Fast Barrier Synchronization for InfiniBandTM

Torsten Hoefler

Chair of Computer Architecture Technical University of Chemnitz

IPDPS'06 - CAC'06 Workshop
Rhodes Island, Greece
25th April 2006

- Architectural Specialities of InfiniBandTM
 - 1:n n:1 Microbenchmark
 - LogP Prediction
 - 1:n n:1 Benchmark Results
- A new Barrier Algorithm for InfiniBandTM
 - The Dissemination Algorithm
 - The n-way Dissemination Algorithm
- Results and Conclusions
 - Comparison with other MPI_Barrier Implementations
 - Conclusions and Future Work

- Architectural Specialities of InfiniBandTM
 - 1:n n:1 Microbenchmark

 - 1:n n:1 Benchmark Results
- - The Dissemination Algorithm
 - The n-way Dissemination Algorithm
- - Conclusions and Future Work LOGY

1:n n:1 Microbenchmark

- Developed to analyze the InfiniBandTM network
- Especially for collective communication
- Measures single message performance (RDTSC)
- MPI based
- Supports (nearly) all transport types

1:n n:1 Microbenchmark - principle

- (0): Take time
- (1..n-1): Send a single message to n-1 hosts
- (1..n-1): Hosts respond immediately
- (0): Wait for message receiption from all hosts
- (0): Take time

- Architectural Specialities of InfiniBandTM
 - 1:n n:1 Microbenchmark
 - LogP Prediction
 - 1:n n:1 Benchmark Results
- - The Dissemination Algorithm
 - The n-way Dissemination Algorithm
- - Conclusions and Future Work LOGY

The LogP Model

LogP model by Culler et.al. 1993

LogP Parameters

- L Latency
- g Bandwidth-limiting Gap between consecutive messages ($g \approx 1/BW$)
- o Send-/Receive Overhead
- P Number of involved Processors

LogP Prediction

•
$$RTT(P)/P = (4o + 2L + (P - 1) \cdot max\{g, o\})/P$$

- Architectural Specialities of InfiniBandTM
 - 1:n n:1 Microbenchmark
 - LogP Prediction
 - 1:n n:1 Benchmark Results
- - The Dissemination Algorithm
 - The n-way Dissemination Algorithm
- - Conclusions and Future Work LOGY

1:n n:1 Benchmark Results

Test Environment

- 8 Nodes
- Dual Xeon 2.066 GHz
- Red Hat Linux release 9 (Shrike)
- Kernel: 2.4.27 SMP
- HCA: Mellanox "Cougar" (MTPB 23108)

OF TECHNOLOGY

1:n n:1 Benchmark Results

- RDMA/W fastest transport type in our tests
- Graph shows minimal values
- We benefit from sending to multiple hosts simultaneously

1:n n:1 Benchmark Results

- Average Graph has many outliers
- Still same "shape"

A possible Explanation - The LoP Model

- Pipeline startup function hardware pipe, caches
- Minimal processing time hardware
- Network saturation network hardware / transceiver

- - 1:n n:1 Microbenchmark
 - LogP Prediction
 - 1:n n:1 Benchmark Results
- A new Barrier Algorithm for InfiniBandTM
 - The Dissemination Algorithm
 - The n-way Dissemination Algorithm
- - Conclusions and Future Work

The Dissemination Algorithm

- Logarithmic running time (O(log₂P))
- Works with non-power of two P

Dissemination - Peer selection

- speer = (p + 2^r) mod P
 rpeer = (p 2^r) mod P

- - 1:n n:1 Microbenchmark
 - LogP Prediction
 - 1:n n:1 Benchmark Results
- A new Barrier Algorithm for InfiniBandTM
 - The Dissemination Algorithm
 - The n-way Dissemination Algorithm
- - Conclusions and Future Work

The n-way Dissemination Algorithm

- Logarithmic running time $(O(log_2P) O(log_nP)?)$
- Works with non-power of n P

n-way Dissemination - Peer selection

- $speer_i = (p + i \cdot (n+1)^r) \mod P$
- $rpeer_i = (p i \cdot (n+1)^r) \mod P$

- Architectural Specialities of InfiniBandTM
 - 1:n n:1 Microbenchmark
 - LogP Prediction
 - 1:n n:1 Benchmärk Results
- 2 A new Barrier Algorithm for InfiniBandTM
 - The Dissemination Algorithm
 - The n-way Dissemination Algorithm
- Results and Conclusions
 - Comparison with other MPI_Barrier Implementations
 - Conclusions and Future Work | () (5 y)

The n-way Dissemination Algorithm

Implementation Details

- Implementation as collv1 component in Open MPI
- Communication peers are precomputed

Benchmark Details

- LAM/MPI 7.1.1
- TUC SHIBA 1.0
- MVAPICH 0.9.4

Benchmark Results

- LAM/MPI dominates
- Zoom in ...

Benchmark Results

Fastest Barrier in test

Benchmark Results

Speedup with regards to MVAPICH

- - 1:n n:1 Microbenchmark
 - LogP Prediction
 - 1:n n:1 Benchmark Results
- - The Dissemination Algorithm
 - The n-way Dissemination Algorithm
- Results and Conclusions
 - esults and Conclusions

 Comparison with other MPI_Barrier Implementations
 - Conclusions and Future Work

Conclusions

InfiniBandTM

- InfiniBandTM hardware shows parallelism
- n-way dissemination principle can lower barrier latency

MPI Layer

- Open MPI collv1 provides a low overhead framework
- n-selection non trivial → collv2

OF TECHNOLOGY

Future Work/Ongoing Efforts

InfiniBandTM

Implementation of InfiniBandTM specialized collectives

MPI Layer

Open MPI collective framework version 2

