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Collectives in data parallel training
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But GPT4 or Llama 400B are considerably larger than a single GPU?
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Collectives in Fully Sharded Data Parallel (FSDP) training
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FSDP backward pass on a single GPU
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Error from forward pass
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FSDP backward pass on a single GPU

GPU 0
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Inter-job traffic and slow collectives can create pipeline bubbles!
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Ring Allgather implementation

GPU

Allgather
communicator
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communicator

GPU compute

Ring pattern

Rank 0

Rank 1Rank 2

Virtual ring

RDMA Write of i-1’th part to the right neighbor

RDMA Write of i’th part from the left neighbor

With N bytes in the send buffer and P ranks, N(P-1) bytes are sent and received, 
contending for resources with Reduce Scatter

Single FSDP 
stage
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Ring allgather implementation

GPU 0

Allgather
communicator

Reduce-scatter
communicator

GPU compute MM N-1

RS N-2

AG N
Ring pattern

Rank 0

Rank 1Rank 2

Virtual ring

RDMA Write of i-1’th part to the right neighbor

RDMA Write of i’th part from the left neighbor

With N bytes in the send buffer and P ranks, N(P-1) bytes are sent and received, 
contending for resources with Reduce Scatter

Q: Can we minimize inter-job traffic and speedup AG+RS pattern?

A: Yes, with the multicast primitive!
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Switch-based multicast

Rank 1 Rank 2 Rank 3 Rank 4

Switch 1 Switch 2

Switch 3
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Switch-based multicast
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Switch-based multicast
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Switch-based multicast
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Switch-based multicast
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Switch-based multicast
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Switch-based multicast

Rank 1 Rank 2 Rank 3 Rank 4
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How to deal with reliable data delivery?
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Switch-based multicast

Rank 1 Rank 2 Rank 3 Rank 4

Switch 1 Switch 2

Switch 3

mcg mcg mcg

How to deal with reliable data delivery?Plot source: A practically constant-time MPI Broadcast Algorithm for large-scale InfiniBand Clusters 
with Multicast Torsten Hoefler, Christian Siebert, and Wolfgang Rehm
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Allgather as a composition of Broadcasts

Stage 1
Ranks post buffers and perform barrier
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Allgather as a composition of Broadcasts

Stage 1
Ranks post buffers and perform barrier

Stage 2.1
Groups of simultaneously multicasting 

ranks distribute data

Stage 2.2
Completed groups pass the activation 

signals to the next groups
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Allgather as a composition of Broadcasts

Stage 1
Ranks post buffers and perform barrier

Stage 2.3
The second multicast group

distributes data

Stage 2.4
And then passes activation signals to 

the next groups
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Allgather as a composition of Broadcasts

Stage 1
Ranks post buffers and perform barrier

Stage 2.5
The last group multicasts chunks
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Allgather as a composition of Broadcasts

Stage 1
Ranks post buffers and perform barrier

Stage 3
Missing chunks are fetched with RDMA Reads 

Stage 2.5
The last group multicasts chunks

Each rank maintains a bitmap of successfully received chunks
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Allgather as a composition of Broadcasts

Stage 1
Ranks post buffers and perform barrier

Stage 3
Missing chunks are fetched with RDMA Reads 

𝑇 =  𝑁(𝑃 −  1)/𝐵𝑊

As good as ring but brings traffic reductions on the send NIC path!
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Further improvements for the FSDP pipeline

Send N (P - 1) bytes
RS 

rank
Receive N bytes

Send N bytes
AG 

rank
Receive N (P - 1) bytes

Multicast tree

               

         
            

             
            

                 

      

    

  
 
  

 
  

  
 
  

  
  

Up to 2X theoretical AG+RS speedup when compared to rings!

Aggregation tree
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Allgather at 188 nodes with ConnectX-3 and 18 switches

Same performance with up to 2x traffic 
reduction with multicast-based Allgather
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Allgather at 188 nodes with ConnectX-3 and 18 switches

Same performance with up to 2x traffic 
reduction with multicast-based Allgather

How about multi-hundred Gbit/s NICs?
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Why offloading?

Server

Client

Host QP

Host QP

Host CQ
CPU thread

CX-7

CX-7

Send buffer

Receive buffer

Host CQ
CPU thread

Single-threaded CPU-based collective progress engine is infeasible

How about using offloading?
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▪ Designed for data movement offloading

▪ 256 hardware threads

▪ Programmed with user-space C API

28

NVIDIA Datapath Accelerator (DPA)

Single-Threaded
Peformance

Parallel Traffic
Processing

BlueField ARM SoC

BlueField DPA
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SmartNIC-offloaded system design
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SmartNIC-offloaded system design

Host-side creates
Multicast trees
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SmartNIC-offloaded system design

Host-side creates
Multicast trees

DPA thread handles
a single Multicast tree

Nvidia 
Bluefield3
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DPA-based receive progress engine
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DPA performance

1/16’    f            y    
enough to sustain line rate

Write-based zero-copy solution 
further reduces DPA footprint by 4x
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How about Tbit/s links?

Half of DPA can sustain datagram rate 
at 400/800/1600 Gbit/s!



@spcl_eth

@spcl

spcl.ethz.ch

35

Conclusions M     f   CL’          :

… or spcl.ethz.ch

180+ Talksyoutube.com/@spcl

twitter.com/spcl_eth 1.4K+ Followers

github.com/spcl 3.8K+ Stars

Open-source protocol 
https://github.com/spcl/
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arXiv paper 
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