
Network-Offloaded Bandwidth-Optimal
Broadcast and Allgather for Distributed AI

MIKHAIL KHALILOV1, SALVATORE DI GIROLAMO2, MARCIN CHRAPEK1,
RAMI NUDELMAN2, GIL BLOCH2, TORSTEN HOEFLER1

1 ETH Zurich

2 Nvidia Corporation

@spcl_eth

@spcl

spcl.ethz.ch

2

Collectives in data parallel training

GPU 1

Minibatch

Gradients

Layer 1

Layer 2

Layer N

Forward pass

Backward pass

Error
computation

GPU 2

Minibatch

Gradients Layer 1

Layer 2

Layer N

Forward pass

Backward pass

Error
computation

Average
gradients with
Allreduce

But GPT4 or Llama 400B are considerably larger than a single GPU?

…

…

@spcl_eth

@spcl

spcl.ethz.ch

3

Collectives in Fully Sharded Data Parallel (FSDP) training

GPU 1

Minibatch

Gradients

Layer 1 shard

Layer 2 shard

Layer N
 sh

ard

Forward pass

Backward pass

Error
computation

GPU 2

Minibatch

Gradients

Layer 1 shard

Layer 2 shard

Layer N
 sh

ard

Forward pass

Backward pass

Error
computation

Unsharding with
Allgather &
Average gradients
with Reduce Scatter

Layer 1

Layer 2

Layer N

Layer 1

Layer 2

Layer N

…

…

@spcl_eth

@spcl

spcl.ethz.ch

4

FSDP backward pass on a single GPU

GPU 0
Shard 1 Shard 2 … Shard N-1 Shard N

Allgather 1

Reduce-
scatter 1

Matrix mul 1

Allgather
communicator

Reduce-scatter
communicator

GPU compute MM2MM N-1MM N

RS N-2RS N-1RS N

AG 2AG 3AG N

Error from forward pass

@spcl_eth

@spcl

spcl.ethz.ch

5

FSDP backward pass on a single GPU

GPU 0
Shard 1 Shard 2 … Shard N-1 Shard N

Allgather 1

Reduce-
scatter 1

Matrix mul 1

Allgather
communicator

Reduce-scatter
communicator

GPU compute MM2MM N-1MM N

RS N-2RS N-1RS N

AG 2AG 3AG N

Inter-job traffic and slow collectives can create pipeline bubbles!

@spcl_eth

@spcl

spcl.ethz.ch

6

Ring Allgather implementation

GPU

Allgather
communicator

Reduce-scatter
communicator

GPU compute

Ring pattern

Rank 0

Rank 1Rank 2

Virtual ring

RDMA Write of i-1’th part to the right neighbor

RDMA Write of i’th part from the left neighbor

With N bytes in the send buffer and P ranks, N(P-1) bytes are sent and received,
contending for resources with Reduce Scatter

Single FSDP
stage

@spcl_eth

@spcl

spcl.ethz.ch

7

Ring allgather implementation

GPU 0

Allgather
communicator

Reduce-scatter
communicator

GPU compute MM N-1

RS N-2

AG N
Ring pattern

Rank 0

Rank 1Rank 2

Virtual ring

RDMA Write of i-1’th part to the right neighbor

RDMA Write of i’th part from the left neighbor

With N bytes in the send buffer and P ranks, N(P-1) bytes are sent and received,
contending for resources with Reduce Scatter

Q: Can we minimize inter-job traffic and speedup AG+RS pattern?

A: Yes, with the multicast primitive!

@spcl_eth

@spcl

spcl.ethz.ch

8

Switch-based multicast

Rank 1 Rank 2 Rank 3 Rank 4

Switch 1 Switch 2

Switch 3

@spcl_eth

@spcl

spcl.ethz.ch

9

Switch-based multicast

Rank 1 Rank 2 Rank 3 Rank 4

Switch 1 Switch 2

Switch 3

@spcl_eth

@spcl

spcl.ethz.ch

10

Switch-based multicast

Rank 1 Rank 2 Rank 3 Rank 4

Switch 1 Switch 2

Switch 3

mcg

@spcl_eth

@spcl

spcl.ethz.ch

11

Switch-based multicast

Rank 1 Rank 2 Rank 3 Rank 4

Switch 1 Switch 2

Switch 3

mcg

@spcl_eth

@spcl

spcl.ethz.ch

12

Switch-based multicast

Rank 1 Rank 2 Rank 3 Rank 4

Switch 1 Switch 2

Switch 3

mcg

mcg

@spcl_eth

@spcl

spcl.ethz.ch

13

Switch-based multicast

Rank 1 Rank 2 Rank 3 Rank 4

Switch 1 Switch 2

Switch 3

mcg

mcg

@spcl_eth

@spcl

spcl.ethz.ch

14

Switch-based multicast

Rank 1 Rank 2 Rank 3 Rank 4

Switch 1 Switch 2

Switch 3

mcg

mcg

@spcl_eth

@spcl

spcl.ethz.ch

15

Switch-based multicast

Rank 1 Rank 2 Rank 3 Rank 4

Switch 1 Switch 2

Switch 3

mcg mcg mcg

@spcl_eth

@spcl

spcl.ethz.ch

16

Switch-based multicast

Rank 1 Rank 2 Rank 3 Rank 4

Switch 1 Switch 2

Switch 3

mcg mcg mcg

How to deal with reliable data delivery?

@spcl_eth

@spcl

spcl.ethz.ch

17

Switch-based multicast

Rank 1 Rank 2 Rank 3 Rank 4

Switch 1 Switch 2

Switch 3

mcg mcg mcg

How to deal with reliable data delivery?Plot source: A practically constant-time MPI Broadcast Algorithm for large-scale InfiniBand Clusters
with Multicast Torsten Hoefler, Christian Siebert, and Wolfgang Rehm

@spcl_eth

@spcl

spcl.ethz.ch

18

Allgather as a composition of Broadcasts

Stage 1
Ranks post buffers and perform barrier

@spcl_eth

@spcl

spcl.ethz.ch

19

Allgather as a composition of Broadcasts

Stage 1
Ranks post buffers and perform barrier

Stage 2.1
Groups of simultaneously multicasting

ranks distribute data

Stage 2.2
Completed groups pass the activation

signals to the next groups

@spcl_eth

@spcl

spcl.ethz.ch

20

Allgather as a composition of Broadcasts

Stage 1
Ranks post buffers and perform barrier

Stage 2.3
The second multicast group

distributes data

Stage 2.4
And then passes activation signals to

the next groups

@spcl_eth

@spcl

spcl.ethz.ch

21

Allgather as a composition of Broadcasts

Stage 1
Ranks post buffers and perform barrier

Stage 2.5
The last group multicasts chunks

@spcl_eth

@spcl

spcl.ethz.ch

22

Allgather as a composition of Broadcasts

Stage 1
Ranks post buffers and perform barrier

Stage 3
Missing chunks are fetched with RDMA Reads

Stage 2.5
The last group multicasts chunks

Each rank maintains a bitmap of successfully received chunks

@spcl_eth

@spcl

spcl.ethz.ch

23

Allgather as a composition of Broadcasts

Stage 1
Ranks post buffers and perform barrier

Stage 3
Missing chunks are fetched with RDMA Reads

𝑇 = 𝑁(𝑃 − 1)/𝐵𝑊

As good as ring but brings traffic reductions on the send NIC path!

@spcl_eth

@spcl

spcl.ethz.ch

24

Further improvements for the FSDP pipeline

Send N (P - 1) bytes
RS

rank
Receive N bytes

Send N bytes
AG

rank
Receive N (P - 1) bytes

Multicast tree

Up to 2X theoretical AG+RS speedup when compared to rings!

Aggregation tree

@spcl_eth

@spcl

spcl.ethz.ch

25

Allgather at 188 nodes with ConnectX-3 and 18 switches

Same performance with up to 2x traffic
reduction with multicast-based Allgather

@spcl_eth

@spcl

spcl.ethz.ch

26

Allgather at 188 nodes with ConnectX-3 and 18 switches

Same performance with up to 2x traffic
reduction with multicast-based Allgather

How about multi-hundred Gbit/s NICs?

@spcl_eth

@spcl

spcl.ethz.ch

27

Why offloading?

Server

Client

Host QP

Host QP

Host CQ
CPU thread

CX-7

CX-7

Send buffer

Receive buffer

Host CQ
CPU thread

Single-threaded CPU-based collective progress engine is infeasible

How about using offloading?

@spcl_eth

@spcl

spcl.ethz.ch

▪ Designed for data movement offloading

▪ 256 hardware threads

▪ Programmed with user-space C API

28

NVIDIA Datapath Accelerator (DPA)

Single-Threaded
Peformance

Parallel Traffic
Processing

BlueField ARM SoC

BlueField DPA

@spcl_eth

@spcl

spcl.ethz.ch

29

SmartNIC-offloaded system design

@spcl_eth

@spcl

spcl.ethz.ch

30

SmartNIC-offloaded system design

Host-side creates
Multicast trees

@spcl_eth

@spcl

spcl.ethz.ch

31

SmartNIC-offloaded system design

Host-side creates
Multicast trees

DPA thread handles
a single Multicast tree

Nvidia
Bluefield3

@spcl_eth

@spcl

spcl.ethz.ch

32

DPA-based receive progress engine

Staging
buffer

DPA
thread

PHY

CQE

CQE

CQE

Bitmap

1

1

1

Recv
BufferRDMA send

mcast

RDMA send
mcast

RDMA send
mcast

DPA

@spcl_eth

@spcl

spcl.ethz.ch

33

DPA performance

1/16’ f y
enough to sustain line rate

Write-based zero-copy solution
further reduces DPA footprint by 4x

@spcl_eth

@spcl

spcl.ethz.ch

34

How about Tbit/s links?

Half of DPA can sustain datagram rate
at 400/800/1600 Gbit/s!

@spcl_eth

@spcl

spcl.ethz.ch

35

Conclusions M f CL’ :

… or spcl.ethz.ch

180+ Talksyoutube.com/@spcl

twitter.com/spcl_eth 1.4K+ Followers

github.com/spcl 3.8K+ Stars

Open-source protocol
https://github.com/spcl/
muliticast-based-allgather

arXiv paper
https://arxiv.org/abs/

2408.13356

spcl.inf.ethz.ch
https://github.com/spcl/muliticast-based-allgather
https://github.com/spcl/muliticast-based-allgather
https://arxiv.org/abs/2408.13356
https://arxiv.org/abs/2408.13356

	Slide 1
	Slide 2: Collectives in data parallel training
	Slide 3: Collectives in Fully Sharded Data Parallel (FSDP) training
	Slide 4: FSDP backward pass on a single GPU
	Slide 5: FSDP backward pass on a single GPU
	Slide 6: Ring Allgather implementation
	Slide 7: Ring allgather implementation
	Slide 8: Switch-based multicast
	Slide 9: Switch-based multicast
	Slide 10: Switch-based multicast
	Slide 11: Switch-based multicast
	Slide 12: Switch-based multicast
	Slide 13: Switch-based multicast
	Slide 14: Switch-based multicast
	Slide 15: Switch-based multicast
	Slide 16: Switch-based multicast
	Slide 17: Switch-based multicast
	Slide 18: Allgather as a composition of Broadcasts
	Slide 19: Allgather as a composition of Broadcasts
	Slide 20: Allgather as a composition of Broadcasts
	Slide 21: Allgather as a composition of Broadcasts
	Slide 22: Allgather as a composition of Broadcasts
	Slide 23: Allgather as a composition of Broadcasts
	Slide 24: Further improvements for the FSDP pipeline
	Slide 25: Allgather at 188 nodes with ConnectX-3 and 18 switches
	Slide 26: Allgather at 188 nodes with ConnectX-3 and 18 switches
	Slide 27: Why offloading?
	Slide 28: NVIDIA Datapath Accelerator (DPA)
	Slide 29: SmartNIC-offloaded system design
	Slide 30: SmartNIC-offloaded system design
	Slide 31: SmartNIC-offloaded system design
	Slide 32: DPA-based receive progress engine
	Slide 33: DPA performance
	Slide 34: How about Tbit/s links?
	Slide 35: Conclusions

