
Optimizing non-blocking Collective Operations

for InfiniBand

Torsten Hoefler and Andrew Lumsdaine

Open Systems Lab
Indiana University
Bloomington, USA

IPDPS’08 - CAC’08 Workshop

Miami, FL, USA

April, 14th 2008

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

Introduction

Non-blocking collective operations (NBC) are beneficial to:

hide communication latency by overlapping

use the available bandwidth better

avoid detrimental effects of

pseudo-synchronization/process skew

make efficient use of the new semantics

LibNBC and MPI

LibNBC implements all MPI collective operations in a

non-blocking way on top of non-blocking MPI point-to-point

(p2p) functions.

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

Introduction

Non-blocking collective operations (NBC) are beneficial to:

hide communication latency by overlapping

use the available bandwidth better

avoid detrimental effects of

pseudo-synchronization/process skew

make efficient use of the new semantics

LibNBC and MPI

LibNBC implements all MPI collective operations in a

non-blocking way on top of non-blocking MPI point-to-point

(p2p) functions.

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

LibNBC Architecture

Schedule-based design:

a process-local schedule of p2p operations is created for

every collective operation

example; 7-process bcast, schedule on rank 1:

��
��
��
��

3

33
2

21

3

4

5 6

0

1 2

Pseudocode for schedule at rank 1:

NBC_Sched_recv(buf, count, dt, 0, schedule);

NBC_Sched_barr(schedule);

NBC_Sched_barr(schedule);

NBC_Sched_send(buf, count, dt, 5, schedule);

NBC_Sched_send(buf, count, dt, 3, schedule);

schedule in memory:
recv from 0 end send to 5send to 3end

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

Progress or no Progress?

Progress is most important for efficient overlap! LibNBC has

two levels:

LibNBC Progress

schedule execution is represented as a state machine

state and schedule are attached to every request

schedules might be cached/reused

progression in NBC_Test, NBC_Wait

MPI Progress

progress the MPI communication protocol

(a)synchronous progress?

progress has to be made in every MPI call

LibNBC scheduler calls MPI_Testall in

NBC_Test/NBC_Wait

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

MPI Progress?

focus on transport-layer (MPI) progress

many MPI implementations don’t support asynchronous

progress well

some do (MVAPICH, Open MPI) but MPI peculiarities

cause high overhead

LibNBC only requires a small subset of MPI

⇒ define and implement mini-MPI

MPI has problems? No ...

MPI_ANY_SOURCE enforces sender-based rendezvous

protocol (three messages instead of two in the receiver

based case)

⇒ MPI-3 subsetting might help (later)!

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

LibNBC’s needs?

non-blocking send (starts a send operation with low CPU

overhead)

non-blocking receive (post a receive or receive data with

low CPU overhead, sender is known)

request objects to identify the outstanding operations

communication contexts (similar to MPI communicators)

message tags (tags are needed to identify operation)

message ordering must be guaranteed

test for completion (very low overhead!)

wait for completion (might sched_yield())

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

Specialized InfiniBandTM Transport Layer

mini-MPI for InfiniBand

InfiniBand’s message transmission is fully asynchronous

(once the Work Request (WR) is posted)

posting a WR is cheap (≈ 100ns)

uses RDMA-W (known scalability issues)

eager and rendezvous protocol

→ eager protocol is fully asynchronous (if credits are

available on receiver)

→ rendezvous protocol is more complex (next slide)

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

The Rendezvous Protocol

Minimize the number of synchronization points:

receiver-driven protocol (LibOF):
1 receiver sends RTR to sender (addr,r_key)
2 sender sends data after receiving RTR
3 one synchronization point

... problematic if sender arrives after receiver!

Two Progression Optimization Strategies

test-on-init (polls all CQ at the end of OF_Isend() and

OF_Irecv())

wait-on-send (polls a defined time in OF_Isend())

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

Netgauge overhead benchmarks - OF_Isend()

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 10 100 1000 10000 100000 1e+06 1e+07

O
v
e
rh

e
a
d
 (

u
s
e
c
)

Message Size (bytes)

Open MPI leave pinned
Open MPI no leave pinned

LibOFED no test-on-init
LibOFED test-on-init

LibOFED wait-on-send

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

Netgauge overhead benchmarks - OF_Irecv()

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 1 10 100 1000 10000 100000 1e+06 1e+07

O
v
e
rh

e
a
d
 (

u
s
e
c
)

Message Size (bytes)

Open MPI leave pinned
Open MPI no leave pinned

LibOFED no test-on-init
LibOFED test-on-init

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

Optimizing Wait-on-send for LibNBC

wait-on-send adds up to 5 µs per message to the CPU

overhead

LibNBC often issues multiple messages

problematic for many messages (huge communicators)

implemented OF_Startall which starts multiple

messages (like wait-on-send for multiple messages)

is called after all messages are posted

times out (to avoid deadlocks)

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

Progression Strategies

MPI and unoptimized LibOF library must be called to make

progress

libraries might use pipelined transfers (Open MPI does)

→ test frequency depends on message size

number of tests N =
⌊

size

interval

⌋

+ 1

we tested all size-intervals between 0 (no tests) and 32kiB

Benchmarks with NBCBench

1 NBCBench takes the latency of a blocking operation ǫ

2 issue a non-blocking operation

3 compute for time ǫ (and issue N equi-distant tests)

4 wait for operation to finish

5 report times for step 2 + 4 as overhead

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

NBCBench with Open MPI - NBC_Ialltoall on 64 nodes

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 50 100 150 200 250 300

O
v
e
rh

e
a
d
 (

u
s
e
c
)

Message Size (kilobytes)

pinned, 0
pinned, 1024
pinned, 2048
pinned, 8192
nopinned, 0

nopinned, 1024
nopinned, 2096
nopinned, 8192

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

NBCBench with LibOF - NBC_Ialltoall on 64 nodes

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 50 100 150 200 250 300

O
v
e
rh

e
a
d
 (

u
s
e
c
)

Message Size (kilobytes)

OMPI, 1024
OF, wait, 0

OF, testoninit, 8192
OF, notestoninit, 8192

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

NBCBench with Open MPI - NBC_Igather on 64 nodes

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 50 100 150 200 250 300

O
v
e
rh

e
a
d
 (

u
s
e
c
)

Message Size (kilobytes)

pinned, 0
pinned, 1024
pinned, 2048
pinned, 8192

nopinned, 0
nopinned, 1024
nopinned, 2096
nopinned, 8192

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

NBCBench with LibOF - NBC_Igather on 64 nodes

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 50 100 150 200 250 300

O
v
e
rh

e
a
d
 (

u
s
e
c
)

Message Size (kilobytes)

OMPI, 1024
OF, wait, 0

OF, testoninit, 8192
OF, notestoninit, 8192

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

Application Kernel Results

Parallel Compression

1 compress data in parallel

2 gather it to a single host in a pipelined fashion vs. single

gather in MPI case

3 overlap with NBC_Igather

Three-dimeonsional FFT

1 transform in two dimensions, transpose with MPI_Alltoall

and transform third dimension in MPI case

2 transform plane-by-plane and pipeline communication with

NBC_Ialltoall (overlap)

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

Parallel Compression Communication Overhead

 0

 0.1

 0.2

 0.3

 0.4

 0.5
C

o
m

m
u
n
ic

a
ti
o
n
 O

v
e
rh

e
a
d
 (

s
)

64 32 16 8

MPI/BL
MPI/NBC
OF/NBC

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

Parallel tree-dimensional FFT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

F
F

T
 C

o
m

m
u
n
ic

a
ti
o
n
 O

v
e
rh

e
a
d
 (

s
)

64 32 16 8 4 2

MPI/BL
MPI/NBC
OF/NBC

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

Conclusions and Future Work

Conclusions

defined LibNBC’s requirements for transport interface

implemented overlap-optimized InfiniBand transport

proposed and evaluated different optimizations to enhance

asynchronous progression

showed significant performance improvements in

microbenchmarks as well as application kernels

Future Work

implement high-overlap support for different networks

evaluate threaded progression strategies

offload scheduler operations/state machine to the network

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

Conclusions and Future Work

Conclusions

defined LibNBC’s requirements for transport interface

implemented overlap-optimized InfiniBand transport

proposed and evaluated different optimizations to enhance

asynchronous progression

showed significant performance improvements in

microbenchmarks as well as application kernels

Future Work

implement high-overlap support for different networks

evaluate threaded progression strategies

offload scheduler operations/state machine to the network

Torsten Hoefler and Andrew Lumsdaine LibNBC for InfiniBand

