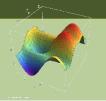

Promising applications of quantum computing

Quantum Chemistry/Physics

- Original idea by Feynman use quantum effects to evaluate quantum effects
- Design catalysts, exotic materials, ...

Breaking encryption & bitcoin

- Big hype destructive impact single-shot (but big) business case
- Not trivial (requires arithmetic) but possible



Accelerating heuristical solvers

- Quadratic speedup can be very powerful!
- Requires much more detailed resource analysis → systems problem

Quantum machine learning

 Feynman may argue: "quantum advantage" assumes that circuits cannot be simulated classically -> they represent very complex functions that could be of use in ML?

Basing on complex quantum algorithms

Most quantum programs recombine known algorithmic building blocks!

Amplitude Amplification

Amplify probability of the "right" output

- Using quantum interference
- E.g., Grover's search
- Often $O(\sqrt{2^n})$ iterations

Quantum Fourier Transform

DFT on amplitudes of a quantum state

- $O(n \log n)$ gates for 2^n elems
- Used in factoring and discrete logarithm

Phase Estimation

Measure eigenvalues of a unitary operator

- Used to compute eigenvectors
- Used to solve linear systems
- Determine eigenvalues in $O\left(\frac{1}{\epsilon}\right)$ ga

Quantum Walks

Speedup mixing times in randomized algorithms

- Quantum version of random walks
- Between quadratic and (rarely) exponential speedup

Hamiltonian Simulation

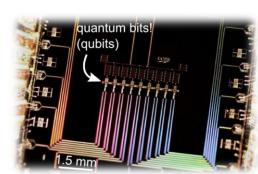
Simulate nature ©

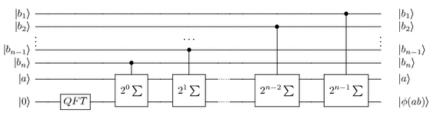
Exponential speedup (over best known) classical algorithm for quantum effects in physics, chemistry, material science problems

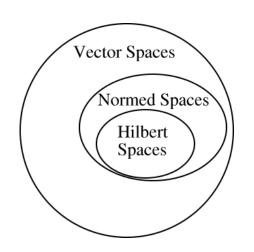
Others

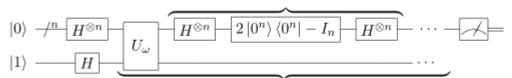
(not relevant for performance/HPC)

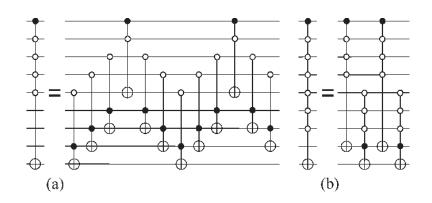
- Quantum teleportation
- EPR-pair based proofs/certificates
- Certified random number generation
- **.**..




Designing an algorithm today?


- Model the computation in Hilbert spaces
 - Algorithmic ideas develop basic tools


- In terms of building blocks
 qFFT, amplitude amplification, arithmetic, etc.
- Design a specific program
 - As abstract quantum circuit
- Implement and optimize the program
 - Break into basic gates (from a default gate set)
- Map to a machine
 - Error correction
 - Qubit mapping



Grover diffusion operator

Repeat $O(\sqrt{N})$ times

How are quantum programs specified?

Classical High Level (e.g., Python)

```
# a scheduler class, to schedule and run events after a delay class Scheduler:

def __init__(self):
    # begin with no events
    self.events = []

# after the delay, run the function
def schedule(self, delay, function):
    if delay <= 0:
        # if no delay, run function straight away
        function()
```

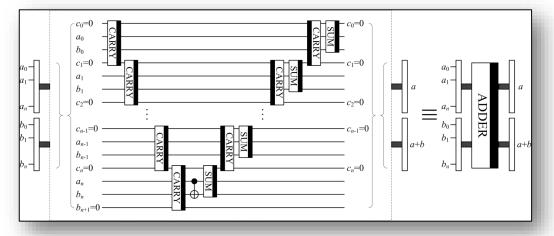
Classical Low Level (e.g., inline assembly)

08048918	pushl	%ebp
08048919	movl	%esp,%ebp
0804891b	subl	\$0x4,%esp
0804891e	movl	\$0x0,0xfffffffc(%ebp)
08048925	cmpl	\$0x63,0xfffffffc(%ebp)
08048929	jle	08048930
0804892b	jmp	08048948
0804892d	nop	

Quantum High Level

Scott Pakin (LANL) Cathy Palmer (Microsoft)

Ali Javadi (IBM)



Damian Steiger (Huawei) Margaret Martonosi (Princeton)

Quantum Addition

