
spcl.inf.ethz.ch

@spcl_eth

MACIEJ BESTA, MARC FISCHER, TAL BEN-NUN, JOHANNES DE FINE LICHT, TORSTEN HOEFLER

Substream-Centric Maximum Matchings on FPGA



spcl.inf.ethz.ch

@spcl_eth

Large graphs…



spcl.inf.ethz.ch

@spcl_eth

Large graphs…



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Why do we care?



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Why do we care?

Useful model



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Why do we care?

Social networks

Useful model



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Why do we care?

Social networks

Engineering networksUseful model



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Why do we care?

Social networks

Engineering networksUseful model

Biological networks



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Why do we care?

Social networks

Engineering networksUseful model

Biological networks
Physics, chemistry 



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Why do we care?

Social networks

Engineering networksUseful model

Biological networks
Physics, chemistry 

Communication networks



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Why do we care?

Social networks

Engineering networksUseful model

Biological networks
Physics, chemistry 

Communication networks

Machine learning



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Why do we care?

Social networks

Engineering networksUseful model

Biological networks
Physics, chemistry 

Communication networks

...even philosophy

Machine learning



spcl.inf.ethz.ch

@spcl_eth

Large graphs…



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex

Maximum Weighted Matching (MWM): A matching 
such that the sum of the edge weights is maximized



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex

Maximum Weighted Matching (MWM): A matching 
such that the sum of the edge weights is maximized



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex

Maximum Weighted Matching (MWM): A matching 
such that the sum of the edge weights is maximized

10

10

10
5

5

5

10

10

10
5

5

5



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex

Maximum Weighted Matching (MWM): A matching 
such that the sum of the edge weights is maximized

10

10

10
5

5

5

10

10

10
5

5

5

Weight = 30



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex

Maximum Weighted Matching (MWM): A matching 
such that the sum of the edge weights is maximized

10

10

10
5

5

5

10

10

10
5

5

5

Weight = 30 Weight = 15



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex

Maximum Weighted Matching (MWM): A matching 
such that the sum of the edge weights is maximized

10

10

10
5

5

5

10

10

10
5

5

5

Weight = 30 Weight = 15



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex

Maximum Weighted Matching (MWM): A matching 
such that the sum of the edge weights is maximized

10

10

10
5

5

5

10

10

10
5

5

5

Weight = 30 Weight = 15



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex

Maximum Weighted Matching (MWM): A matching 
such that the sum of the edge weights is maximized

10

10

10
5

5

5

10

10

10
5

5

5

Weight = 30 Weight = 15



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex

Maximum Weighted Matching (MWM): A matching 
such that the sum of the edge weights is maximized

10

10

10
5

5

5

10

10

10
5

5

5

Weight = 30 Weight = 15



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex

Maximum Weighted Matching (MWM): A matching 
such that the sum of the edge weights is maximized

10

10

10
5

5

5

10

10

10
5

5

5

Weight = 30 Weight = 15

Why do we care?



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex

Maximum Weighted Matching (MWM): A matching 
such that the sum of the edge weights is maximized

10

10

10
5

5

5

10

10

10
5

5

5

Weight = 30 Weight = 15

Why do we care?

Scheduling



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex

Maximum Weighted Matching (MWM): A matching 
such that the sum of the edge weights is maximized

10

10

10
5

5

5

10

10

10
5

5

5

Weight = 30 Weight = 15

Why do we care?

Scheduling

[Quantum] error 
correcting codes



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex

Maximum Weighted Matching (MWM): A matching 
such that the sum of the edge weights is maximized

10

10

10
5

5

5

10

10

10
5

5

5

Weight = 30 Weight = 15

Why do we care?

Scheduling

Transplant matching

[Quantum] error 
correcting codes



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex

Maximum Weighted Matching (MWM): A matching 
such that the sum of the edge weights is maximized

10

10

10
5

5

5

10

10

10
5

5

5

Weight = 30 Weight = 15

Why do we care?

Scheduling

Transplant matching

Traveling 
Salesman 
Problem

[Quantum] error 
correcting codes



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex

Maximum Weighted Matching (MWM): A matching 
such that the sum of the edge weights is maximized

10

10

10
5

5

5

10

10

10
5

5

5

Weight = 30 Weight = 15

Why do we care?

Scheduling

Transplant matching

Traveling 
Salesman 
Problem

Many, many 
others...

[Quantum] error 
correcting codes



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

One particularly 
important problem

Matching: A set of edges such that no 
two edges share a common vertex

Maximum Weighted Matching (MWM): A matching 
such that the sum of the edge weights is maximized

10

10

10
5

5

5

10

10

10
5

5

5

Weight = 30 Weight = 15

Why do we care?

Scheduling

Transplant matching

Traveling 
Salesman 
Problem

Many, many 
others...

[Quantum] error 
correcting codes

“We live in a system 
of approximations” —
Ralph Waldo Emerson



spcl.inf.ethz.ch

@spcl_eth

Research Questions



spcl.inf.ethz.ch

@spcl_eth

Research Questions

Which programming paradigm 
to use for (approximate) MWM

(and other graph problems)?



spcl.inf.ethz.ch

@spcl_eth

Research Questions

Which programming paradigm 
to use for (approximate) MWM

(and other graph problems)?

How to design a high-
performance MWM 

algorithm (as dictated 
by the used paradigm)?



spcl.inf.ethz.ch

@spcl_eth

Research Questions

Which programming paradigm 
to use for (approximate) MWM

(and other graph problems)?

How to design a high-
performance MWM 

algorithm (as dictated 
by the used paradigm)?

What is the HW FPGA 
design that ensures 
high performance?



spcl.inf.ethz.ch

@spcl_eth

Research Questions

Which programming paradigm 
to use for (approximate) MWM

(and other graph problems)?

How to design a high-
performance MWM 

algorithm (as dictated 
by the used paradigm)?

What is the HW FPGA 
design that ensures 
high performance?

What is the ultimate 
performance, power 

consumption, and the 
related tradeoffs?



spcl.inf.ethz.ch

@spcl_eth

Research Questions

Which programming paradigm 
to use for (approximate) MWM

(and other graph problems)?

How to design a high-
performance MWM 

algorithm (as dictated 
by the used paradigm)?

What is the HW FPGA 
design that ensures 
high performance?

What is the ultimate 
performance, power 

consumption, and the 
related tradeoffs?



spcl.inf.ethz.ch

@spcl_eth



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

Part 1: Seeking “the best paradigm”, 
we conducted a detailed analysis of 

graph processing on FPGAs



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

~15 FPGA graph 
processing frameworks



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

~25 FPGA accelerators 
for specific algorithms

~15 FPGA graph 
processing frameworks



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

Key techniques, paradigms, 
challenges, features, …

~25 FPGA accelerators 
for specific algorithms

~15 FPGA graph 
processing frameworks



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

Key techniques, paradigms, 
challenges, features, …

Selected parts are in the FPGA 
paper, the rest is in…

~25 FPGA accelerators 
for specific algorithms

~15 FPGA graph 
processing frameworks



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

Key techniques, paradigms, 
challenges, features, …

Selected parts are in the FPGA 
paper, the rest is in…

~25 FPGA accelerators 
for specific algorithms

~15 FPGA graph 
processing frameworks



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

Key techniques, paradigms, 
challenges, features, …

Selected parts are in the FPGA 
paper, the rest is in…

~25 FPGA accelerators 
for specific algorithms

~15 FPGA graph 
processing frameworks



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

[1] S. Salihoglu and J. Widom, 
“Optimizing graph algorithms on 
Pregel-like systems”. VLDB. 2014.

“(...) implementing graph 
algorithms efficiently on 
Pregel-like systems (...) 
can be surprisingly 
difficult and require 
careful optimizations.” [1]

+ other issues

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

[1] S. Salihoglu and J. Widom, 
“Optimizing graph algorithms on 
Pregel-like systems”. VLDB. 2014.

“(...) implementing graph 
algorithms efficiently on 
Pregel-like systems (...) 
can be surprisingly 
difficult and require 
careful optimizations.” [1]

+ other issues

What programming 
paradigm and why?

To be able to utilize pipelining 
well, we really want to use 

streaming (aka edge-centric)



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

DRAM



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

DRAM



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

DRAM

Some processing unit 
(CPU, GPU, FPGA, …, for 

a moment we don’t care)



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

DRAM

Some processing unit 
(CPU, GPU, FPGA, …, for 

a moment we don’t care)



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

DRAM

Some processing unit 
(CPU, GPU, FPGA, …, for 

a moment we don’t care)



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

DRAM

Some processing unit 
(CPU, GPU, FPGA, …, for 

a moment we don’t care)



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

DRAM

Some processing unit 
(CPU, GPU, FPGA, …, for 

a moment we don’t care)



spcl.inf.ethz.ch

@spcl_eth

Streaming all edges in and out is one 
“pass”. Repeat it a certain (algorithm-

dependent) number of times

What programming 
paradigm and why?

DRAM

Some processing unit 
(CPU, GPU, FPGA, …, for 

a moment we don’t care)



spcl.inf.ethz.ch

@spcl_eth

Streaming all edges in and out is one 
“pass”. Repeat it a certain (algorithm-

dependent) number of times

What programming 
paradigm and why?

DRAM

Some processing unit 
(CPU, GPU, FPGA, …, for 

a moment we don’t care)

Issues…



spcl.inf.ethz.ch

@spcl_eth

Streaming all edges in and out is one 
“pass”. Repeat it a certain (algorithm-

dependent) number of times

…How to minimize the number of “passes” over edges? This can get 
really bad in the “traditional” edge-centric approach (e.g., BFS needs 

D passes; D = diameter [1]).

What programming 
paradigm and why?

[1] A. Roy et al. X-stream: Edge-Centric Graph Processing using Streaming Partitions. SOSP. 2013.

DRAM

Some processing unit 
(CPU, GPU, FPGA, …, for 

a moment we don’t care)

…Processing edges 
is sequential – how 

to incorporate 
parallelism?

Issues…



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

DRAM

…Processing edges 
is sequential – how 

to incorporate 
parallelism?



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

DRAM

…Processing edges 
is sequential – how 

to incorporate 
parallelism?

Part 2: Substream-Centric: A new 
paradigm for processing graphs



spcl.inf.ethz.ch

@spcl_eth

Part 2: A new paradigm for processing graphs

Substream-Centric Graph Processing What programming 
paradigm and why?

DRAM

…Processing edges 
is sequential – how 

to incorporate 
parallelism?



spcl.inf.ethz.ch

@spcl_eth

Part 2: A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming 

approaches
What programming 
paradigm and why?

DRAM

…Processing edges 
is sequential – how 

to incorporate 
parallelism?



spcl.inf.ethz.ch

@spcl_eth

Part 2: A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming 

approaches
What programming 
paradigm and why?

DRAM

…Processing edges 
is sequential – how 

to incorporate 
parallelism?

Weighted 
edges



spcl.inf.ethz.ch

@spcl_eth

Part 2: A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming 

approaches

Divide the input stream of 
edges according to some 

(algorithm-specific) pattern

What programming 
paradigm and why?

DRAM

…Processing edges 
is sequential – how 

to incorporate 
parallelism?

Weighted 
edges



spcl.inf.ethz.ch

@spcl_eth

Part 2: A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming 

approaches

…

Divide the input stream of 
edges according to some 

(algorithm-specific) pattern

What programming 
paradigm and why?

DRAM

…Processing edges 
is sequential – how 

to incorporate 
parallelism?

Weighted 
edges



spcl.inf.ethz.ch

@spcl_eth

Part 2: A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming 

approaches

…

Divide the input stream of 
edges according to some 

(algorithm-specific) pattern

Process “substreams” 
independently

What programming 
paradigm and why?

DRAM

…Processing edges 
is sequential – how 

to incorporate 
parallelism?

Weighted 
edges



spcl.inf.ethz.ch

@spcl_eth

Part 2: A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming 

approaches

…

Divide the input stream of 
edges according to some 

(algorithm-specific) pattern

Process “substreams” 
independently

What programming 
paradigm and why?

DRAM

…Processing edges 
is sequential – how 

to incorporate 
parallelism?

Weighted 
edges



spcl.inf.ethz.ch

@spcl_eth

Part 2: A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming 

approaches

…

Divide the input stream of 
edges according to some 

(algorithm-specific) pattern

Process “substreams” 
independently

Merge 
substreams

What programming 
paradigm and why?

DRAM

…Processing edges 
is sequential – how 

to incorporate 
parallelism?

Weighted 
edges



spcl.inf.ethz.ch

@spcl_eth

Part 2: A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming 

approaches

…

Divide the input stream of 
edges according to some 

(algorithm-specific) pattern

Process “substreams” 
independently

Merge 
substreams

What programming 
paradigm and why?

DRAM

…Processing edges 
is sequential – how 

to incorporate 
parallelism?

Weighted 
edges



spcl.inf.ethz.ch

@spcl_eth

Part 2: A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming 

approaches

…

Divide the input stream of 
edges according to some 

(algorithm-specific) pattern

Process “substreams” 
independently

Merge 
substreams

What programming 
paradigm and why?

DRAM

…Processing edges 
is sequential – how 

to incorporate 
parallelism?

Weighted 
edges



spcl.inf.ethz.ch

@spcl_eth

Part 2: A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming 

approaches

…

Divide the input stream of 
edges according to some 

(algorithm-specific) pattern

Process “substreams” 
independently

Merge 
substreams

What programming 
paradigm and why?

DRAM

…Processing edges 
is sequential – how 

to incorporate 
parallelism?

Weighted 
edges



spcl.inf.ethz.ch

@spcl_eth

Part 2: A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming 

approaches

…

Divide the input stream of 
edges according to some 

(algorithm-specific) pattern

Process “substreams” 
independently

Merge 
substreams

What programming 
paradigm and why?

DRAM

…Processing edges 
is sequential – how 

to incorporate 
parallelism?

Weighted 
edgesHow to express MWM in this 

paradigm?



spcl.inf.ethz.ch

@spcl_eth

Which programming paradigm 
to use for (approximate) MWM

(and many other problems)?

Research Questions

How to design a high-
performance MWM 

algorithm (as dictated 
by the used paradigm)?

What is the HW FPGA 
design that ensures 
high performance?

What is the ultimate 
performance, power 

consumption, and the 
related tradeoffs?



spcl.inf.ethz.ch

@spcl_eth

Which programming paradigm 
to use for (approximate) MWM

(and many other problems)?

Research Questions

How to design a high-
performance MWM 

algorithm (as dictated 
by the used paradigm)?

What is the HW FPGA 
design that ensures 
high performance?

What is the ultimate 
performance, power 

consumption, and the 
related tradeoffs?



spcl.inf.ethz.ch

@spcl_eth

Which programming paradigm 
to use for (approximate) MWM

(and many other problems)?

Research Questions

How to design a high-
performance MWM 

algorithm (as dictated 
by the used paradigm)?

What is the HW FPGA 
design that ensures 
high performance?

What is the ultimate 
performance, power 

consumption, and the 
related tradeoffs?



spcl.inf.ethz.ch

@spcl_eth



spcl.inf.ethz.ch

@spcl_eth

Part 3: Analysis of models and algorithms 
for streaming graph processing



spcl.inf.ethz.ch

@spcl_eth

Part 3: Analysis of 
models and algorithms 

for streaming graph 
processing

Idea: let’s check the (rich) world of 
streaming theory and see if there is 

anything out there that we could use 



spcl.inf.ethz.ch

@spcl_eth

Part 3: Analysis of 
models and algorithms 

for streaming graph 
processing

~30 algorithms for streaming 
(approximate) MWM

Idea: let’s check the (rich) world of 
streaming theory and see if there is 

anything out there that we could use 



spcl.inf.ethz.ch

@spcl_eth

Part 3: Analysis of 
models and algorithms 

for streaming graph 
processing

~30 algorithms for streaming 
(approximate) MWM

Crouch and Stubbs [1]

Idea: let’s check the (rich) world of 
streaming theory and see if there is 

anything out there that we could use 



spcl.inf.ethz.ch

@spcl_eth

Part 3: Analysis of 
models and algorithms 

for streaming graph 
processing

~30 algorithms for streaming 
(approximate) MWM

Crouch and Stubbs [1]

No worries, no need to 
analyze it here, all the 

details are in the paper 

Idea: let’s check the (rich) world of 
streaming theory and see if there is 

anything out there that we could use 



spcl.inf.ethz.ch

@spcl_eth

Part 3: Analysis of 
models and algorithms 

for streaming graph 
processing

~30 algorithms for streaming 
(approximate) MWM

Most 
important

goals:

Crouch and Stubbs [1]

No worries, no need to 
analyze it here, all the 

details are in the paper 

Idea: let’s check the (rich) world of 
streaming theory and see if there is 

anything out there that we could use 



spcl.inf.ethz.ch

@spcl_eth

Part 3: Analysis of 
models and algorithms 

for streaming graph 
processing

~30 algorithms for streaming 
(approximate) MWM

Maximize 
accuracy

Most 
important

goals:

Crouch and Stubbs [1]

No worries, no need to 
analyze it here, all the 

details are in the paper 

Idea: let’s check the (rich) world of 
streaming theory and see if there is 

anything out there that we could use 



spcl.inf.ethz.ch

@spcl_eth

Part 3: Analysis of 
models and algorithms 

for streaming graph 
processing

~30 algorithms for streaming 
(approximate) MWM

Maximize 
accuracy

Most 
important

goals:

Minimize 
local space

Crouch and Stubbs [1]

No worries, no need to 
analyze it here, all the 

details are in the paper 

Idea: let’s check the (rich) world of 
streaming theory and see if there is 

anything out there that we could use 



spcl.inf.ethz.ch

@spcl_eth

Part 3: Analysis of 
models and algorithms 

for streaming graph 
processing

~30 algorithms for streaming 
(approximate) MWM

Maximize 
accuracy

Most 
important

goals:

Minimize 
local space

Minimize 
#passes

Crouch and Stubbs [1]

No worries, no need to 
analyze it here, all the 

details are in the paper 

Idea: let’s check the (rich) world of 
streaming theory and see if there is 

anything out there that we could use 



spcl.inf.ethz.ch

@spcl_eth

Part 3: Analysis of 
models and algorithms 

for streaming graph 
processing

~30 algorithms for streaming 
(approximate) MWM

Maximize 
accuracy

Most 
important

goals:

Minimize 
local space

Minimize 
#passes

Expose 
parallelism 

(match 
substream-

centric)

Crouch and Stubbs [1]

No worries, no need to 
analyze it here, all the 

details are in the paper 

Idea: let’s check the (rich) world of 
streaming theory and see if there is 

anything out there that we could use 



spcl.inf.ethz.ch

@spcl_eth

Part 3: Analysis of 
models and algorithms 

for streaming graph 
processing

~30 algorithms for streaming 
(approximate) MWM

Maximize 
accuracy

Most 
important

goals:

Minimize 
local space

Minimize 
#passes

Expose 
parallelism 

(match 
substream-

centric)

Crouch and Stubbs [1]

No worries, no need to 
analyze it here, all the 

details are in the paper 

Idea: let’s check the (rich) world of 
streaming theory and see if there is 

anything out there that we could use 



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

DRAM



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…
[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs MWM [1]

DRAM



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs MWM [1]

DRAM



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

Select edges 
with weights: 

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs MWM [1]

DRAM



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

≥ 1 + 𝜖 𝑖

Select edges 
with weights: 

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs MWM [1]

A parameter 
that controls 

accuracy

DRAM



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

≥ 1 + 𝜖 0

≥ 1 + 𝜖 𝑖

Select edges 
with weights: 

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs MWM [1]

A parameter 
that controls 

accuracy

DRAM



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

≥ 1 + 𝜖 0

≥ 1 + 𝜖 𝑖

≥ 1 + 𝜖 𝐿−1

Select edges 
with weights: 

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs MWM [1]

A parameter 
that controls 

accuracy

DRAM



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

≥ 1 + 𝜖 0

≥ 1 + 𝜖 𝑖

≥ 1 + 𝜖 𝐿−1

Select edges 
with weights: 

Substream 0

Substream L-1

Substream i

Compute unweighted
matchings separately

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs MWM [1]

A parameter 
that controls 

accuracy

DRAM



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

≥ 1 + 𝜖 0

≥ 1 + 𝜖 𝑖

≥ 1 + 𝜖 𝐿−1

Select edges 
with weights: 

Greedy merge of 
matchings into 
the final MWM

Substream 0

Substream L-1

Substream i

Compute unweighted
matchings separately

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs MWM [1]

A parameter 
that controls 

accuracy

DRAM



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

How to minimize the 
number of “passes”?

≥ 1 + 𝜖 0

≥ 1 + 𝜖 𝑖

≥ 1 + 𝜖 𝐿−1

Select edges 
with weights: 

Greedy merge of 
matchings into 
the final MWM

Substream 0

Substream L-1

Substream i

Compute unweighted
matchings separately

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs MWM [1]

A parameter 
that controls 

accuracy

DRAM



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

How to minimize the 
number of “passes”?

≥ 1 + 𝜖 0

≥ 1 + 𝜖 𝑖

≥ 1 + 𝜖 𝐿−1

Select edges 
with weights: 

Greedy merge of 
matchings into 
the final MWM

Substream 0

Substream L-1

Substream i

Compute unweighted
matchings separately

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs MWM [1]

A parameter 
that controls 

accuracy

DRAM



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

How to minimize the 
number of “passes”?

≥ 1 + 𝜖 0

≥ 1 + 𝜖 𝑖

≥ 1 + 𝜖 𝐿−1

Select edges 
with weights: 

Greedy merge of 
matchings into 
the final MWM

Substream 0

Substream L-1

Substream i

Compute unweighted
matchings separately

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs MWM [1]

A parameter 
that controls 

accuracy

DRAM



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

How to minimize the 
number of “passes”?

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs MWM [1]

DRAM



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

How to minimize the 
number of “passes”?

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs MWM [1]

DRAM

Part 4: Mapping the algorithm to the 
„right” hardware configuration



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

How to minimize the 
number of “passes”?

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs MWM [1]

DRAM



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

How to minimize the 
number of “passes”?

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs MWM [1]

DRAM



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

How to minimize the 
number of “passes”?

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs MWM [1]

DRAM



spcl.inf.ethz.ch

@spcl_eth

FPGA
Time: O(m)

Work: O(Lm)

Substream-Centric Graph Processing

…

How to minimize the 
number of “passes”?

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs MWM [1]

DRAM



spcl.inf.ethz.ch

@spcl_eth

FPGA
Time: O(m)

Work: O(Lm)

CPU
Time: O(Ln)
Work: O(Ln)

Substream-Centric Graph Processing

…

How to minimize the 
number of “passes”?

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs MWM [1]

DRAM



spcl.inf.ethz.ch

@spcl_eth

FPGA
Time: O(m)

Work: O(Lm)

CPU
Time: O(Ln)
Work: O(Ln)

Use a hybrid 
CPU-FPGA 

setting!

Substream-Centric Graph Processing

…

How to minimize the 
number of “passes”?

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs MWM [1]

DRAM



spcl.inf.ethz.ch

@spcl_eth

FPGA
Time: O(m)

Work: O(Lm)

CPU
Time: O(Ln)
Work: O(Ln)

Use a hybrid 
CPU-FPGA 

setting!

Substream-Centric Graph Processing

…

How to minimize the 
number of “passes”?

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs MWM [1]

DRAM



spcl.inf.ethz.ch

@spcl_eth

FPGA
Time: O(m)

Work: O(Lm)

CPU
Time: O(Ln)
Work: O(Ln)

Use a hybrid 
CPU-FPGA 

setting!

Substream-Centric Graph Processing

…

How to minimize the 
number of “passes”?

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs MWM [1]

DRAM



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric MWM: FPGA optimizations



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric MWM: FPGA optimizations



spcl.inf.ethz.ch

@spcl_eth

Edge reordering on the fly 
(more details in a bit)

Parallel 
substreams

Substream-Centric MWM: FPGA optimizations



spcl.inf.ethz.ch

@spcl_eth

Edge reordering on the fly 
(more details in a bit)

Parallel 
substreams

Substream-Centric MWM: FPGA optimizations



spcl.inf.ethz.ch

@spcl_eth

Edge reordering on the fly 
(more details in a bit)

Parallel 
substreams

Substream-Centric MWM: FPGA optimizations

All the details are in the paper. 
Let’s focus on the key FPGA 

design ideas and optimizations



spcl.inf.ethz.ch

@spcl_eth

Edge reordering on the fly 
(more details in a bit)

Parallel 
substreams

Vectorization

Blocking

Pipelining
Prefetching

Substream-Centric MWM: FPGA optimizations

All the details are in the paper. 
Let’s focus on the key FPGA 

design ideas and optimizations



spcl.inf.ethz.ch

@spcl_eth

Edge reordering on the fly 
(more details in a bit)

Parallel 
substreams

Vectorization

Blocking

Pipelining
Prefetching

Substream-Centric MWM: FPGA optimizations

They are often used in graph 
processing schemes on FPGAs; 

we apply them as well.

All the details are in the paper. 
Let’s focus on the key FPGA 

design ideas and optimizations



spcl.inf.ethz.ch

@spcl_eth

Edge reordering on the fly 
(more details in a bit)

Parallel 
substreams

Vectorization

Blocking

Pipelining
Prefetching

Substream-Centric MWM: FPGA optimizations

They are often used in graph 
processing schemes on FPGAs; 

we apply them as well.

All the details are in the paper. 
Let’s focus on the key FPGA 

design ideas and optimizations



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric MWM: FPGA optimizations
Blocking



spcl.inf.ethz.ch

@spcl_eth

0 1 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0
1

1
0

0
1

1
0

0
1

1
0

Adjacency Matrix

Substream-Centric MWM: FPGA optimizations
Blocking



spcl.inf.ethz.ch

@spcl_eth

0 1 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0
1

1
0

0
1

1
0

0
1

1
0

Adjacency Matrix

Substream-Centric MWM: FPGA optimizations
Blocking

0 1 2 3 4 5

0

1

2

3

4

5



spcl.inf.ethz.ch

@spcl_eth

0 1 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0
1

1
0

0
1

1
0

0
1

1
0

Adjacency Matrix

Substream-Centric MWM: FPGA optimizations
Blocking

Row IDs 
correspond 

to vertex IDs

Column IDs 
correspond 

to vertex IDs

0 1 2 3 4 5

0

1

2

3

4

5



spcl.inf.ethz.ch

@spcl_eth

0 1 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0
1

1
0

0
1

1
0

0
1

1
0

Adjacency Matrix

Substream-Centric MWM: FPGA optimizations
Blocking

An edge between 
vertices 0 and 1

Row IDs 
correspond 

to vertex IDs

Column IDs 
correspond 

to vertex IDs

0 1 2 3 4 5

0

1

2

3

4

5



spcl.inf.ethz.ch

@spcl_eth

0 1 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0
1

1
0

0
1

1
0

0
1

1
0

Adjacency Matrix

Substream-Centric MWM: FPGA optimizations
Blocking

An edge between 
vertices 0 and 1

Row IDs 
correspond 

to vertex IDs

Column IDs 
correspond 

to vertex IDs

0 1 2 3 4 5

0

1

2

3

4

5



spcl.inf.ethz.ch

@spcl_eth

0 1 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0
1

1
0

0
1

1
0

0
1

1
0

Adjacency Matrix

Substream-Centric MWM: FPGA optimizations
Blocking

An edge between 
vertices 0 and 1

Row IDs 
correspond 

to vertex IDs

Column IDs 
correspond 

to vertex IDs

0 1 2 3 4 5

0

1

2

3

4

5



spcl.inf.ethz.ch

@spcl_eth

0 1 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0
1

1
0

0
1

1
0

0
1

1
0

Adjacency Matrix

Substream-Centric MWM: FPGA optimizations
Blocking

An edge between 
vertices 0 and 1

An edge between 
vertices 0 and 2

Row IDs 
correspond 

to vertex IDs

Column IDs 
correspond 

to vertex IDs

0 1 2 3 4 5

0

1

2

3

4

5



spcl.inf.ethz.ch

@spcl_eth

0 1 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0
1

1
0

0
1

1
0

0
1

1
0

Adjacency Matrix

Substream-Centric MWM: FPGA optimizations
Blocking

An edge between 
vertices 0 and 1

An edge between 
vertices 0 and 2

Row IDs 
correspond 

to vertex IDs

Column IDs 
correspond 

to vertex IDs

0 1 2 3 4 5

0

1

2

3

4

5



spcl.inf.ethz.ch

@spcl_eth

0 1 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0
1

1
0

0
1

1
0

0
1

1
0

Adjacency Matrix

Substream-Centric MWM: FPGA optimizations
Blocking

An edge between 
vertices 0 and 1

An edge between 
vertices 0 and 2

Row IDs 
correspond 

to vertex IDs

Column IDs 
correspond 

to vertex IDs

0 1 2 3 4 5

0

1

2

3

4

5



spcl.inf.ethz.ch

@spcl_eth

0 1 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0
1

1
0

0
1

1
0

0
1

1
0

Adjacency Matrix

Substream-Centric MWM: FPGA optimizations
Blocking

An edge between 
vertices 0 and 1

An edge between 
vertices 0 and 2

Row IDs 
correspond 

to vertex IDs

Column IDs 
correspond 

to vertex IDs

0 1 2 3 4 5

0

1

2

3

4

5



spcl.inf.ethz.ch

@spcl_eth

0 1 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0
1

1
0

0
1

1
0

0
1

1
0

Adjacency Matrix

Substream-Centric MWM: FPGA optimizations
Blocking

An edge between 
vertices 0 and 1

An edge between 
vertices 0 and 2

Row IDs 
correspond 

to vertex IDs

Column IDs 
correspond 

to vertex IDs

0 1 2 3 4 5

0

1

2

3

4

5



spcl.inf.ethz.ch

@spcl_eth

0 1 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0
1

1
0

0
1

1
0

0
1

1
0

Adjacency Matrix

Substream-Centric MWM: FPGA optimizations
Blocking

An edge between 
vertices 0 and 1

An edge between 
vertices 0 and 2

Row IDs 
correspond 

to vertex IDs

Column IDs 
correspond 

to vertex IDs

0 1 2 3 4 5

0

1

2

3

4

5



spcl.inf.ethz.ch

@spcl_eth

0 1 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0
1

1
0

0
1

1
0

0
1

1
0

Adjacency Matrix

Substream-Centric MWM: FPGA optimizations
Blocking

An edge between 
vertices 0 and 1

An edge between 
vertices 0 and 2

Stalling between 
every row needed...Row IDs 

correspond 
to vertex IDs

Column IDs 
correspond 

to vertex IDs

0 1 2 3 4 5

0

1

2

3

4

5



spcl.inf.ethz.ch

@spcl_eth

0 1 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0
1

1
0

0
1

1
0

0
1

1
0

Adjacency Matrix

Substream-Centric MWM: FPGA optimizations
Blocking

An edge between 
vertices 0 and 1

An edge between 
vertices 0 and 2

Stalling between 
every row needed...Row IDs 

correspond 
to vertex IDs

Column IDs 
correspond 

to vertex IDs

0 1 2 3 4 5

0

1

2

3

4

5



spcl.inf.ethz.ch

@spcl_eth

0 1 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0
1

1
0

0
1

1
0

0
1

1
0

Adjacency Matrix

Substream-Centric MWM: FPGA optimizations
Blocking

An edge between 
vertices 0 and 1

An edge between 
vertices 0 and 2

Row IDs 
correspond 

to vertex IDs

Column IDs 
correspond 

to vertex IDs

0 1 2 3 4 5

0

1

2

3

4

5



spcl.inf.ethz.ch

@spcl_eth

0 1 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0
1

1
0

0
1

1
0

0
1

1
0

Adjacency Matrix

Substream-Centric MWM: FPGA optimizations
Blocking

An edge between 
vertices 0 and 1

An edge between 
vertices 0 and 2

Introduce a (tunable) 
„blocking parameter” K

Row IDs 
correspond 

to vertex IDs

Column IDs 
correspond 

to vertex IDs

0 1 2 3 4 5

0

1

2

3

4

5



spcl.inf.ethz.ch

@spcl_eth

0 1 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0
1

1
0

0
1

1
0

0
1

1
0

Adjacency Matrix

Substream-Centric MWM: FPGA optimizations
Blocking

An edge between 
vertices 0 and 1

An edge between 
vertices 0 and 2

Introduce a (tunable) 
„blocking parameter” K

K determines how many 
stalls are allowed

Row IDs 
correspond 

to vertex IDs

Column IDs 
correspond 

to vertex IDs

0 1 2 3 4 5

0

1

2

3

4

5



spcl.inf.ethz.ch

@spcl_eth

0 1 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0
1

1
0

0
1

1
0

0
1

1
0

Adjacency Matrix

Substream-Centric MWM: FPGA optimizations
Blocking

An edge between 
vertices 0 and 1

An edge between 
vertices 0 and 2

Introduce a (tunable) 
„blocking parameter” K

K determines how many 
stalls are allowed

K = 3

Row IDs 
correspond 

to vertex IDs

Column IDs 
correspond 

to vertex IDs

0 1 2 3 4 5

0

1

2

3

4

5



spcl.inf.ethz.ch

@spcl_eth

0 1 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0
1

1
0

0
1

1
0

0
1

1
0

Adjacency Matrix

Substream-Centric MWM: FPGA optimizations
Blocking

Introduce a (tunable) 
„blocking parameter” K

K determines how many 
stalls are allowed

Portions of rows are 
ordered „lexicographically” 
(i.e., no strict ordering that 
enforces a stall is required)

Algorithm still 
(provably) correct

K = 3



spcl.inf.ethz.ch

@spcl_eth

0 1 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0
1

1
0

0
1

1
0

0
1

1
0

Adjacency Matrix

Substream-Centric MWM: FPGA optimizations
Blocking

Introduce a (tunable) 
„blocking parameter” K

K determines how many 
stalls are allowed

Portions of rows are 
ordered „lexicographically” 
(i.e., no strict ordering that 
enforces a stall is required)

Algorithm still 
(provably) correct

K = 3

K is tunable: it 
controls the tradeoff 
between the amount 

of the used FPGA 
resources and the 

performance



spcl.inf.ethz.ch

@spcl_eth

Which programming paradigm 
to use for (approximate) MWM

(and many other problems)?

Research Questions

How to design a high-
performance MWM 

algorithm (as dictated 
by the used paradigm)?

What is the HW FPGA 
design that ensures 
high performance?

What is the ultimate 
performance, power 

consumption, and the 
related tradeoffs?



spcl.inf.ethz.ch

@spcl_eth

Which programming paradigm 
to use for (approximate) MWM

(and many other problems)?

Research Questions

How to design a high-
performance MWM 

algorithm (as dictated 
by the used paradigm)?

What is the HW FPGA 
design that ensures 
high performance?

What is the ultimate 
performance, power 

consumption, and the 
related tradeoffs?



spcl.inf.ethz.ch

@spcl_eth

Which programming paradigm 
to use for (approximate) MWM

(and many other problems)?

Research Questions

How to design a high-
performance MWM 

algorithm (as dictated 
by the used paradigm)?

What is the HW FPGA 
design that ensures 
high performance?

What is the ultimate 
performance, power 

consumption, and the 
related tradeoffs?



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

TYPES OF MACHINES

Part 5: Evaluation



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

TYPES OF MACHINES



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

TYPES OF MACHINES
CPU: Intel Broadwell

Xeon E5-2680 v4 @3.3 GHz
14 Cores (28 Threads)

Altera Arria 10 @200MHz



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

TYPES OF GRAPHS



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

TYPES OF GRAPHS

Synthetic graphs



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

TYPES OF GRAPHS

Synthetic graphs

Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

TYPES OF GRAPHS
Real-world graphs (SNAP [2], KONECT [3], DIMACS [4])

Synthetic graphs

Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

[2] SNAP. https://snap.stanford.edu

https://snap.stanford.edu/


spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

TYPES OF GRAPHS
Real-world graphs (SNAP [2], KONECT [3], DIMACS [4])

Synthetic graphs

Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

[2] SNAP. https://snap.stanford.edu

Road networks

Communication graphs

Social networks

Purchase networks Citation graphs

Web graphs

[3] KONECT. https://konect.cc
[4] DIMACS Challenge

https://snap.stanford.edu/
https://konect.cc/


spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

[2] M. Ghaffari. Space-optimal semi-streaming for(2+ε)-approximatematching. arXiv:1701.03730, 2017.



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

Our FPGA design, 
(4+ε)-approximation

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

[2] M. Ghaffari. Space-optimal semi-streaming for(2+ε)-approximatematching. arXiv:1701.03730, 2017.



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

Our FPGA design, 
(4+ε)-approximation

CPU implementations of the 
original Crouch scheme,

(4+ε)-approximation

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

[2] M. Ghaffari. Space-optimal semi-streaming for(2+ε)-approximatematching. arXiv:1701.03730, 2017.



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

Our FPGA design, 
(4+ε)-approximation

CPU implementations of the 
original Crouch scheme,

(4+ε)-approximation

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

[2] M. Ghaffari. Space-optimal semi-streaming for(2+ε)-approximatematching. arXiv:1701.03730, 2017.

State-of-the-art MWM 
algorithm, space-optimal, 

time-optimal (O(m)), 
(2+ε)-approximation



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

Our FPGA design, 
(4+ε)-approximation

CPU implementations of the 
original Crouch scheme,

(4+ε)-approximation

We test both CPU and 
hybrid (FPGA+CPU) 

platforms

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

[2] M. Ghaffari. Space-optimal semi-streaming for(2+ε)-approximatematching. arXiv:1701.03730, 2017.

State-of-the-art MWM 
algorithm, space-optimal, 

time-optimal (O(m)), 
(2+ε)-approximation



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

VARIOUS GRAPHS

Parameters:
Blocking size (K) = 32, 
#Substreams (L) = 64
#Threads = 4, ε = 0.1



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

VARIOUS GRAPHS

Parameters:
Blocking size (K) = 32, 
#Substreams (L) = 64
#Threads = 4, ε = 0.1



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

VARIOUS GRAPHS

Parameters:
Blocking size (K) = 32, 
#Substreams (L) = 64
#Threads = 4, ε = 0.1

Hybrid Hybrid

CPU

CPU



spcl.inf.ethz.ch

@spcl_eth

SC-OPT secures 
highest performance

PERFORMANCE ANALYSIS

VARIOUS GRAPHS

Parameters:
Blocking size (K) = 32, 
#Substreams (L) = 64
#Threads = 4, ε = 0.1

Hybrid Hybrid

CPU

CPU



spcl.inf.ethz.ch

@spcl_eth

SC-OPT secures 
highest performance

PERFORMANCE ANALYSIS

VARIOUS GRAPHS

Parameters:
Blocking size (K) = 32, 
#Substreams (L) = 64
#Threads = 4, ε = 0.1

Hybrid Hybrid

CPU

CPU

Even > 4x over 
parallel CPU 
baselines!



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

APPROXIMATION (ACCURACY)

Parameters:
#Substreams (L) = 128, 
Blocking size (K) = 32, 
#threads = 4, #edges = 8M 
(Kronecker)



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

APPROXIMATION (ACCURACY)

Parameters:
#Substreams (L) = 128, 
Blocking size (K) = 32, 
#threads = 4, #edges = 8M 
(Kronecker)



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

APPROXIMATION (ACCURACY)

Parameters:
#Substreams (L) = 128, 
Blocking size (K) = 32, 
#threads = 4, #edges = 8M 
(Kronecker)



spcl.inf.ethz.ch

@spcl_eth

SC-OPT is 
comparable to the 

(2+ε)-approximation 
by Ghaffari et al.

PERFORMANCE ANALYSIS

APPROXIMATION (ACCURACY)

Parameters:
#Substreams (L) = 128, 
Blocking size (K) = 32, 
#threads = 4, #edges = 8M 
(Kronecker)



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ENERGY CONSUMPTION, RESOURCE UTILIZATION

Parameters:
L: #Substreams (pipelines),
K: Blocking size,
T: #CPU threads



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ENERGY CONSUMPTION, RESOURCE UTILIZATION

Parameters:
L: #Substreams (pipelines),
K: Blocking size,
T: #CPU threads



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ENERGY CONSUMPTION, RESOURCE UTILIZATION

Parameters:
L: #Substreams (pipelines),
K: Blocking size,
T: #CPU threads



spcl.inf.ethz.ch

@spcl_eth

SC-OPT (Hybrid) is ~8x 
more power-efficient 

than the CPU 
implementation 

PERFORMANCE ANALYSIS

ENERGY CONSUMPTION, RESOURCE UTILIZATION

Parameters:
L: #Substreams (pipelines),
K: Blocking size,
T: #CPU threads



spcl.inf.ethz.ch

@spcl_eth

SC-OPT (Hybrid) is ~8x 
more power-efficient 

than the CPU 
implementation 

PERFORMANCE ANALYSIS

ENERGY CONSUMPTION, RESOURCE UTILIZATION

Parameters:
L: #Substreams (pipelines),
K: Blocking size,
T: #CPU threads



spcl.inf.ethz.ch

@spcl_eth

SC-OPT (Hybrid) is ~8x 
more power-efficient 

than the CPU 
implementation 

PERFORMANCE ANALYSIS

ENERGY CONSUMPTION, RESOURCE UTILIZATION

Blocking needs 
more resources 
(but is tunable!)

Parameters:
L: #Substreams (pipelines),
K: Blocking size,
T: #CPU threads



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

DESIGN SPACE EXPLORATION



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

DESIGN SPACE EXPLORATION

B – BRAM size allocated for matching data structures,
L – number of substreams (pipelines)



spcl.inf.ethz.ch

@spcl_eth

Addition 
complexity 

grows linearly 
with L

PERFORMANCE ANALYSIS

DESIGN SPACE EXPLORATION

B – BRAM size allocated for matching data structures,
L – number of substreams (pipelines)



spcl.inf.ethz.ch

@spcl_eth

Addition 
complexity 

grows linearly 
with L

PERFORMANCE ANALYSIS

DESIGN SPACE EXPLORATION BRAM signal 
propagation limits 

the frequency

B – BRAM size allocated for matching data structures,
L – number of substreams (pipelines)



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES

In addition to MWM, 
we also analyzed 

more graph problems



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES

In addition to MWM, 
we also analyzed 

more graph problems



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES

In addition to MWM, 
we also analyzed 

more graph problems



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES

In addition to MWM, 
we also analyzed 

more graph problems

http://spcl.inf.ethz.ch/Publications/.pdf/
graphs-fpgas-survey.pdf

(submitted to arXiv, will appear tonight)



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES

In addition to MWM, 
we also analyzed 

more graph problems

To enable rigorous 
reasoning, we analyzed ~15 
models for streaming graph 

processing (and selected 
the best for FPGAs)

http://spcl.inf.ethz.ch/Publications/.pdf/
graphs-fpgas-survey.pdf

(submitted to arXiv, will appear tonight)



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES

In addition to MWM, 
we also analyzed 

more graph problems

To enable rigorous 
reasoning, we analyzed ~15 
models for streaming graph 

processing (and selected 
the best for FPGAs)

StreamSort

Vertex-arrival

W-Stream

Sliding window

Semi-streaming
Cash-register

Dynamic

Adjacency-list

Simple 
streaming

Annotated 
streaming

Insert-only

Turnstile

OnlineMapReduce

Graph 
Sketching

MUD

http://spcl.inf.ethz.ch/Publications/.pdf/
graphs-fpgas-survey.pdf

(submitted to arXiv, will appear tonight)



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES

In addition to MWM, 
we also analyzed 

more graph problems

To enable rigorous 
reasoning, we analyzed ~15 
models for streaming graph 

processing (and selected 
the best for FPGAs)

StreamSort

Vertex-arrival

W-Stream

Sliding window

Semi-streaming
Cash-register

Dynamic

Adjacency-list

Simple 
streaming

Annotated 
streaming

Insert-only

Turnstile

OnlineMapReduce

Graph 
Sketching

MUD

http://spcl.inf.ethz.ch/Publications/.pdf/
graphs-fpgas-survey.pdf

(submitted to arXiv, will appear tonight)



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES

In addition to MWM, 
we also analyzed 

more graph problems

To enable rigorous 
reasoning, we analyzed ~15 
models for streaming graph 

processing (and selected 
the best for FPGAs)

StreamSort

Vertex-arrival

W-Stream

Sliding window

Semi-streaming
Cash-register

Dynamic

Adjacency-list

Simple 
streaming

Annotated 
streaming

Insert-only

Turnstile

OnlineMapReduce

Graph 
Sketching

MUD

http://spcl.inf.ethz.ch/Publications/.pdf/
graphs-fpgas-survey.pdf

(submitted to arXiv, will appear tonight)



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES

In addition to MWM, 
we also analyzed 

more graph problems

Work in progress on the 
distributed setting 

To enable rigorous 
reasoning, we analyzed ~15 
models for streaming graph 

processing (and selected 
the best for FPGAs)

StreamSort

Vertex-arrival

W-Stream

Sliding window

Semi-streaming
Cash-register

Dynamic

Adjacency-list

Simple 
streaming

Annotated 
streaming

Insert-only

Turnstile

OnlineMapReduce

Graph 
Sketching

MUD

http://spcl.inf.ethz.ch/Publications/.pdf/
graphs-fpgas-survey.pdf

(submitted to arXiv, will appear tonight)



spcl.inf.ethz.ch

@spcl_eth



spcl.inf.ethz.ch

@spcl_eth

SUBSTREAM-CENTRIC GRAPH PROCESSING

PARADIGM, EXPOSES PARALLELISM, ENABLES

EASY PIPELINING, SUPPORTS APPROXIMATION



spcl.inf.ethz.ch

@spcl_eth

SUBSTREAM-CENTRIC GRAPH PROCESSING

PARADIGM, EXPOSES PARALLELISM, ENABLES

EASY PIPELINING, SUPPORTS APPROXIMATION

DETAILED DOMAIN ANALYSIS,
IDENTIFICATION OF SEMI-STREAMING

MODEL AS FPGA BEST-FIT, 2 SURVEYS



spcl.inf.ethz.ch

@spcl_eth

SUBSTREAM-CENTRIC GRAPH PROCESSING

PARADIGM, EXPOSES PARALLELISM, ENABLES

EASY PIPELINING, SUPPORTS APPROXIMATION

DETAILED DOMAIN ANALYSIS,
IDENTIFICATION OF SEMI-STREAMING

MODEL AS FPGA BEST-FIT, 2 SURVEYS



spcl.inf.ethz.ch

@spcl_eth

SUBSTREAM-CENTRIC GRAPH PROCESSING

PARADIGM, EXPOSES PARALLELISM, ENABLES

EASY PIPELINING, SUPPORTS APPROXIMATION

DETAILED DOMAIN ANALYSIS,
IDENTIFICATION OF SEMI-STREAMING

MODEL AS FPGA BEST-FIT, 2 SURVEYS

THEORY-INSPIRED MWM 
APPROXIMATE ALGORITHM

ON A HYBRID CPU-FPGA SETTING



spcl.inf.ethz.ch

@spcl_eth

SUBSTREAM-CENTRIC GRAPH PROCESSING

PARADIGM, EXPOSES PARALLELISM, ENABLES

EASY PIPELINING, SUPPORTS APPROXIMATION

DETAILED DOMAIN ANALYSIS,
IDENTIFICATION OF SEMI-STREAMING

MODEL AS FPGA BEST-FIT, 2 SURVEYS

THEORY-INSPIRED MWM 
APPROXIMATE ALGORITHM

ON A HYBRID CPU-FPGA SETTING



spcl.inf.ethz.ch

@spcl_eth

SUBSTREAM-CENTRIC GRAPH PROCESSING

PARADIGM, EXPOSES PARALLELISM, ENABLES

EASY PIPELINING, SUPPORTS APPROXIMATION

DETAILED DOMAIN ANALYSIS,
IDENTIFICATION OF SEMI-STREAMING

MODEL AS FPGA BEST-FIT, 2 SURVEYS

GENERIC FPGA DESIGN, 
CODE AVAILABLE

THEORY-INSPIRED MWM 
APPROXIMATE ALGORITHM

ON A HYBRID CPU-FPGA SETTING



spcl.inf.ethz.ch

@spcl_eth

SUBSTREAM-CENTRIC GRAPH PROCESSING

PARADIGM, EXPOSES PARALLELISM, ENABLES

EASY PIPELINING, SUPPORTS APPROXIMATION

DETAILED DOMAIN ANALYSIS,
IDENTIFICATION OF SEMI-STREAMING

MODEL AS FPGA BEST-FIT, 2 SURVEYS

GENERIC FPGA DESIGN, 
CODE AVAILABLE

THEORY-INSPIRED MWM 
APPROXIMATE ALGORITHM

ON A HYBRID CPU-FPGA SETTING

GENERALIZABILITY TO OTHER

GRAPH PROBLEMS AND SETTINGS



spcl.inf.ethz.ch

@spcl_eth

SUBSTREAM-CENTRIC GRAPH PROCESSING

PARADIGM, EXPOSES PARALLELISM, ENABLES

EASY PIPELINING, SUPPORTS APPROXIMATION

DETAILED DOMAIN ANALYSIS,
IDENTIFICATION OF SEMI-STREAMING

MODEL AS FPGA BEST-FIT, 2 SURVEYS

GENERIC FPGA DESIGN, 
CODE AVAILABLE

THEORY-INSPIRED MWM 
APPROXIMATE ALGORITHM

ON A HYBRID CPU-FPGA SETTING

GENERALIZABILITY TO OTHER

GRAPH PROBLEMS AND SETTINGS

Website & code: http://spcl.inf.ethz.ch/Research/Parallel_Programming/Substream_Centric



spcl.inf.ethz.ch

@spcl_eth

SUBSTREAM-CENTRIC GRAPH PROCESSING

PARADIGM, EXPOSES PARALLELISM, ENABLES

EASY PIPELINING, SUPPORTS APPROXIMATION

DETAILED DOMAIN ANALYSIS,
IDENTIFICATION OF SEMI-STREAMING

MODEL AS FPGA BEST-FIT, 2 SURVEYS

GENERIC FPGA DESIGN, 
CODE AVAILABLE

THEORY-INSPIRED MWM 
APPROXIMATE ALGORITHM

ON A HYBRID CPU-FPGA SETTING

GENERALIZABILITY TO OTHER

GRAPH PROBLEMS AND SETTINGS

Thank you 
for your attention

Website & code: http://spcl.inf.ethz.ch/Research/Parallel_Programming/Substream_Centric



spcl.inf.ethz.ch

@spcl_eth

BACKUP & 
EXTENDED SLIDES



spcl.inf.ethz.ch

@spcl_eth

Large graphs…



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Problems?



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Problems?



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Problems?



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Problems?



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Problems?



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Problems?

250 
Watts

120 
Watts



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Problems?

250 
Watts

120 
Watts



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Problems?

Low power 
efficiency!

250 
Watts

120 
Watts



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Problems?

Low power 
efficiency!

250 
Watts

120 
Watts



spcl.inf.ethz.ch

@spcl_eth

[1] A. Roy et al. X-stream: Edge-Centric Graph 
Processing using Streaming Partitions. ACM 
Symposium on Operating Syst. 2013.
[2] S. Zhou et al. High-throughput and Energy-
efficient Graph Processing on FPGA. FCCM. 2016.

Large graphs…

Problems?

Low power 
efficiency!

250 
Watts

Graph
Problem

CPU (MTEPS/Watt) [1] FPGA (MTEPS/Watt) [2]

SSSP 1.9 30.2

CC 0.5 48.1

MST 0.6 44.3

120 
Watts



spcl.inf.ethz.ch

@spcl_eth

[1] A. Roy et al. X-stream: Edge-Centric Graph 
Processing using Streaming Partitions. ACM 
Symposium on Operating Syst. 2013.
[2] S. Zhou et al. High-throughput and Energy-
efficient Graph Processing on FPGA. FCCM. 2016.

Large graphs…

Problems?

Low power 
efficiency!

250 
Watts

Graph
Problem

CPU (MTEPS/Watt) [1] FPGA (MTEPS/Watt) [2]

SSSP 1.9 30.2

CC 0.5 48.1

MST 0.6 44.3

120 
Watts



spcl.inf.ethz.ch

@spcl_eth

[1] A. Roy et al. X-stream: Edge-Centric Graph 
Processing using Streaming Partitions. ACM 
Symposium on Operating Syst. 2013.
[2] S. Zhou et al. High-throughput and Energy-
efficient Graph Processing on FPGA. FCCM. 2016.

Large graphs…

Problems?

Low power 
efficiency!

250 
Watts

Graph
Problem

CPU (MTEPS/Watt) [1] FPGA (MTEPS/Watt) [2]

SSSP 1.9 30.2

CC 0.5 48.1

MST 0.6 44.3

120 
Watts

Let’s use FPGAs for 
Maximum Matchings...



spcl.inf.ethz.ch

@spcl_eth

Large graphs…



spcl.inf.ethz.ch

@spcl_eth

Large graphs…



spcl.inf.ethz.ch

@spcl_eth

Large graphs…



spcl.inf.ethz.ch

@spcl_eth

Large graphs…



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

250 
Watts

120 
Watts



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

250 
Watts

120 
Watts



spcl.inf.ethz.ch

@spcl_eth

Large graphs…



spcl.inf.ethz.ch

@spcl_eth

Large graphs…



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Why do we care?



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Why do we care?

Useful model



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Why do we care?

Social networks

Useful model



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Why do we care?

Social networks

Engineering networksUseful model



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Why do we care?

Social networks

Engineering networksUseful model

Biological networks



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Why do we care?

Social networks

Engineering networksUseful model

Biological networks
Physics, chemistry 



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Why do we care?

Social networks

Engineering networksUseful model

Biological networks
Physics, chemistry 

Communication networks



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Why do we care?

Social networks

Engineering networksUseful model

Biological networks
Physics, chemistry 

Communication networks

Machine learning



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Why do we care?

Social networks

Engineering networksUseful model

Biological networks
Physics, chemistry 

Communication networks

...even philosophy

Machine learning



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Why do we care?

Social networks

Engineering networksUseful model

Biological networks
Physics, chemistry 

Communication networks

...even philosophy

Machine learning



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Why do we care?

Social networks

Engineering networksUseful model

Biological networks
Physics, chemistry 

Communication networks

...even philosophy

Machine learning

Collaborator experience?

Disease spread 
channels?

Terrorism 
prevention?

Most relevant 
protein?

Gene alignment?

Brain 
structure?

Best phone 
connection?

Least expensive 
computer network?

Shortest 
network path?

Most efficient 
road network?

Most reliable grid 
network?

Shortest
path?



spcl.inf.ethz.ch

@spcl_eth



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

What are the most 
promising techniques?



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

What are the most 
promising techniques?

Part 1: To understand the domain well, 
we conducted a detailed analysis of 

graph processing on FPGAs



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

Part 1: To understand the domain well, we conducted 
a detailed analysis of graph processing on FPGAs

What are the most 
promising techniques?



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

7 paradigms

Part 1: To understand the domain well, we conducted 
a detailed analysis of graph processing on FPGAs

What are the most 
promising techniques?



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

7 paradigms

Part 1: To understand the domain well, we conducted 
a detailed analysis of graph processing on FPGAs

What are the most 
promising techniques?

~15 FPGA graph 
processing frameworks



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

7 paradigms

Part 1: To understand the domain well, we conducted 
a detailed analysis of graph processing on FPGAs

What are the most 
promising techniques?

~25 FPGA accelerators 
for specific algorithms

~15 FPGA graph 
processing frameworks



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

7 paradigms

Part 1: To understand the domain well, we conducted 
a detailed analysis of graph processing on FPGAs

Key techniques, 
challenges, 
features, …

What are the most 
promising techniques?

~25 FPGA accelerators 
for specific algorithms

~15 FPGA graph 
processing frameworks



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

7 paradigms

Part 1: To understand the domain well, we conducted 
a detailed analysis of graph processing on FPGAs

Key techniques, 
challenges, 
features, …

Selected MWM-related parts are 
in the FPGA paper, the rest is in…

What are the most 
promising techniques?

~25 FPGA accelerators 
for specific algorithms

~15 FPGA graph 
processing frameworks



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

7 paradigms

Part 1: To understand the domain well, we conducted 
a detailed analysis of graph processing on FPGAs

Key techniques, 
challenges, 
features, …

Selected MWM-related parts are 
in the FPGA paper, the rest is in…

What are the most 
promising techniques?

~25 FPGA accelerators 
for specific algorithms

~15 FPGA graph 
processing frameworks



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?

7 paradigms

Part 1: To understand the domain well, we conducted 
a detailed analysis of graph processing on FPGAs

Key techniques, 
challenges, 
features, …

Selected MWM-related parts are 
in the FPGA paper, the rest is in…

What are the most 
promising techniques?

~25 FPGA accelerators 
for specific algorithms

~15 FPGA graph 
processing frameworks



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

Well... What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

Well...It was designed with the 
“batch” analytics in mind.

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

Well...

Assumes the whole input 
graph is accessible…

It was designed with the 
“batch” analytics in mind.

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

Well...

Assumes the whole input 
graph is accessible…

It was designed with the 
“batch” analytics in mind.

…when in BRAM, size 
is severely limited

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

Well...

Assumes the whole input 
graph is accessible…

It was designed with the 
“batch” analytics in mind.

…when in BRAM, size 
is severely limited

…when in DRAM, 
accessing & 

pipelining become 
complex

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

Well...

Assumes the whole input 
graph is accessible…

It was designed with the 
“batch” analytics in mind.

…when in BRAM, size 
is severely limited

…when in DRAM, 
accessing & 

pipelining become 
complex

[1] S. Salihoglu and J. Widom, 
“Optimizing graph algorithms on 
Pregel-like systems”. VLDB. 2014.

“(...) implementing graph algorithms 
efficiently on Pregel-like systems (...) can 
be surprisingly difficult and require careful 
optimizations.” [1]

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

Well...

Assumes the whole input 
graph is accessible…

It was designed with the 
“batch” analytics in mind.

…when in BRAM, size 
is severely limited

…when in DRAM, 
accessing & 

pipelining become 
complex

[1] S. Salihoglu and J. Widom, 
“Optimizing graph algorithms on 
Pregel-like systems”. VLDB. 2014.

“(...) implementing graph algorithms 
efficiently on Pregel-like systems (...) can 
be surprisingly difficult and require careful 
optimizations.” [1]

What programming 
paradigm and why?

Vertex-Centric (aka Pregel-
like) approach is complex for 
problems such as matchings, 

spanning trees, etc.



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

- It was designed 
with the “batch” 
analytics in mind.

- It assumes the 
whole input is 
accesible. When in 
DRAM, accessing & 
pipelining becomes 
complex.

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

- It was designed 
with the “batch” 
analytics in mind.

- It assumes the 
whole input is 
accesible. When in 
DRAM, accessing & 
pipelining becomes 
complex.

[1] S. Salihoglu and J. Widom, 
“Optimizing graph algorithms on 
Pregel-like systems”. VLDB. 2014.

“(...) implementing graph algorithms 
efficiently on Pregel-like systems (...) can 
be surprisingly difficult and require careful 
optimizations.” [1]

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

- It was designed 
with the “batch” 
analytics in mind.

- It assumes the 
whole input is 
accesible. When in 
DRAM, accessing & 
pipelining becomes 
complex.

[1] S. Salihoglu and J. Widom, 
“Optimizing graph algorithms on 
Pregel-like systems”. VLDB. 2014.

“(...) implementing graph algorithms 
efficiently on Pregel-like systems (...) can 
be surprisingly difficult and require careful 
optimizations.” [1]

What programming 
paradigm and why?

Vertex-Centric (aka Pregel-
like) approach is complex for 
problems such as matchings, 

spanning trees, etc.



spcl.inf.ethz.ch

@spcl_eth

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

- It was designed 
with the “batch” 
analytics in mind.

- It assumes the 
whole input is 
accesible. When in 
DRAM, accessing & 
pipelining becomes 
complex.

[1] S. Salihoglu and J. Widom, 
“Optimizing graph algorithms on 
Pregel-like systems”. VLDB. 2014.

“(...) implementing graph algorithms 
efficiently on Pregel-like systems (...) can 
be surprisingly difficult and require careful 
optimizations.” [1]

What programming 
paradigm and why?

Vertex-Centric (aka Pregel-
like) approach is complex for 
problems such as matchings, 

spanning trees, etc.

To be able to utilize pipelining 
well, we really want to use 

streaming (aka the edge-centric 
paradigm)



spcl.inf.ethz.ch

@spcl_eth

Well...

Assumes the whole input 
graph is accessible…

Can be used but it was 
designed with the “batch” 

analytics in mind

…when in DRAM, 
accessing & 

parallelization 
become complex

KONECT graph datasets

Webgraph 
datasets

Vertex-centric, 
Gather-Apply-

Scatter, ... ?

What programming 
paradigm and why?

…when in BRAM, size 
is severely limited



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

DRAM

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

DRAM

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

DRAM

Some processing unit 
(CPU, GPU, FPGA, …)

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

DRAM

Some processing unit 
(CPU, GPU, FPGA, …)

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

DRAM

Some processing unit 
(CPU, GPU, FPGA, …)

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

DRAM

Some processing unit 
(CPU, GPU, FPGA, …)

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

DRAM

Some processing unit 
(CPU, GPU, FPGA, …)

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

DRAM

Some processing unit 
(CPU, GPU, FPGA, …)

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

DRAM

Some processing unit 
(CPU, GPU, FPGA, …)

How to implement 
efficiently on an FPGA?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Processing edges is 
sequential – how to 

incorporate parallelism?

DRAM

Some processing unit 
(CPU, GPU, FPGA, …)

How to implement 
efficiently on an FPGA?

What programming 
paradigm and why?



spcl.inf.ethz.ch

@spcl_eth

Processing edges is 
sequential – how to 

incorporate parallelism?

DRAM

Some processing unit 
(CPU, GPU, FPGA, …)

How to minimize the number of “passes” 
over edges? (This can get really bad in 

the “traditional” edge-centric approach, 
e.g., BFS normally needs O(m+n) work, 
while in the edge-centric approach it 

takes O(D m) work (D passes [1]), 

How to implement 
efficiently on an FPGA?

What programming 
paradigm and why?

[1] A. Roy et al. X-stream: Edge-Centric Graph Processing using Streaming Partitions. SOSP. 2013.

m: #edges in a graph
n: #vertices in a graph
D: graph’s diameter

(usually ~5-15)



spcl.inf.ethz.ch

@spcl_eth



spcl.inf.ethz.ch

@spcl_eth

Hundreds of papers and schemes, how to 
select a “streaming model” or an 

algorithm to use? 



spcl.inf.ethz.ch

@spcl_eth

Hundreds of papers and schemes, how to 
select a “streaming model” or an 

algorithm to use? 

We analyzed…



spcl.inf.ethz.ch

@spcl_eth

Hundreds of papers and schemes, how to 
select a “streaming model” or an 

algorithm to use? 

~15 models for streaming 
graph processing

We analyzed…



spcl.inf.ethz.ch

@spcl_eth

Hundreds of papers and schemes, how to 
select a “streaming model” or an 

algorithm to use? 

~30 algorithms for streaming 
(approximate) MWM

~15 models for streaming 
graph processing

We analyzed…



spcl.inf.ethz.ch

@spcl_eth

Hundreds of papers and schemes, how to 
select a “streaming model” or an 

algorithm to use? 

~30 algorithms for streaming 
(approximate) MWM

~15 models for streaming 
graph processing

Which one to select?We analyzed…



spcl.inf.ethz.ch

@spcl_eth

Hundreds of papers and schemes, how to 
select a “streaming model” or an 

algorithm to use? 

~30 algorithms for streaming 
(approximate) MWM

~15 models for streaming 
graph processing

Which one to select?

Any interesting idea to use
in the context of FPGAs and 

substream-centric processing?

We analyzed…



spcl.inf.ethz.ch

@spcl_eth

Hundreds of papers and schemes, how to 
select a “streaming model” or an 

algorithm to use? 

~30 algorithms for streaming 
(approximate) MWM

~15 models for streaming 
graph processing

We investigated the vast majority 
of cases, and… guess what 

happened

Which one to select?

Any interesting idea to use
in the context of FPGAs and 

substream-centric processing?

We analyzed…



spcl.inf.ethz.ch

@spcl_eth

Hundreds of papers and schemes, how to 
select a “streaming model” or an 

algorithm to use? 

~30 algorithms for streaming 
(approximate) MWM

~15 models for streaming 
graph processing

We investigated the vast majority 
of cases, and… guess what 

happened

Which one to select?

Any interesting idea to use
in the context of FPGAs and 

substream-centric processing?

We analyzed…



spcl.inf.ethz.ch

@spcl_eth

Hundreds of papers and schemes, how to 
select a “streaming model” or an 

algorithm to use? 

~30 algorithms for streaming 
(approximate) MWM

~15 models for streaming 
graph processing

We investigated the vast majority 
of cases, and… guess what 

happened

Which one to select?

Any interesting idea to use
in the context of FPGAs and 

substream-centric processing?

We analyzed…



spcl.inf.ethz.ch

@spcl_eth



spcl.inf.ethz.ch

@spcl_eth

Part 3: Analysis of models and algorithms 
for streaming graph processing



spcl.inf.ethz.ch

@spcl_eth

Part 3: Analysis of models and algorithms 
for streaming graph processing



spcl.inf.ethz.ch

@spcl_eth

Part 3: Analysis of models and algorithms 
for streaming graph processing

~15 models for streaming 
graph processing



spcl.inf.ethz.ch

@spcl_eth

Part 3: Analysis of models and algorithms 
for streaming graph processing

~15 models for streaming 
graph processing

Which one to select?



spcl.inf.ethz.ch

@spcl_eth

Part 3: Analysis of models and algorithms 
for streaming graph processing

~15 models for streaming 
graph processing

Which one to select?

Why even 
should we care?



spcl.inf.ethz.ch

@spcl_eth

Part 3: Analysis of models and algorithms 
for streaming graph processing

~15 models for streaming 
graph processing

Which one to select?

Why even 
should we care?



spcl.inf.ethz.ch

@spcl_eth

Part 3: Analysis of models and algorithms 
for streaming graph processing

~15 models for streaming 
graph processing

Which one to select?

Why even 
should we care?



spcl.inf.ethz.ch

@spcl_eth

Part 3: Analysis of models and algorithms 
for streaming graph processing

~15 models for streaming 
graph processing

Which one to select?

Why even 
should we care?



spcl.inf.ethz.ch

@spcl_eth

~15 models for streaming 
graph processing

Which one to select?



spcl.inf.ethz.ch

@spcl_eth

StreamSort

Vertex-arrival

W-Stream Sliding window

Semi-streaming

Cash-
register

Dynamic

Adjacency-list

Simple 
streaming

Annotated 
streaming

Insert-only

Turnstile

Online

MapReduce

Graph 
Sketching

MUD

~15 models for streaming 
graph processing

Which one to select?



spcl.inf.ethz.ch

@spcl_eth

StreamSort

Vertex-arrival

W-Stream Sliding window

Semi-streaming

Cash-
register

Dynamic

Adjacency-list

Simple 
streaming

Annotated 
streaming

Insert-only

Turnstile

Online

MapReduce

Graph 
Sketching

MUD

~15 models for streaming 
graph processing

Which one to select?



spcl.inf.ethz.ch

@spcl_eth

StreamSort

Vertex-arrival

W-Stream Sliding window

Semi-streaming

Cash-
register

Dynamic

Adjacency-list

Simple 
streaming

Annotated 
streaming

Insert-only

Turnstile

Online

MapReduce

Graph 
Sketching

MUD

~15 models for streaming 
graph processing

Which one to select?



spcl.inf.ethz.ch

@spcl_eth

Semi-streaming [1]

[1] J. Feigenbaum et al. On graph problems in a semi-streaming model. Theoretical CS, 2005



spcl.inf.ethz.ch

@spcl_eth

Semi-streaming [1]Why semi-streaming, and 
what does it mean?

[1] J. Feigenbaum et al. On graph problems in a semi-streaming model. Theoretical CS, 2005



spcl.inf.ethz.ch

@spcl_eth

Semi-streaming [1]

Covers a general streaming 
setting (= works for 
substream-centric)

Why semi-streaming, and 
what does it mean?

[1] J. Feigenbaum et al. On graph problems in a semi-streaming model. Theoretical CS, 2005



spcl.inf.ethz.ch

@spcl_eth

Semi-streaming [1]

Covers a general streaming 
setting (= works for 
substream-centric)

Why semi-streaming, and 
what does it mean?

[1] J. Feigenbaum et al. On graph problems in a semi-streaming model. Theoretical CS, 2005



spcl.inf.ethz.ch

@spcl_eth

Semi-streaming [1]

Covers a general streaming 
setting (= works for 
substream-centric)

Assumes O(n logc n) local space that 
can be used for processing an edge 

fits well FPGA BRAM constraints!

Why semi-streaming, and 
what does it mean?

[1] J. Feigenbaum et al. On graph problems in a semi-streaming model. Theoretical CS, 2005



spcl.inf.ethz.ch

@spcl_eth

Semi-streaming [1]

Covers a general streaming 
setting (= works for 
substream-centric)

Offers (potentially 
powerful) MWM 

algorithms

Assumes O(n logc n) local space that 
can be used for processing an edge 

fits well FPGA BRAM constraints!

Why semi-streaming, and 
what does it mean?

[1] J. Feigenbaum et al. On graph problems in a semi-streaming model. Theoretical CS, 2005



spcl.inf.ethz.ch

@spcl_eth

Research Questions

Which programming 
paradigm to use for 

(approximate) MWM?

How to design a high-
performance MWM 

algorithm (as dictated 
by the used paradigm)?

What is the HW FPGA 
design that ensures 
high performance?

What is the ultimate 
performance, power 

consumption, and the 
related tradeoffs?



spcl.inf.ethz.ch

@spcl_eth

Research Questions

Which programming 
paradigm to use for 

(approximate) MWM?

How to design a high-
performance MWM 

algorithm (as dictated 
by the used paradigm)?

What is the HW FPGA 
design that ensures 
high performance?

What is the ultimate 
performance, power 

consumption, and the 
related tradeoffs?



spcl.inf.ethz.ch

@spcl_eth

Research Questions

Which programming 
paradigm to use for 

(approximate) MWM?

How to design a high-
performance MWM 

algorithm (as dictated 
by the used paradigm)?

What is the HW FPGA 
design that ensures 
high performance?

What is the ultimate 
performance, power 

consumption, and the 
related tradeoffs?



spcl.inf.ethz.ch

@spcl_eth

Research Questions

Which programming 
paradigm to use for 

(approximate) MWM?

How to design a high-
performance MWM 

algorithm (as dictated 
by the used paradigm)?

What is the HW FPGA 
design that ensures 
high performance?

What is the ultimate 
performance, power 

consumption, and the 
related tradeoffs?



spcl.inf.ethz.ch

@spcl_eth

Part 3 continued: Analysis of models and 
algorithms for streaming graph processing



spcl.inf.ethz.ch

@spcl_eth

Part 3 continued: Analysis of models and 
algorithms for streaming graph processing



spcl.inf.ethz.ch

@spcl_eth

Part 3 continued : 
Analysis of models and 

algorithms for streaming 
graph processing



spcl.inf.ethz.ch

@spcl_eth

Part 3 continued : 
Analysis of models and 

algorithms for streaming 
graph processing

~30 algorithms for streaming 
(approximate) MWM (in the 

semi-streaming model)



spcl.inf.ethz.ch

@spcl_eth

Part 3 continued : 
Analysis of models and 

algorithms for streaming 
graph processing

~30 algorithms for streaming 
(approximate) MWM (in the 

semi-streaming model)

Any interesting idea to use
in the context of FPGAs and 

substream-centric processing?



spcl.inf.ethz.ch

@spcl_eth

Part 3 continued : 
Analysis of models and 

algorithms for streaming 
graph processing

~30 algorithms for streaming 
(approximate) MWM (in the 

semi-streaming model)

Any interesting idea to use
in the context of FPGAs and 

substream-centric processing?

More specifically...



spcl.inf.ethz.ch

@spcl_eth

Part 3 continued : 
Analysis of models and 

algorithms for streaming 
graph processing

~30 algorithms for streaming 
(approximate) MWM (in the 

semi-streaming model)

Any interesting idea to use
in the context of FPGAs and 

substream-centric processing?

More specifically...



spcl.inf.ethz.ch

@spcl_eth

Part 3 continued : 
Analysis of models and 

algorithms for streaming 
graph processing

~30 algorithms for streaming 
(approximate) MWM (in the 

semi-streaming model)

Any interesting idea to use
in the context of FPGAs and 

substream-centric processing?

More specifically...



spcl.inf.ethz.ch

@spcl_eth

Part 3 continued : 
Analysis of models and 

algorithms for streaming 
graph processing

~30 algorithms for streaming 
(approximate) MWM (in the 

semi-streaming model)

Any interesting idea to use
in the context of FPGAs and 

substream-centric processing?

Our
goals:

More specifically...



spcl.inf.ethz.ch

@spcl_eth

Part 3 continued : 
Analysis of models and 

algorithms for streaming 
graph processing

~30 algorithms for streaming 
(approximate) MWM (in the 

semi-streaming model)

Any interesting idea to use
in the context of FPGAs and 

substream-centric processing?

Maximize 
accuracy

Our
goals:

More specifically...



spcl.inf.ethz.ch

@spcl_eth

Part 3 continued : 
Analysis of models and 

algorithms for streaming 
graph processing

~30 algorithms for streaming 
(approximate) MWM (in the 

semi-streaming model)

Any interesting idea to use
in the context of FPGAs and 

substream-centric processing?

Maximize 
accuracy

Our
goals:

Minimize 
local space

More specifically...



spcl.inf.ethz.ch

@spcl_eth

Part 3 continued : 
Analysis of models and 

algorithms for streaming 
graph processing

~30 algorithms for streaming 
(approximate) MWM (in the 

semi-streaming model)

Any interesting idea to use
in the context of FPGAs and 

substream-centric processing?

Maximize 
accuracy

Our
goals:

Minimize 
local space

Minimize 
#passes

More specifically...



spcl.inf.ethz.ch

@spcl_eth

Part 3 continued : 
Analysis of models and 

algorithms for streaming 
graph processing

~30 algorithms for streaming 
(approximate) MWM (in the 

semi-streaming model)

Any interesting idea to use
in the context of FPGAs and 

substream-centric processing?

Maximize 
accuracy

Our
goals:

Minimize 
local space

Minimize 
#passes

Accept 
weighted 

graphs

More specifically...



spcl.inf.ethz.ch

@spcl_eth

Part 3 continued : 
Analysis of models and 

algorithms for streaming 
graph processing

~30 algorithms for streaming 
(approximate) MWM (in the 

semi-streaming model)

Any interesting idea to use
in the context of FPGAs and 

substream-centric processing?

Maximize 
accuracy

Our
goals:

Minimize 
local space

Minimize 
#passes

Accept 
weighted 

graphs

Accept 
general (not 

just bipartite) 
graphs

More specifically...



spcl.inf.ethz.ch

@spcl_eth

Part 3 continued : 
Analysis of models and 

algorithms for streaming 
graph processing

~30 algorithms for streaming 
(approximate) MWM (in the 

semi-streaming model)

Any interesting idea to use
in the context of FPGAs and 

substream-centric processing?

Maximize 
accuracy

Our
goals:

Minimize 
local space

Minimize 
#passes

Accept 
weighted 

graphs

Expose 
parallelism 

(match 
substream-

centric)
Accept 

general (not 
just bipartite) 

graphs

More specifically...



spcl.inf.ethz.ch

@spcl_eth

Part 3 continued : 
Analysis of models and 

algorithms for streaming 
graph processing

~30 algorithms for streaming 
(approximate) MWM (in the 

semi-streaming model)

Any interesting idea to use
in the context of FPGAs and 

substream-centric processing?

Maximize 
accuracy

Our
goals:

Minimize 
local space

Minimize 
#passes

Accept 
weighted 

graphs

Expose 
parallelism 

(match 
substream-

centric)
Accept 

general (not 
just bipartite) 

graphs

More specifically...



spcl.inf.ethz.ch

@spcl_eth

Which programming paradigm 
to use for (approximate) MWM

(and many other problems)?

Research Questions

How to design a high-
performance MWM 

algorithm (as dictated 
by the used paradigm)?

What is the HW FPGA 
design that ensures 
high performance?

What is the ultimate 
performance, power 

consumption, and the 
related tradeoffs?



spcl.inf.ethz.ch

@spcl_eth

Which programming paradigm 
to use for (approximate) MWM

(and many other problems)?

Research Questions

How to design a high-
performance MWM 

algorithm (as dictated 
by the used paradigm)?

What is the HW FPGA 
design that ensures 
high performance?

What is the ultimate 
performance, power 

consumption, and the 
related tradeoffs?



spcl.inf.ethz.ch

@spcl_eth

Which programming paradigm 
to use for (approximate) MWM

(and many other problems)?

Research Questions

How to design a high-
performance MWM 

algorithm (as dictated 
by the used paradigm)?

What is the HW FPGA 
design that ensures 
high performance?

What is the ultimate 
performance, power 

consumption, and the 
related tradeoffs?



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric MWM: FPGA optimizations



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric MWM: FPGA optimizations



spcl.inf.ethz.ch

@spcl_eth

Substream-Centric MWM: FPGA optimizations



spcl.inf.ethz.ch

@spcl_eth

Vectorization

Blocking / Tiling

Pipelining
Prefetching

Substream-Centric MWM: FPGA optimizations



spcl.inf.ethz.ch

@spcl_eth

Vectorization

Blocking / Tiling

Pipelining
Prefetching

They are often used in graph 
processing schemes on FPGAs; 

we apply them as well.

Substream-Centric MWM: FPGA optimizations



spcl.inf.ethz.ch

@spcl_eth

Vectorization

Blocking / Tiling

Pipelining
Prefetching

They are often used in graph 
processing schemes on FPGAs; 

we apply them as well.

Substream-Centric MWM: FPGA optimizations



spcl.inf.ethz.ch

@spcl_eth

THE SPACE OF SUBSTREAM-CENTRIC

Accuracy

P
e

rf
o

rm
an

ce

Design ADesign B



spcl.inf.ethz.ch

@spcl_eth

Research Questions

Which programming 
paradigm to use for 

(approximate) MWM?

How to design a high-
performance MWM 

algorithm (as dictated 
by the used paradigm)?

What is the HW FPGA 
design that ensures 
high performance?

What is the ultimate 
performance, power 

consumption, and the 
related tradeoffs?



spcl.inf.ethz.ch

@spcl_eth

Research Questions

Which programming 
paradigm to use for 

(approximate) MWM?

How to design a high-
performance MWM 

algorithm (as dictated 
by the used paradigm)?

What is the HW FPGA 
design that ensures 
high performance?

What is the ultimate 
performance, power 

consumption, and the 
related tradeoffs?



spcl.inf.ethz.ch

@spcl_eth

Research Questions

Which programming 
paradigm to use for 

(approximate) MWM?

How to design a high-
performance MWM 

algorithm (as dictated 
by the used paradigm)?

What is the HW FPGA 
design that ensures 
high performance?

What is the ultimate 
performance, power 

consumption, and the 
related tradeoffs?



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

VARIOUS GRAPHS

Parameters:
Blocking size = 32, #Substreams = 64
#Threads = 4, ε = 0.1

Hybrid Hybrid

CPU

CPU



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

VARIOUS GRAPHS

Parameters:
Blocking size = 32, #Substreams = 64
#Threads = 4, ε = 0.1

Hybrid Hybrid

CPU

CPU



spcl.inf.ethz.ch

@spcl_eth

SC-OPT secures 
highest performance

PERFORMANCE ANALYSIS

VARIOUS GRAPHS

Parameters:
Blocking size = 32, #Substreams = 64
#Threads = 4, ε = 0.1

Hybrid Hybrid

CPU

CPU



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

VARIOUS THREAD (CPU) COUNTS



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

VARIOUS THREAD (CPU) COUNTS

Blocking size = 32, #Substreams = 64
#edges = 16M (Kronecker), ε = 0.1



spcl.inf.ethz.ch

@spcl_eth

SC-OPT secures highest performance 
for all considered numbers of threads

PERFORMANCE ANALYSIS

VARIOUS THREAD (CPU) COUNTS

Blocking size = 32, #Substreams = 64
#edges = 16M (Kronecker), ε = 0.1



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

VARIOUS BLOCKING SIZE (K) AND #SUBSTREAMS (L)



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

VARIOUS BLOCKING SIZE (K) AND #SUBSTREAMS (L)

Blocking size (K) = 32, #threads = 4,
#edges = 16M (Kronecker), ε = 0.1

#Substreams (L) = 128, #threads = 4,
#edges = 16M (Kronecker), ε = 0.1



spcl.inf.ethz.ch

@spcl_eth

SC-OPT secures highest performance 
for all considered values of parameters

PERFORMANCE ANALYSIS

VARIOUS BLOCKING SIZE (K) AND #SUBSTREAMS (L)

Blocking size (K) = 32, #threads = 4,
#edges = 16M (Kronecker), ε = 0.1

#Substreams (L) = 128, #threads = 4,
#edges = 16M (Kronecker), ε = 0.1



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

APPROXIMATION



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

APPROXIMATION

Blocking size (K) = 32, #threads = 4,
#Substreams (L) = 128 , ε = 0.1

#Substreams (L) = 128, Blocking size (K) = 32, 
#threads = 4, #edges = 8M (Kronecker)



spcl.inf.ethz.ch

@spcl_eth

SC-OPT is comparable to the (2+ε)-
approximation by Ghaffari et al.

PERFORMANCE ANALYSIS

APPROXIMATION

Blocking size (K) = 32, #threads = 4,
#Substreams (L) = 128 , ε = 0.1

#Substreams (L) = 128, Blocking size (K) = 32, 
#threads = 4, #edges = 8M (Kronecker)



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES



spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS, PROBLEMS, ANALYSES



spcl.inf.ethz.ch

@spcl_eth

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

50

An incoming edge...



spcl.inf.ethz.ch

@spcl_eth

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

e = (u, v, weight)

50

An incoming edge...



spcl.inf.ethz.ch

@spcl_eth

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

e = (u, v, weight)

50

An incoming edge...

Vertices + matchings (correctness)



spcl.inf.ethz.ch

@spcl_eth

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

1
0
1
0
0

0
0
0
0
0

e = (u, v, weight)

50

An incoming edge...

Vertices + matchings (correctness)



spcl.inf.ethz.ch

@spcl_eth

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

1
0
1
0
0

0
0
0
0
0

e = (u, v, weight)

50

An incoming edge...

n „column” bit vectors 
(one per vertex)

Vertices + matchings (correctness)



spcl.inf.ethz.ch

@spcl_eth

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

1
0
1
0
0

0
0
0
0
0

e = (u, v, weight)

50

L
„r

o
w

” 
b

it
 v

ec
to

rs
 (

o
n

e 
p

er
 s

u
b

st
re

am
)

An incoming edge...

n „column” bit vectors 
(one per vertex)

Vertices + matchings (correctness)



spcl.inf.ethz.ch

@spcl_eth

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

1
0
1
0
0

0
0
0
0
0

e = (u, v, weight)

50

L
„r

o
w

” 
b

it
 v

ec
to

rs
 (

o
n

e 
p

er
 s

u
b

st
re

am
)

An incoming edge...

n „column” bit vectors 
(one per vertex)

(L = 5)

Vertices + matchings (correctness)



spcl.inf.ethz.ch

@spcl_eth

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

1
0
1
0
0

0
0
0
0
0

e = (u, v, weight)

50

L
„r

o
w

” 
b

it
 v

ec
to

rs
 (

o
n

e 
p

er
 s

u
b

st
re

am
)

An incoming edge...

n „column” bit vectors 
(one per vertex)

u-th 
vector

(L = 5)

Vertices + matchings (correctness)



spcl.inf.ethz.ch

@spcl_eth

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

1
0
1
0
0

0
0
0
0
0

e = (u, v, weight)

50

L
„r

o
w

” 
b

it
 v

ec
to

rs
 (

o
n

e 
p

er
 s

u
b

st
re

am
)

An incoming edge...

n „column” bit vectors 
(one per vertex)

u-th 
vector

v-th 
vector

(L = 5)

Vertices + matchings (correctness)



spcl.inf.ethz.ch

@spcl_eth

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

1
0
1
0
0

0
0
0
0
0

e = (u, v, weight)

50

L
„r

o
w

” 
b

it
 v

ec
to

rs
 (

o
n

e 
p

er
 s

u
b

st
re

am
)

...

An incoming edge...

n „column” bit vectors 
(one per vertex)

u-th 
vector

v-th 
vector

(L = 5)

Vertices + matchings (correctness)



spcl.inf.ethz.ch

@spcl_eth

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

1
0
1
0
0

0
0
0
0
0

e = (u, v, weight)

50

L
„r

o
w

” 
b

it
 v

ec
to

rs
 (

o
n

e 
p

er
 s

u
b

st
re

am
)

...

An incoming edge...

n „column” bit vectors 
(one per vertex)

Vertex u is a part of a 
matching in substreams 0, 2

u-th 
vector

v-th 
vector

(L = 5)

Vertices + matchings (correctness)



spcl.inf.ethz.ch

@spcl_eth

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

1
0
1
0
0

0
0
0
0
0

e = (u, v, weight)

50

L
„r

o
w

” 
b

it
 v

ec
to

rs
 (

o
n

e 
p

er
 s

u
b

st
re

am
)

...

An incoming edge...

n „column” bit vectors 
(one per vertex)

Vertex u is a part of a 
matching in substreams 0, 2

u-th 
vector

v-th 
vector

Vertex v is 
not a part of 
any matching

(L = 5)

Vertices + matchings (correctness)



spcl.inf.ethz.ch

@spcl_eth

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

1
0
1
0
0

0
0
0
0
0

e = (u, v, weight)

50

L
„r

o
w

” 
b

it
 v

ec
to

rs
 (

o
n

e 
p

er
 s

u
b

st
re

am
)

...

An incoming edge...

n „column” bit vectors 
(one per vertex)

Vertex u is a part of a 
matching in substreams 0, 2

u-th 
vector

v-th 
vector

Vertex v is 
not a part of 
any matching

(L = 5)

Vertices + matchings (correctness) Edges + matchings (more performance)



spcl.inf.ethz.ch

@spcl_eth

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

1
0
1
0
0

0
0
0
0
0

e = (u, v, weight)

50

L
„r

o
w

” 
b

it
 v

ec
to

rs
 (

o
n

e 
p

er
 s

u
b

st
re

am
)

...

An incoming edge...

n „column” bit vectors 
(one per vertex)

Vertex u is a part of a 
matching in substreams 0, 2

u-th 
vector

v-th 
vector

Vertex v is 
not a part of 
any matching

(L = 5)

1
0
1
0
0

Vertices + matchings (correctness) Edges + matchings (more performance)



spcl.inf.ethz.ch

@spcl_eth

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

1
0
1
0
0

0
0
0
0
0

e = (u, v, weight)

50

L
„r

o
w

” 
b

it
 v

ec
to

rs
 (

o
n

e 
p

er
 s

u
b

st
re

am
)

...

An incoming edge...

n „column” bit vectors 
(one per vertex)

Vertex u is a part of a 
matching in substreams 0, 2

u-th 
vector

v-th 
vector

Vertex v is 
not a part of 
any matching

(L = 5)

1
0
1
0
0

L
b

it
s 

(o
n

e 
p

er
 

su
b

st
re

am
)

Vertices + matchings (correctness) Edges + matchings (more performance)



spcl.inf.ethz.ch

@spcl_eth

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

1
0
1
0
0

0
0
0
0
0

e = (u, v, weight)

50

L
„r

o
w

” 
b

it
 v

ec
to

rs
 (

o
n

e 
p

er
 s

u
b

st
re

am
)

...

An incoming edge...

n „column” bit vectors 
(one per vertex)

Vertex u is a part of a 
matching in substreams 0, 2

u-th 
vector

v-th 
vector

Vertex v is 
not a part of 
any matching

(L = 5)

1
0
1
0
0

L
b

it
s 

(o
n

e 
p

er
 

su
b

st
re

am
)

(L = 5)

Vertices + matchings (correctness) Edges + matchings (more performance)



spcl.inf.ethz.ch

@spcl_eth

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

1
0
1
0
0

0
0
0
0
0

e = (u, v, weight)

50

L
„r

o
w

” 
b

it
 v

ec
to

rs
 (

o
n

e 
p

er
 s

u
b

st
re

am
)

...

An incoming edge...

n „column” bit vectors 
(one per vertex)

Vertex u is a part of a 
matching in substreams 0, 2

u-th 
vector

v-th 
vector

Vertex v is 
not a part of 
any matching

(L = 5)

1
0
1
0
0

L
b

it
s 

(o
n

e 
p

er
 

su
b

st
re

am
)

For the current 
edge, is...

(L = 5)

Vertices + matchings (correctness) Edges + matchings (more performance)



spcl.inf.ethz.ch

@spcl_eth

MATCHING BITS: KEY DATA STRUCTURES FOR MAINTAINING INFORMATION ON MATCHINGS

1
0
1
0
0

0
0
0
0
0

e = (u, v, weight)

50

L
„r

o
w

” 
b

it
 v

ec
to

rs
 (

o
n

e 
p

er
 s

u
b

st
re

am
)

...

An incoming edge...

n „column” bit vectors 
(one per vertex)

Vertex u is a part of a 
matching in substreams 0, 2

u-th 
vector

v-th 
vector

Vertex v is 
not a part of 
any matching

(L = 5)

1
0
1
0
0

L
b

it
s 

(o
n

e 
p

er
 

su
b

st
re

am
)

For the current 
edge, is...

(L = 5)

Vertices + matchings (correctness) Edges + matchings (more performance)

weight ≥ 1 + 𝜖 0 ?

weight ≥ 1 + 𝜖 1 ?

weight ≥ 1 + 𝜖 2 ?

weight ≥ 1 + 𝜖 3 ?

weight ≥ 1 + 𝜖 4 ?



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

VARIOUS #SUBSTREAMS (L)

Parameters:
Blocking size (K) = 32, 
#threads = 4,
#edges = 16M 
(Kronecker), ε = 0.1

#Substreams (pipelines)



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

VARIOUS #SUBSTREAMS (L)

Parameters:
Blocking size (K) = 32, 
#threads = 4,
#edges = 16M 
(Kronecker), ε = 0.1

#Substreams (pipelines)



spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

VARIOUS #SUBSTREAMS (L)

Parameters:
Blocking size (K) = 32, 
#threads = 4,
#edges = 16M 
(Kronecker), ε = 0.1

#Substreams (pipelines)

Hybrid

CPU



spcl.inf.ethz.ch

@spcl_eth

SC-OPT secures 
highest performance 

for all considered 
values of parameters

PERFORMANCE ANALYSIS

VARIOUS #SUBSTREAMS (L)

Parameters:
Blocking size (K) = 32, 
#threads = 4,
#edges = 16M 
(Kronecker), ε = 0.1

#Substreams (pipelines)

Hybrid

CPU



spcl.inf.ethz.ch

@spcl_eth

Large graphs…



spcl.inf.ethz.ch

@spcl_eth

Large graphs…



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

250 
Watts

120 
Watts



spcl.inf.ethz.ch

@spcl_eth

Large graphs…

250 
Watts

120 
Watts


