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Outline

• The HPC Energy Crisis

• Computer Architecture Speculations

• Algorithmic Power Estimates

• Network Power Consumption

• Power-aware Programming

• Quick Primer on Power Modeling

• This is not an Exascale talk! But it’s fun to look at!

• All images used in this talk belong to the owner!
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Some Ammunition for Politics

• US EPA Report to Congress on Server and Data Center 

Energy Efficiency, Public Law 109-431

• Data centers consumed 61 billion kilowatt-hours (kWh) in 

2006 (1.5% of total U.S. electricity consumption)

• Electricity cost of $4.5 billion (~15 power plants)

• Doubled from 2000-2006

• Koomey’s report (Jul. 2011)

• Only 56% increase through 2006-2011 though

• Attributed to virtualization and economic crisis in 2008

• Well, we’re still on an exponential curve!
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Development and Projection of Energy Costs

• Exponential requirements times linear cost growth: 
Source: T. Hoefler: Software and Hardware Techniques for Power-Efficient HPC Networking
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What is this “Energy Crisis”? (Short Story)

• Expectation: double performance every 18 months 

at roughly equal costs (including energy)

• Realization: Explicit parallelism at all levels
• Instruction (out-of-order execution comes to an end)

• Memory (implicit caching and HW prefetch end)

• Thread (simple tasking may not be efficient)

• Process (oversubscription overheads unaffordable?)

• Not only parallelism!  more parallelism!

MPPSMP Many Core Many Thread
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Memory
9%

CPU
56%

Network
33%

Source: Kogge et al. Exascale Computing Study

inefficient!

System Power Breakdown Today (Longer Story)
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CPU Power Consumption Prediction (56%) 

• Overhead: Branch prediction, reg. renaming, spec. 

execution, ILP, decoding (x86), caches, …
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Huge Overheads!
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Current Commodity Architectural Solutions

Commodity

Server
“Cell phone”

GPGPU

Vector

Superscalar

OOO issue

High power

Low perf.

Very cheap

Superscalar

OOO issue

VLIW/EPIC?

Med. power

High perf.

Expensive

Vector pipe

Many registers

Pipelined mem.

Low power

High perf.

Expensive

Multi-threaded

Shared units

Parallel memory

Low power

Cheap

Many core

Specialized

Very Low power

Very Cheap
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Future Power-aware Architectures?

• Overheads are too large!

• Especially complex logic inside the CPU

• Too complex instruction decode (esp. x86)

• OOO moves data needlessly

• Architectures are simplified

• E.g., Cell, SCC

• Small or no OOO fetch and instruction window

• Emphasize vector operations

• Fix as much as possible during compile time

• VLIW/EPIC comeback?
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(V)LIW/EPIC to the Rescue?

• (Very) Large Instruction Word ((V)LIW)

• No dynamic operation scheduling (i.e., Superscalar)

• Static scheduling, simple decode logic

• Explicit Parallel Instruction Computing (EPIC)

• Groups of operations (bundles)

• Stop bit indicates if bundle depends on previous bundles

• Complexity moved to compiler

• Very popular in low-power devices (AMD/ATI GPUs)

• But non-deterministic memory/cache times make static 

scheduling hard!
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Trends in Algorithms (Towards Co-Design)

• Most early HPC applications used regular grids

• Simple implementation and execution, structured

• However, often not efficient

• Needs to compute all grid points at full precision

• Adaptive Methods

• Less FLOPs, more science!

• Semi-structured

• Data-driven Methods

• “Informatics” applications

• Completely unstructured

T
R
E
N
D
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MT

MT

The Full Spectrum of Algorithms

for (int i=0; i<N, i++)

C[i] = A[i] + B[i]

for (int i=0; i<N, i+=s)

vec_add(A[i], B[i], C[i])

VEC

VLIW

INT  FP FP FP FP FP FP FP BR

for (int i=0; i<N, i++)

spawn(A[i] = B[i]+C[I]

Structured Unstructured

while(v = Q.pop()) {

for(int i=0, i<v.enum(), i++) {

u = v.edges[i]; // mark u

Q.push(u);

} 

VEC

while(v = Q.pop()) {

for(int i=0, i<v.enum(), i+=s) {

vec_load(u, v.edges[i]; 

vec_store(Q.end(), u);

} 

while(spawn(Q.pop())) {

for(int i=0, i<v.enum(), i+=s) {

spawn(update(v.edges[i], Q) 

} 

Less 

Regular

Algorithmic Trends
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General Architectural Observations

• Superscalar, RISC, wide OOO outside of power budget

• Maybe “small/simple” versions

• VLIW/EPIC and Vector: very power-efficient

• Performs best for static applications (e.g., graphics)

• Problems with scheduling memory accesses

• Limited performance for irregular applications with 

complex dependencies

• Multithreaded: versatile and efficient

• Simple logic, low overhead for thread state

• Good for irregular applications/complex dependencies

• Fast synchronization (full/empty bits etc.)
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Memory
18%

CPU
11%

Network
66%

Very inefficient!

Optimized CPU System Power Consumption
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Memory Power Consumption Prediction

• DRAM  Architecture (today ~2 nJ / 64 bit)

• Cache is 80% throw-away  scratchpad memory!

R
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PAGE PAGE PAGE…

Current RAS/CAS-based Desired Address-based

A
D

D
R

A
D

D
R

PAGE PAGE PAGE…

All pages active

Many refresh cycles

Small part of read data is used

Small number of pins

Few pages active

Read (refresh) only needed data

All read data is used

Large number of pins
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Memory
2%

CPU
11%

Network
79%

CPU 
13%

Optimized DRAM System Power Consumption
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“The Network is the Computer”

• We must obey the network

• Everything is a (hierarchical) network!

L
-L

in
k
 C

a
b

le
s

Super Node
(32 Nodes / 4 CEC)

P7 Chip

(8 cores)

SMP node

(32 cores)

Drawer

(256 cores)

SuperNode

(1024 cores)

Building Block
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Network Power Consumption
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A Quick Glance at Exascale

• 20 MW  20 pJ/Flop

• 20% leakage  16 pJ/Flop

• 7nm prediction: 10 pJ/Flop

• 6 pJ/Flop for data movement 

• Expected to be 10x-100x more!

Power Scale

Exaflop 20 MW Data Center

Petaflop 20 kW Rack/Cabinet

Teraflop 20 W Chip
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Programming a “Network Computer”

• Surprise: Locality is important!

• Energy consumption grows 

with distance

• “Hidden” distribution: OpenMP

• Problem: locality not exposed 

• “Explicit” distribution: PGAS,MPI

• User handles locality

• MPI supports process mapping

• Probably MPI+X in the future

But what is 

?
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So, is it really about Flops? Of course not!

• But: Flops is the default algorithm measure 

• Often set equal to algorithmic (time) complexity

• Numerous papers to reduce number of Flops

• Merriam Webster: “flop: to fail completely”

• HPC is power-limited!

• Flops are cheap, data movement is expensive, right?

 Just like using the DRAM architecture from the 80’s, we 

use algorithmic techniques from the 70’s!

• Need to consider I/O complexity instead of FP

• Good place to start reading: Hong&Kung: Red-Blue Pebble Game
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How much Data Movement is Needed? MatMul?

• Matrix Multiplication: A=BC

• NxN matrix, ≥2N2 reads, ≥ N2 writes

• Textbook algorithm has no reuse

• Example memory hierarchy model:

11 31
1 4 1 7
9 4 1 2
1 5 1 3

13 01
3 7 4 1
3 0 9 8
1 2 5 6

5

…

Core/FP Unit

Register Bank

Cache/SRAM

Memory/DRAM

50 pJ

10 pJ

100 pJ

1000 pJ

125 ps

250 ps

2 ns

100 ns

Functionality Energy Performance

-

100 

100.000

100.000.000

Capacity (FP)

Source: Dally, 2011



23/48T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

I/O Complexity and Power Complexity
• Trivial algorithm (no reuse, N>50k):

• E(N) = (2N3 + N2) * 1 nJ

• E(55k) = 332.75 kJ

• FP(55k) = 55.0003 * 50 pJ = 8.32 kJ

• Block algorithm (B=(N/C)2 CxC blocks fit in cache)

• DRAM ops: B(2N/C + C2)

• Cache ops: B(2C3 + C2)

• E(N,C) = [DRAM ops]*1nJ+[Cache ops]*0.1nJ

• E(55k,35) =  10.78 kJ + 21.48 kJ = 32.26 kJ

• Can be improved with space-filling curves 

• Lower bound for DRAM: 1.66 kJ

11 31
1 2 1 7
9 4 1 2
1 5 1 3

13 01
2 3 4 1
3 0 9 8
1 2 5 6

4

…

7
5 8

11 31
1 4 1 7
9 4 1 2
1 5 1 3

13 01
3 7 4 1
3 0 9 8
1 2 5 6

5

…

11 31
1 2 1 7
9 4 1 2
1 5 1 3
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• Assuming single-level hierarchy (ignoring register)

• Non-obvious optimization, derive & repeat

Energy- or Power-Optimal Blocking?

DRAM dominated

(2N2/C3 + N2)*1 nJ SRAM dominated

(2N2C + N2)*0.1 nJ

Optimal Energy

Optimal Runtime
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Fast Fourier Transform

• N point transform (lower bounds!!)

• 5N log N FP operations

• Cache of size C + R registers

• I/O lower bound (Hong&Kung): 

• E(N) = (N log N/log C)+(N log N/log R)*0.1+(N log N)*0.01 [nJ]

• FP(N) = 5N log N * 50 pJ

• E(100M) = 0.22 J (2.65 J w/o cache) | FP(100M) = 0.66 J

• E(100G) = 300 J (3.65 kJ w/o cache) | FP(100G) = 913 J

• Caches are well-dimensioned

• Hiding access costs, FP costs dominate  (depending on constants)

• Can be easily adapted to remote communication

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
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Power Consumption of Traditional Networks

• Most networks draw constant power

• Full speed link protocol

• Some networks (will) have innovative features

• E.g., InfiniBand’s dynamic throttling

• Potential problems: “network noise”? [Hoefler et al.’09]

• Other power-saving options

• Network power states (explicit throttling)

• Power-aware routing (source vs. distributed routing)

• Application-specific routing (“compiled”)
Hoefler, Schneider, Lumsdaine: The Effect of Network Noise on Large-Scale Collective Communications
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What about Large-Scale Topologies?

• Fiber optics are most efficient for off-node comm.

• ≈distance-invariant, number of transceivers count

• Power consumption 

• Number of links/lanes

• Maximum/average distance

• vs. performance?

• Bisection bandwidth (increases number of links)

• Link bandwidth (increases number of lanes)
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Today’s Large-Scale Topologies

P7-IH/PERCS Fat-Trees

n-dimensional Tori

Arimilli et al.: The PERCS High-Performance Interconnect
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Large-Scale Example Configurations

• 1.3 million PEs, 64 cores each, 80 PEs per node

~214 = 16.384 network endpoints!

Topology Number of links Diameter Bisection width

Fat-Tree (64 ports, 3 
levels)

81.920 6 8.192 (full)

3d-Torus (25x26x26) 50.700 39 1.300 (15.9%)

5d-Torus (84x4) 81.920 18 4.096 (50%)

PERCS 385.024 3 8.192 (full)

Constant cost

(can be reduced with throttling etc.)
Dynamic Cost

(per message costs)
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Power-efficient Programming Techniques

1. Locality, locality, locality!

• Trade-off flops for load/store accesses!

2. Network-Centric Programming

• Static Optimizations, Overlap

3. Functional specialization

• Serial accelerators (GPU, FPGA)

• Network specialization & acceleration

4. Minimize overheads

• Zero-copy whenever possible!

• Power-aware middleware
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1) Locality

The Algorithm 
Designer will 
figure it out!

A magic 
compiler will 

find all locality!

The runtime 
will do it all!

Locali-what?

My code has 
all the locality 

it needs!

A magic 
programming 

language will allow 
to express it all

Why should I care? It’s hard 
enough to get parallelism 

and correctness!

Inspired by A. Snavely
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Spatial and Temporal Access Locality

• Cache-aware (or -oblivious) algorithms

• Well known, sometimes hard to implement

• Well-understood models and metrics

• Reuse distance

• Well-developed set of techniques

• Morton ordering, Z curves

• Automation possible

• Compiler loop-tiling 

• MTL for matrix ordering



33/48T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Network Locality

• Mapping relative to network topology, multi-

dimensional, hard, NP-complete 

• Very little research, many relevant cases may be 

polynomial time 

• Support in MPI (process topologies)

• We tackled general case [Hoefler’11]

• Different optimization goals:

• Energy consumption (minimize dilation)

• Runtime (minimize maximum congestion)

Hoefler, Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures 
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Topology Mapping Example

Physical

Topology:
Application

Topology:

Mapping 1: Mapping 2:

Hoefler, Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures 
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Topology Mapping Example: 3d Torus

• nlpkkt240, dilation for 123: 9.0, 9.03, 7.02, 4.5

>30%

Hoefler, Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures 
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2) Network-Centric Programming

• Make the network programmable like a CPU!

• Application-specific routing 

• Compiler optimizations

• Static link power management

• What is a good abstraction? Open Research!

• Need to find a Network ISA

• Our proposal: Group Operation Assembly Language

• Supports arbitrary communication relations

• Define GOAL communication graph statically

• Optimize scheduling and program network
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A GOAL Example Program

1 2 3 4 5 6 7 8

1 2

3 4

5 6

7 8

1 2 3 4 5 6 7 8

Stencil Computation
Nearest neighbor communication

Static GOAL Graph: 

Fat-Tree Topology Static Routes and Disabled Links

Hoefler, Siebert, Lumsdaine: Group Operation Assembly Language - A Flexible Way to Express Collective Communication
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Dualism of Network and CPU Architecture

• Similar behavior as CPU architecture

• Cf. VLSI/EPIC/Vector vs. Multithreaded

• Static programs: 

• Compile routing statically

• GOAL or sparse collectives in MPI-3.0

• Dynamic programs:

• Active messages (cf. threads)

• Active Pebbles/AM++ [Willcock et al.’11]

• Likely to be a mixture in reality

• Similar to CPUs with vector and MT instructions!

Willcock, Hoefler, Edmonds: Active Pebbles: Parallel Programming for Data-Driven Applications
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Keep the Network Busy with Overlap

Blocking Communication

• Nonblocking communication

• Runtime smaller, better energy utilization!

Network 
Throttling

Source: T. Hoefler: Software and Hardware Techniques for Power-Efficient HPC Networking

Stencil computation
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Minimize Communication Overheads

• Persistent communication

• Eliminates tag matching

• Hardware can setup channels

• MPI_Send_init etc. (needs to be supported!)

• MPI One Sided / PGAS / RDMA

• Eliminates high-level messaging protocols

• Direct hardware specialization

• Sparse collectives

• Specify communication topology statically!
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3) Functional Specialization

• We all know about Accelerators

• Nvidia spoke about that 

• Don’t forget about FPGAs though

• Some impressive results for very specialized 

goals, e.g., password cracking

• Specialized architectures

• Anton, MDGrape

Sp
ecializatio

n
 / P

rice
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4) Minimize Overheads 

• Minimize data movements

• Avoid copies, send/recv from/into user buffers 

• MPI datatypes – [Hoefler’10]

• Improved performance, reduce energy consumption!

• Power-optimized middleware

• Utilize persistence, program network

• Low-power collective operations

• Runtime takes the role of the OS [Brightwell’11]

Sources:  Hoefler, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI Datatypes

Brightwell: Why Nobody Should Care About Operating Systems for Exascale
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Energy-aware Collective Communication

• Common optimization idiom:

• Trade excess bandwidth for latency/performance

• Add additional copies, increases power

• Power-optimal all-to-all:

• Simple linear all-to-all 

• Each item is sent once

• Performance-optimal:

• Bruck’s algorithm for small data

• Each item is sent log2(P) times
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Summary: Energy-aware Programming

• Optimize for power-consumption, not speed

• Often close but not always! Stop counting Flops!

• Needs a good model of power consumption for 

algorithm designers (data movement?)

• Needs measurement tools/hooks for  

software designers (“energy counters”)

• Power analysis and monitoring tools

•  extend performance tools with power metrics!

• Important ongoing work!
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We need more Data! Especially on Networks!

• Studied application power consumption with 

different networks (A- IB/C, B – MX/C, C – MX/F)

Parallel Ocean Program RAxML

Source: Hoefler, Schneider et al.: A Power-Aware, Application-Based, Performance Study Of Modern Commodity Cluster Interconnection Networks

0.458 kWh

0.432 kWh

0.406 kWh

8.315 kWh

8.164 kWh

8.015 kWh
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A Quick Glance at Analytic Power Modeling

• Similar to performance modeling, observe power 

instead of time though!

• Analytic ab-initio modeling is hard (needs very 

detailed power models)

• Empirical modeling seems feasible (needs 

measurement support for power consumption)

• Analyze tradeoffs between architectures

• Simple vs. complex cores, co-design, detailed 

feasibility studies with key applications, complex 

minimization problem
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• Main routes to follow in the near future:

• Improve locality/reduce communication (at all levels!)

• Regulate power consumptions of subcomponents

• Explicit design (scratchpad, network-centric progr.)

• Overlap and balance (parallelism ↑)

• Techniques/Research Directions:

• Network topologies (low distance)

• Power-aware algorithms (I/O cmplx)

• Power analysis and modeling

Thanks and Summarizing!
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Collaborators, Acknowledgments & Support

• Thanks to:
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• Sponsored by
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Google, the datacenter energy pioneers?

• Operate at highest efficiency!

• Google’s Top 5 techniques:

1. Monitor Power Usage Efficiency (PUE)

2. Manage air flow (~50% of energy goes 

into cooling)

3. Run at higher temperatures (~27 C)

4. Use “free” cooling (water/air)

5. Optimize power distribution

• Huh? No fancy CS techniques?

• Not in the Top 5 … but needed!
Source: Google
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HPC Centers Operate Large Datacenters too

NPCF parameters

• Full water cooling (+40% efficiency)

• Using “natural” cooling 70%/year

(three cooling towers attached)

• 98.4% energy efficient transformers

• 480V AC power directly to rack

• LEED gold certification

• 18.3 C inlet water, 25.5 C inlet air
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Today’s Power Breakdown (w/o overheads)

Operation (64 bit ops) Energy (pJ) FP ADD: a=b+c DP FLOP ratio

FP FMA (2 FLOPs) 100 50 1

INT Add 1 - -

Register (64x32 bank) 3.5 10.5 0.2

SRAM (64x2k) 25 75 0.67

Move 1mm 6 18 2.78

Move 20mm 120 360 7.2

Move off-chip 256 768 15.36

DRAM 2000 6000 120

• Operation cost will shrink with feature size

• DRAM cost will shrink with architectural changes

• Movement costs are hard to reduce!

Source: Dally, 2011
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Predictions for Scaling the Silicon

• Assuming no architectural changes (DRAM will likely be 

even lower)
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All those are lower bounds!

• Ideal cache, ideal CPU …

• Need to avoid any additional overheads

• Need simpler CPU architectures

• Caches have a huge energy-saving potential!

• The network may be much more important!?

• Not discussed so far at all!

• I/O complexity works well with networks too

• Local memory modeled as “cache”



54/48T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

The Quest for Low-Diameter Networks

• Low diameter  low power 

• High-radix routers  high power  and cost

• Fundamental limit for radix-r routers and n nodes

• diameter ≥ ≈logr(nr)

Minimize energy by trading off:

• Router radix (r) with diameter

• Faces degree-diameter problem

for optimal solution
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Power-aware Programming

• Now we have (lower-bound) hardware and 

algorithmic solutions

• We can still loose infinite power in the 

implementation 

• Power-aware programming is most important!

• Simple observation: using the machine more 

efficiently decreases power consumption and 

increases performance! (non-conflicting 

optimization goals!)

• Why? Idle resources consume power too (~10%)
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2) Network-centric Programming

• Overlap, overlap, overlap

• Keep memory, CPU, and network busy

• More parallelism needed 

• Prefetch memory 

• Hardware prefetcher in modern architectures

• May waste power!

Explicit prefetching! Compiled in or as SMT thread
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MPI Topology Mapping

57Presentation Title

• Application topologies are often only known 

during runtime

• Prohibits mapping before allocation

• Batch-systems also have other constraints!

• MPI-2.2 defines interface for re-mapping

• Scalable process topology graph

• Permutes ranks in communicator

• Returns “better” permutation π to the user

• User can re-distribute data and use π

Hoefler, Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures 
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A Reward for the Careful Analysis

• Cluster Challenge 2008 winners: Dresden/Indiana
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Why do we HPC folks care about energy?

• Our requirements are on exponential scaling too

• “Expect” to double “performance” every 18 months at 

roughly equal costs (including power)

• As we all know, this is more complex and we’re facing 

the “Multicore Crisis” or in HPC “Scalability Crisis”

• Managing billion-way parallelism (?)

• Not only frequency scaling stopped!

• Voltage scaling stopped

• Traditional architectural advances kill power budget

• Large-scale computing will hit the “Energy Crisis” soon
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Network Acceleration

• Message handling in hardware

• Pipelining (done by most networks)

• Message Matching (CAMs vs. list traversal)

• Collective operation offload

• saves bus transactions (improves “locality”)

• specialized execution, avoid copies

• Examples: GOAL, Portals, ConnectX2

• Programmable networks

• To be developed!


