. Roy et al. X-stream: Edge-Centric Graph Processing using Streaming Partitions. SOSP. 2013.

DRAM

Some processing unit 
(CPU, GPU, FPGA, …, for 

a moment we don’t care)

…Processing edges 
is sequential – how 

to incorporate 
parallelism?
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independently

Merge 
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What programming 
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DRAM

…Processing edges 
is sequential – how 

to incorporate 
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Weighted 
edgesHow to express MWM in this 

paradigm?
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TYPES OF MACHINES
CPU: Intel Broadwell

Xeon E5-2680 v4 @3.3 GHz
14 Cores (28 Threads)

Altera Arria 10 @200MHz
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Synthetic graphs

Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.
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Real-world graphs (SNAP [2], KONECT [3], DIMACS [4])

Synthetic graphs

Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

[2] SNAP. https://snap.stanford.edu

https://snap.stanford.edu/
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TYPES OF GRAPHS
Real-world graphs (SNAP [2], KONECT [3], DIMACS [4])

Synthetic graphs

Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

[2] SNAP. https://snap.stanford.edu

Road networks

Communication graphs

Social networks

Purchase networks Citation graphs

Web graphs

[3] KONECT. https://konect.cc
[4] DIMACS Challenge

https://snap.stanford.edu/
https://konect.cc/
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[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

[2] M. Ghaffari. Space-optimal semi-streaming for(2+ε)-approximatematching. arXiv:1701.03730, 2017.
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ALGORITHMS

Our FPGA design, 
(4+ε)-approximation

CPU implementations of the 
original Crouch scheme,

(4+ε)-approximation

We test both CPU and 
hybrid (FPGA+CPU) 

platforms

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

[2] M. Ghaffari. Space-optimal semi-streaming for(2+ε)-approximatematching. arXiv:1701.03730, 2017.

State-of-the-art MWM 
algorithm, space-optimal, 

time-optimal (O(m)), 
(2+ε)-approximation
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PERFORMANCE ANALYSIS

VARIOUS GRAPHS

Parameters:
Blocking size (K) = 32, 
#Substreams (L) = 64
#Threads = 4, ε = 0.1

Hybrid Hybrid

CPU

CPU

Even > 4x over 
parallel CPU 
baselines!
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SC-OPT (Hybrid) is ~8x 
more power-efficient 

than the CPU 
implementation 

PERFORMANCE ANALYSIS

ENERGY CONSUMPTION, RESOURCE UTILIZATION

Blocking needs 
more resources 
(but is tunable!)

Parameters:
L: #Substreams (pipelines),
K: Blocking size,
T: #CPU threads
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grows linearly 
with L

PERFORMANCE ANALYSIS

DESIGN SPACE EXPLORATION BRAM signal 
propagation limits 

the frequency

B – BRAM size allocated for matching data structures,
L – number of substreams (pipelines)
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Work in progress on the 
distributed setting 
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SUBSTREAM-CENTRIC GRAPH PROCESSING

PARADIGM, EXPOSES PARALLELISM, ENABLES

EASY PIPELINING, SUPPORTS APPROXIMATION

DETAILED DOMAIN ANALYSIS,
IDENTIFICATION OF SEMI-STREAMING

MODEL AS FPGA BEST-FIT, 2 SURVEYS

GENERIC FPGA DESIGN, 
CODE AVAILABLE

THEORY-INSPIRED MWM 
APPROXIMATE ALGORITHM

ON A HYBRID CPU-FPGA SETTING

GENERALIZABILITY TO OTHER

GRAPH PROBLEMS AND SETTINGS

Thank you 
for your attention

Website & code: http://spcl.inf.ethz.ch/Research/Parallel_Programming/Substream_Centric
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[1] A. Roy et al. X-stream: Edge-Centric Graph 
Processing using Streaming Partitions. ACM 
Symposium on Operating Syst. 2013.
[2] S. Zhou et al. High-throughput and Energy-
efficient Graph Processing on FPGA. FCCM. 2016.
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[1] A. Roy et al. X-stream: Edge-Centric Graph 
Processing using Streaming Partitions. ACM 
Symposium on Operating Syst. 2013.
[2] S. Zhou et al. High-throughput and Energy-
efficient Graph Processing on FPGA. FCCM. 2016.

Large graphs…

Problems?

Low power 
efficiency!

250 
Watts

Graph
Problem

CPU (MTEPS/Watt) [1] FPGA (MTEPS/Watt) [2]

SSSP 1.9 30.2

CC 0.5 48.1

MST 0.6 44.3

120 
Watts

Let’s use FPGAs for 
Maximum Matchings...
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Large graphs…

Why do we care?

Social networks

Engineering networksUseful model

Biological networks
Physics, chemistry 

Communication networks

...even philosophy

Machine learning

Collaborator experience?

Disease spread 
channels?

Terrorism 
prevention?

Most relevant 
protein?

Gene alignment?

Brain 
structure?

Best phone 
connection?

Least expensive 
computer network?

Shortest 
network path?

Most efficient 
road network?

Most reliable grid 
network?
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“Optimizing graph algorithms on 
Pregel-like systems”. VLDB. 2014.

“(...) implementing graph algorithms 
efficiently on Pregel-like systems (...) can 
be surprisingly difficult and require careful 
optimizations.” [1]

What programming 
paradigm and why?

Vertex-Centric (aka Pregel-
like) approach is complex for 
problems such as matchings, 

spanning trees, etc.

To be able to utilize pipelining 
well, we really want to use 

streaming (aka the edge-centric 
paradigm)
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Processing edges is 
sequential – how to 

incorporate parallelism?

DRAM

Some processing unit 
(CPU, GPU, FPGA, …)

How to minimize the number of “passes” 
over edges? (This can get really bad in 

the “traditional” edge-centric approach, 
e.g., BFS normally needs O(m+n) work, 
while in the edge-centric approach it 

takes O(D m) work (D passes [1]), 

How to implement 
efficiently on an FPGA?

What programming 
paradigm and why?

[1] A. Roy et al. X-stream: Edge-Centric Graph Processing using Streaming Partitions. SOSP. 2013.

m: #edges in a graph
n: #vertices in a graph
D: graph’s diameter

(usually ~5-15)
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Covers a general streaming 
setting (= works for 
substream-centric)

Offers (potentially 
powerful) MWM 

algorithms

Assumes O(n logc n) local space that 
can be used for processing an edge 

fits well FPGA BRAM constraints!

Why semi-streaming, and 
what does it mean?

[1] J. Feigenbaum et al. On graph problems in a semi-streaming model. Theoretical CS, 2005
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