
Optimizing a Conjugate Gradient Solver with

Non-Blocking Collective Operations

Torsten Hoefler1,2, Peter Gottschling1, Wolfgang Rehm2, and Andrew
Lumsdaine1

1 Indiana University, Open Systems Lab, Bloomington, IN 47404 USA
{htor,pgottsch,lums}@cs.indiana.edu

2 Technical University of Chemnitz, Department of Computer Science, 09107
Chemnitz, Germany

{htor,rehm}@cs.tu-chemnitz.de

Abstract. This paper presents a case study about the applicability and
usage of non-blocking collective operations. These operations provide the
ability to overlap communication with computation and to avoid unnec-
essary synchronization. We introduce our NBC library, a portable low-
overhead implementation of non-blocking collectives on top of MPI-1. We
demonstrate the easy usage of the NBC library with the optimization of
a conjugate gradient solver with only minor changes to the traditional
parallel implementation of the program. The optimized solver runs up to
34% faster and is able to overlap most of the communication. We show
that there is, due to the overlap, no performance difference between Gi-
gabit Ethernet and InfiniBandTM for our calculation.

1 Introduction

Historically, overlapping communication and computation is the most common
approach for scientists to leverage parallelism between processing and commu-
nication units [1]. The resulting application is less latency sensitive, and can
even, up to a certain extent, run on high latency networks without any change
in the parallel speedup. The non-blocking operations allow the applications to
ignore process skew or network jitter, which often has negative effects on the
running time [2]. Both can be very beneficial on Cluster-Computers (also known
as Networks of Workstations, NOW) and on Grid-based systems.

The Message Passing Interface (MPI) standard is currently the de-facto stan-
dard for parallel computing and many scientific programs exist which use MPI
as their communication layer. MPI-1 offers the possibility to overlap commu-
nication and computation and to avoid unnecessary synchronization for point-
to-point messages (MPI ISEND, MPI IRECV). However, many applications can
benefit from using MPI collective communication, which is often optimized for
the underlying hardware (e.g., [3, 4]) and delivers much better performance than
comparable point-to-point communication schemes. Another advantage of col-
lective communication is their abstraction of communication and the resulting

ease of use for parallel programs. Gorlatch recently published a good survey of
reasons to use collective communication [5].

Especially, applications from scientific computing (SC) are well-suited to ben-
efit from the more abstract parallelization approach of collective communication.
Furthermore, many algorithms in SC, e.g., linear solvers, provide a high poten-
tial of overlapping communication and computation. In order to combine the
advantages of this overlapping and of collective communication, we introduce
non-blocking collective operations for the MPI-1 standard and demonstrate their
gain in a conjugate gradient solver. An assessment of possible benefits has been
presented in [6].

1.1 Related Work

The idea to provide non-blocking collective operations grew out of discussions
for the MPI-2 standard. The MPI Forum defined split collectives which were
not standardized in MPI-2, but were written down in the MPI-2 Journal of
Development (JoD [7]). However, these operations are too limited to be easily
usable for scientists. IBM extended the interface and implemented non-blocking
collectives as part of their Parallel Environment, but they dropped the support
for them in the latest version because they were not part of the MPI standard
and were only rarely used by scientists who preferred portability. The upcom-
ing MPI/RT standard [8] defines all operations, including collective operations,
in a non-blocking manner. Kale et. al. implemented a non-blocking all-to-all
communication as part of the CHARM++ framework [9]. To the best of the
authors’ knowledge, there are neither explicit studies on performance gain and
nor optimized implementations of non-blocking collective operations available.

2 Implementing Non-Blocking Collective Operations

Our implementation aims mainly at portability, low overhead, and ease of use.
We built the first prototype library on top of non-blocking point-to-point oper-
ations defined in the MPI-1 standard. Therefore, although we cannot leverage
special hardware features, the protoype library is portable to all MPI-1 capa-
ble parallel computers. Further because we implemented optimized algorithms
for all collective operations, we deliver the same performance as the hardware
independent blocking collective operations in MPICH2 [10] and Open MPI 1.0
[11].

The interface to the calls is very similar to the blocking MPI collective opera-
tions. However, to ensure non-blocking operation, a handler is returned which is
comparable to a MPI REQUEST. The behavior and the application programming
interface (API) of those non-blocking collective calls are defined in [12].

The following subsections provide an overview of the implementation of our
non-blocking collectives (NBC) library, which offers asynchronous collective sup-
port on top of MPI-1. The only difference to the definition in [12] is that all calls
and constants are prefixed with NBC instead of MPI to avoid confusion with
MPI standardized operations.

2.1 The Scheduling Engine

To ease implementation, we propose a general framework to support all opera-
tions. This framework, our scheduling engine, builds and executes a schedule to
perform collective operations. Each collective operation, defined in the MPI stan-
dard, can be expressed as a row of sends, receives and operations between ranks
of a specific communicator. These functions can be arranged into r communica-
tion rounds to build a communicator-specific schedule for each rank. Each round
may consist of one or more operations which have to be independent and will be
executed simultaneously. Operations in different rounds depend on each other,
in a way that operations on round n can only be started after all operations in
round n − 1 have finished ∀ 0 ≤ n ≤ r.

2.2 Building a Schedule

The schedule defines all required actions to perform the collective operation for
a specific rank and a specific communicator. A rank’s schedule is specific to each
communicator and MPI argument set. It is designed to be reusable if it is saved
in association to the communicator and the arguments.

A schedule consists of actions (send, receive, operation) and rounds. It is laid
out as a contiguous array in memory to be cache friendly. The memory layout
of the simplified example schedule for rank 0, for a MPI BARRIER implemented
with the dissemination principle on a four-node communicator is shown in Fig. 1.
This schedule has a send operation to rank 1 and a receive operation from rank
3 in the first round. The round is ended by the end flag. The second round issues
a send to rank 2 and a receive from rank 2. The dissemination barrier is finished
after those operations and NBC TEST or NBC WAIT calls return NBC OK.

send to 1 recv from 3 end send to 2 recv from 2 end

Fig. 1. Memory Layout of a schedule at rank 0, implementing a Dissemination Barrier
between 4 nodes

2.3 Schedule Execution

The schedule array in Fig. 1 consists of four operations in two rounds. The
schedule represents the necessary operations to perform a MPI BARRIER on
rank 0 of 4. The non-blocking execution of the schedule begins if the user
calls NBC IBARRIER(comm, handle). The first call to NBC IBARRIER builds the
schedule (if not already done), starts all operations of the first round in a non-
blocking manner, initializes the handle, and returns immediately to the user.
The user can perform any computation while the operations are processed in

the background. The amount of progress made in the background depends on
the actual MPI implementation. The current implementation of the NBC library
is runnable in environments which offer no thread support. This means that
the user should progress the operation manually by calling NBC TEST(handle).
NBC TEST checks all pending operations for completion and proceeds to the
next round if the current round is completed. It returns NBC OK if the oper-
ation (all rounds) is finished, otherwise NBC CONTINUE to indicate that the
operation is still running.

3 Optimization of Linear Solvers

Accelerating parallel applications in scientific computing is a main topic of many
research projects. Non-blocking collective communication can be an important
contribution to it and we will demonstrate this on a selected case study.

Iterative linear solvers are important components of most applications in SC.
They consume, with very few exceptions, a significant part of the overall run-time
of typical applications. In many cases, they even dominate the overall execution
time of parallel code. Reducing the computational needs of linear solvers will
thus be a huge benefit for the whole scientific community.

Despite the very different algorithms and varying implementations of many
of them, one common operation is the multiplication of very large and sparse
matrices with vectors. Assuming an appropriate distribution of the matrix, large
parts of the computation can be realized on local data and the communication
of required remote data — also referred to as inner boundaries or halo — can
be overlapped with the local part of the matrix vector product.

3.1 Case Study: 3-Dimensional Poisson Equation

For the sake of simplicity, we use the well-known Poisson equation with Dirichlet
boundary conditions, e.g., [13]

−∆u = 0 in Ω = (0, 1) × (0, 1) × (0, 1), (1)

u = 1 on Γ . (2)

The domain Ω is equidistantly discretized. Each dimension is split into N + 1
intervals of size h = 1/(N + 1). Within Ω one defines n = N 3 grid points

G = {(x1, x2, x3)|∀i, j, k ∈
�

, 0 < i, j, k ≤ N : x1 = ih, x2 = jh, x3 = kh}.

Thus, each point in G can be represented by a triple of indices (i, j, k) and we
denote u(ih, jh, kh) as ui,j,k. Lexicographical order allows to store the values of
the three-dimensional domain into a one-dimensional array. For distinction we
use a typewriter font for the memory representation and start indexing from
zero as in C/C++

ui,j,k ≡ u[(i− 1) + (j− 1) ∗ N + (k− 1) ∗ N2] ∀0 < i, j, k ≤ N. (3)

The differential operator −∆ is discretized for each x ∈ G with the standard
7 point stencil represented as a sparse matrix in � n×n using the memory layout
from (3), confer e.g. [13] for the 2D case.

3.2 Domain Decomposition

The grid G is partitioned into p sub-grids G1, . . . , Gp where p is the number of
processors. The processors are arranged in a non-periodic Cartesian grid p1 ×
p2 × p3 with p = p1 · p2 · p3, provided by MPI DIMS CREATE. In case that N is
divisible by pi∀i the local grids on each processor have size N/p1×N/p2×N/p3,
otherwise the local grids are such that the whole grid is partitioned and the sizes
along each dimension vary at most by one.

Each sub-grid has 3 to 6 adjoint sub-grids if all pi > 1. Two processors P
and P ′ storing adjoint sub-grids are neighbors, written as the relation Nb(P, P ′).
This neighborhood can be characterized by the processors’ Cartesian coordinates
P ≡ (P1, P2, P3) and P ′ ≡ (P ′

1
, P ′

2
, P ′

3
)

Nb(P, P ′) iff |P1 − P ′

1
| + |P2 − P ′

2
| + |P3 − P ′

3
| = 1. (4)

Fig. 2 shows the partition of G into sub-grids and necessary communication.

Fig. 2. Processor Grid

3.3 Design and Optimization of the CG Solver

The conjugate gradient method (CG) by Hestenes and Stiefel [14] is a widely
used iterative solver for systems of linear equations when the matrix is symmetric
and positive definite. To provide a simple base of comparison we restrain from
preconditioning [13] and from aggressive performance tuning [15]. However, the
local part part of the dot product is unrolled using multiple temporaries, the two
vector updates are fused in one loop, and the number of branches is minimized
in order to provide a high-performance base case. The parallelization of CG in
the form of Listing 1.1 is straight-forward by distributing the matrix and vectors

1 while (sqrt(gamma) > epsilon * error_0) {

2 if (iteration > 1)

3 q = r + gamma / gamma_old * q;

4 v = A * q;

5 delta = dot(v, q);

6 alpha = delta / gamma;

7 x = x + alpha * q;

8 r = r - alpha * v;

9 gamma_old = gamma;

10 gamma = dot(r, r);

11 iteration = iteration + 1;

12 }

Listing 1.1. Pseudo-code for CG method

1 fill_buffers(v_in, send_buffers);

2 start_send_boundaries(comm_data);

3 volume_mult(v_in, v_out, comm_data);

4 finish_send_boundaries(comm_data);

5 mult_boundaries(v_out, recv_buffers);

Listing 1.2. Pseudo-code for parallel matrix vector product

and computing the vector operations and the contained matrix vector product
in parallel.

Neglecting the operations outside the iteration, the scalar operations in List-
ing 1.1 — line 1, 2, 6, 9, and 11 — and part of the vector operations — line
3, 7, and 8 — are completely local. The dot products in line 5 and 10 require
communication in order to combine local results with MPI ALLREDUCE to the
global value. Unfortunately, computational dependencies avoid overlapping this
reductions. Therefore, the whole potential to save communication time in a CG
method lies in the matrix vector product — line 4 of Listing 1.1.
3.4 Parallel Matrix Vector Product

Due to the regular shape of the matrix, it is not necessary to store the matrix
explicitly. Instead the projection u 7→ −∆u is computed. In the distributed
case p > 1, values on remote grid points need to be communicated in order to
complete the multiplication. In our case study, the data exchange is limited to
values on outside planes of the sub-grids in Fig. 2 unless the plane is adjoint to
the boundary Γ . Therefore, processors must send and receive up to six messages
to their neighbors according to (4) where the size of the message is given by the
elements in the corresponding outer plane.

However, most operations can be already executed with locally available data
during communication as shown in Listing 1.2. The first command copies the
values of v in needed by other processors into the send buffers. Then an all-to-
all communication is launched, which can be blocking using MPI ALLTOALLV

or non-blocking using NBC IALLTOALLV, which has identical arguments plus
a NBC HANDLE that is used to identify the operation later. The command
volume mult computes the local part of the matrix vector product (MVP) and
in case of non-blocking communication, NBC TEST is called periodically with
the handle returned by NBC IALLTOALLV in order to progress the non-blocking
operations, cf. Section 2.1. Before using remote data in mult boundaries, the
completion of NBC IALLTOALLV is checked in finish send boundaries with
an NBC WAIT on the NBC HANDLE.

3.5 Benchmark Results

We performed a CG calculation on a grid of 800 × 800 × 800 points until the
residual was reduced by a factor of 100, which took 218 iterations for each run.
This weak termination criterion was chosen to allow more tests on the cluster.
We verified on selected tests with much stronger termination criteria that longer
executions have the same relative behavior. The studies were conducted on the
odin cluster available at the Indiana University which consists of 128 dual 2
GHz Opteron 246 nodes connected with flat InfiniBandTM and Gigabit Ethernet
networks. Fig. 3 shows the benchmark results up to 96 nodes. We see that the

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 10 20 30 40 50 60 70 80 90 100

S
pe

ed
up

Number of CPUs

IB blocking
IB non-blocking

Eth blocking
Eth non-blocking

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 10 20 30 40 50 60 70 80 90 100

R
el

at
iv

e
S

pe
ed

up

Number of CPUs

IB
Eth

Fig. 3. Parallel Speedup (left) and Relative Performance Gain (right)

usage of our NBC library resulted in a reasonable performance gain for nearly
all node counts. The performance loss at 8 processors is caused by relatively
high effort to test the progress of communication. Finding simple rules to adapt
the testing overhead to communication needs is subject to ongoing research.
Due to the implementation design described above, non-blocking point-to-point
communication would perform almost equally while requiring the management
for multiple communication handlers including the progress enforcement. The
overall results show that for both networks, InfiniBandTM and Gigabit Ethernet,
nearly all communication can be overlapped and the parallel execution times are
similar. The factor of 10 in bandwidth and the big difference in the latency of

both interconnects does not influence the running time, even if the application
has high communication needs. The partially superlinear speedup is due to the
calculation of the inner part of the matrix.

3.6 Optimization Impact on Other Linear Solvers

Other Krylov sub-space methods have comparable dependencies on reduction
operations which similarly limit the potential of communication overlapping to
parts of the execution. Preconditioners of Krylov sub-space methods are often
operations similar to MVP, e.g., incomplete LU or Cholesky factorization, and
have the potential of overlapping.

Classical iterative solvers, like Gauß-Seidel, only consist of operations compa-
rable with a matrix vector product and, thus, the whole computation is subject to
overlapping. Due to very slow convergence, their importance as iterative solvers
is limited. However, these methods are very important components of multi-
grid methods (MG) [16]. Other operations in MG, which project values between
two grids, have a high potential to overlap communication, too. The computa-
tion on on the small grids introduces severe communication bottlenecks where
non-blocking communication can provide significant improvements. As multigrid
methods are solvers with minimal complexity, they are extremely important in
SC and we will investigate them in detail in future work.

4 Conclusions and Future Work

We demonstrated the easy use of the NBC library and the principle of non-
blocking collectives for a class of application kernels. We were able to improve
the parallel application running time by up to 34% with minor changes to the
application. The CG solver source code and the NBC library are available at:
http://www.unixer.de/NBC/.

Future work includes an optimized MPI-2 implementation of the NBC library,
hardware optimized non-blocking collective operations, and the analysis of more
applications. The possibility of asynchronous progress, which removes the need
for testing, with a separate thread will also be investigated. However, this may
have other implications because the user can not control when the library gets
called and possibly wipes out the CPU cache.

4.1 Acknowledgments

The authors want to thank Jeff Squyres, George Bosilca, Graham Fagg and
Edgar Gabriel for helpful discussions. This work was supported by a grant from
the Lilly Endowment and National Science Foundation grant EIA-0202048.

References

1. Liu, G., Abdelrahman, T.: Computation-communication overlap on network-of-
workstation multiprocessors. In: Proc. of the Int’l Conference on Parallel and
Distributed Processing Techniques and Applications. (1998) 1635–1642

2. Petrini, F., Kerbyson, D.J., Pakin, S.: The case of the missing supercomputer per-
formance: Achieving optimal performance on the 8, 192 processors of asci q. In:
Proceedings of the ACM/IEEE SC2003 Conference on High Performance Network-
ing and Computing, 15-21 November 2003, Phoenix, AZ, USA, CD-Rom, ACM
(2003) 55

3. Hoefler, T., Mehlan, T., Mietke, F., Rehm, W.: Adding Low-Cost Hardware Bar-
rier Support to Small Commodity Clusters. In: 19th International Conference on
Architecture and Computing Systems - ARCS’06. (2006) 343–350

4. Liu, J., Mamidala, A., Panda, D.: Fast and scalable mpi-level broadcast using
infiniband’s hardware multicast support (2003)

5. Gorlatch, S.: Send-receive considered harmful: Myths and realities of message
passing. ACM Trans. Program. Lang. Syst. 26(1) (2004) 47–56

6. Hoefler, T., Squyres, J., Rehm, W., Lumsdaine, A.: A Case for non Block-
ing Collective Operations (2006) submitted to ISPA - preprint available at:
http://www.unixer.de/sec/nbcoll.pdf.

7. Message Passing Interface Forum: MPI-2 Journal of Development (1997)
8. Kanevsky, A., Skjellum, A., Rounbehler, A.: MPI/RT - an emerging standard for

high-performance real-time systems. In: HICSS (3). (1998) 157–166
9. Kale, L.V., Kumar, S., Vardarajan, K.: A Framework for Collective Personalized

Communication. In: Proceedings of IPDPS’03, Nice, France (2003)
10. MPICH2 Developers: http://www-unix.mcs.anl.gov/mpi/mpich2/ (2006)
11. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,

Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation. In: Proceedings, 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary (2004)

12. Hoefler, T., Squyres, J.M., Bosilca, G., Fagg, G.: Non Block-
ing Collective Operations for MPI-2 (2006) preprint available at:
http://www.unixer.de/sec/standard nbcoll.pdf.

13. Hackbusch, W.: Iterative solultion of large sparse systems of equations. Springer
(1994)

14. Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems.
J. Res. Natl. Bur. Stand. 49 (1952) 409–436

15. Gottschling, P., Nagel, W.E.: An efficient parallel linear solver with a cascadic
conjugate gradient method. In: EuroPar 2000. Number 1900 in LNCS (2000)

16. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press (2000)

