
The Case for 

Collective Pattern Specification

Torsten Hoefler, Jeremiah Willcock, 

ArunChauhan, and Andrew Lumsdaine

Advances in Message Passing, Toronto, ON, June 2010



Torsten Hoefler and Jeremiah Willcock

Motivation and Main Theses

 Message Passing (MP) is a useful programming concept

 Reasoning is simple and (often) deterministic

 Message Passing Interface (MPI) is a proven interface definition

 MPI often cited as “assembly language of parallel 

computing”

 Not quite true as MPI offers collective communication

 But: Many relevant patterns are not covered

 e.g., nearest neighbor halo exchange

 Bulk Synchronous Parallelism is a useful 

programming model for MP programs

 Easy to reason about the state of the program

 cf. structured programming vs. goto



Torsten Hoefler and Jeremiah Willcock

Valiant’s BSP Model

 Envisioned as hardware and software model

 SPMD program execution is split into k supersteps

 All instances are in the same superstep

 Implies synchronization / synchronous execution 

 Messages can be sent and received during superstepi

 Received messages can be accessed in superstepi +1

 Our claim:

 Many algorithm communication patterns are constant or 

exhibit temporal locality

 Should be defined as such!

 Allows various optimizations

 Takes the MPI abstractions to a new (higher) level



Torsten Hoefler and Jeremiah Willcock

Classification of Communication Patterns

 We classify applications (or algorithms) into five main 

classes of communication patterns

1. Compile-time static

2. Run-time static

3. Run-time flexible

4. Dynamic

5. (Massively parallel)

 Mostly for completeness and not discussed further



Torsten Hoefler and Jeremiah Willcock

Compile-time static

 Communication pattern is completely 

described in source code

 Shape is independent of all input parameters

 Implementation in MPI

 Either collectives or bunch of send/recvs

 Proposal for “Sparse collectives” allows 

definition of arbitrary collectives (MPI 3?)

 Examples:

 MIMD Lattice Computation (MILC) – 4d grid

 Weather Research and Forecasting (WRF) – 2d grid

 ABINIT – collectives only (Alltoall for 3d FFT)



Torsten Hoefler and Jeremiah Willcock

Run-time static

 Communication pattern depends on input but is fixed 

during execution

 Can be compiled once at the beginning

 Implementation in MPI

 Use graph partitioner (ParMetis, Scotch, …)

 Send/recv communication for halo zones

 Will be supported by “Sparse Collectives”

 Examples:

 TDDFT/Octopus – finite difference stencil on real domain

 Cactus framework

 MTL-4 (sparse matrix computations)



Torsten Hoefler and Jeremiah Willcock

Run-time flexible

 Communication pattern depends on input but 

changes over time

 However, there is still some locality 

 Implementation in MPI

 Graph partitioning and load balancing

 Typically send/recv communication (often request/reply)

 Static optimization might be of little help if pattern 

changes too frequently

 Examples:

 Enzo – cosmology simulation - 3d AMR

 Cactus framework - Berger-Oliger AMR



Torsten Hoefler and Jeremiah Willcock

Dynamic

 Communication pattern only depends on input and 

has no locality

 Little can be done: BSP might not be the ideal model

 Implementation in MPI:

 Typically send/recv request/reply 

 Active message style

 Often employ “manual” termination 

detection with collectives (Allreduce)

 Not a good fit to MPI 2.2 (MPI 3?)

 Examples:

 Parallel Boost Graph Library (PBGL) – implements 

various graph algorithms on distributed memory



Torsten Hoefler and Jeremiah Willcock

Our Proposal

 Specify collective operations explicitly

 MPI has collectives

 … but they are inadequate

 Want to express sparse collectives easily

 A declarative approach to specifying communication 

patterns

 Describe the what, not the how, of communications

 An abstract specification that is implemented 

efficiently

 Don’t talk about individual messages



Torsten Hoefler and Jeremiah Willcock

Benefits

 Abstract specification

 Easier for programmers to understand

 Easier for compilers to optimize

 Overlap communication and computation

 Message coalescing, pipelining, etc.

 Does not need to be implemented as BSP (weak sync.)

 An efficient runtime

 That can choose an implementation approach based on 

memory/network tradeoffs

 Use one-sided or two-sided based on hardware



Torsten Hoefler and Jeremiah Willcock

Compile-time static

 Communication patterns expressed as a set of 

individual communication operations

 Built by quantifying over processors, array rows, etc.

 Dense and sparse collectives are supported directly

 Compiler optimizations apply readily

for all nodes p in grid:

send A[0] on p to B[n] on up(p)

and A[n] on p to B[0] on down(p)



Torsten Hoefler and Jeremiah Willcock

Run-time static and flexible

 Collective communication pattern can be generated 

at run-time, and regenerated as necessary

 Communication operations can use array references, etc.

 Compiler analyses are more difficult in these cases

 Run-time optimization must sometimes be used

 Communication patterns may not be known globally

 Not scalable for large systems

 Conversion to multicast/… trees may be impossible

for all nodes p in grid:

send A[0] on p to B[n] on next[p]



Torsten Hoefler and Jeremiah Willcock

Summary

 Communications in BSP-style programs should be 

expressed as collective operations

 We suggest using a declarative specification of the 

communication operations

 Better ease of development

 Enables compiler optimizations (e.g., removing strict 

synchronization)

 Our approach can be embedded into an existing 

programming language as a library

 Can be added incrementally to existing applications



Torsten Hoefler and Jeremiah Willcock

Thank you for your attention!

Discussion


