
On the Parallel I/O Optimality of Linear Algebra Kernels:
Near-Optimal LU Factorization

Grzegorz Kwasniewski
1
, Tal Ben-Nun

1
, Alexandros Nikolaos Ziogas

1
,

Timo Schneider
1
, Maciej Besta

1
, Torsten Hoefler

1

1
Department of Computer Science, ETH Zurich

ABSTRACT
Dense linear algebra kernels, such as linear solvers or tensor con-

tractions, are fundamental components of many scientific comput-

ing applications. In this work we present a novel method of deriving

parallel I/O lower bounds for this broad family of programs. Based

on the 𝑋 -Partitioning abstraction, our method explicitly captures

inter-statement dependencies. Applying our analysis to LU factor-

ization, we derive COnf LUX, an LU algorithm with the parallel I/O

cost of 𝑁 3/(𝑃
√
𝑀) communicated elements per processor — only

1/3× over our established lower bound. We evaluate COnf LUX on

various problem sizes, demonstrating empirical results that match

our theoretical analysis, communicating asymptotically less than

Cray ScaLAPACK or SLATE, and outperforming the asymptotically-

optimal CANDMC library. Running on 1,024 nodes of Piz Daint,

COnf LUX communicates 1.6× less than the second-best implemen-

tation and is expected to communicate 2.1× less on a full-scale run

on Summit.

1 INTRODUCTION
Data movement is widely considered a bottleneck in high- per-

formance computing [62], often dominating time and energy con-

sumption of computations [38, 61]. Thus, deriving algorithmic I/O

lower bounds has always been of theoretical interest [12, 35]; and

developing I/O-efficient schedules is of high practical value [53, 57].

In linear algebra computations, this challenge is exacerbated by

the fact that the matrices of interest can be prohibitively large.

Simultaneously, large-scale linear algebra kernels such as matrix

factorizations [40, 46] or tensor contractions [58], are the basis of

many problems in scientific computing [16, 64]. Therefore, acceler-

ating these routines is of great significance for numerous domains.

Analyzing I/O bounds of linear algebra kernels dates back to

a seminal work by Hong and Kung [35], who derived a first as-

ymptotic bound for matrix-matrix multiplication (MMM) using the

red-blue pebble game abstraction. This method was subsequently

extended and used by other works to derive asymptotic [26] and

tight [42] bounds for more complex programs. Despite its express-

ibility, problems based on pebble game abstractions are notori-

ously hard to solve, as they are P-SPACE complete in the general

case [43]. Other techniques include methods based on the Loomis-

Whitney inequality [34], [6], [7], [19] and the polyhedral model

program representation [8]. Ultimately, the existing methods are

either problem-specific and hard to generalize [42]; provide only

asymptotic or non-tight lower bounds [20], [34]; or are limited

to only single-statement micro kernels, unable to capture more

complex dependencies [12], [17].

To tackle these challenges, we first provide a general method

for deriving precise I/O lower bounds of Disjoint Array Access

Programs (DAAP) — a broad range of programs composed of a

sequence of statements enclosed in an arbitrary number of nested

loops. Within this class, we explicitly model both the per-statement
data dependencies, using the 𝑋 -Partitioning abstraction [42], as

well as inter-statement data dependencies, in which we model po-

tential data reuse. In Section 6 we illustrate the applicability of our

framework to derive a parallel I/O lower bound of LU factorization:

2
3
𝑁 3

𝑃
√
𝑀

elements, where 𝑁 is the matrix size, 𝑃 is the number of

processors, and𝑀 is the local memory size.

Moreover, in Section 7, we use the insights from deriving the

above lower bound to develop COnf LUX, a near Communication
Optimal LU factorization, 𝑋 -Partitioning-based algorithm. Our al-

gorithm minimizes data movement across the 2.5D processor de-

composition using a row-masking tournament pivoting strategy,

resulting in a communication requirement of
𝑁 3

𝑃
√
𝑀
+ O

(
𝑁 2

𝑃

)
ele-

ments per processor, which leading order term is only a factor of
1
3

over the lower bound.

In Section 8, wemeasure the communication volume of COnf LUX
and we compare to other modern implementations of LU factor-

ization. We consider a vendor- optimized ScaLAPACK from Cray’s

LibSci [9] (an implementation tuned for Cray supercomputers based

on 2D decomposition), CANDMC [54, 55] (code based on asymptoti-

cally optimal 2.5D decomposition), and SLATE [28] (a recent library

targeting exascale systems with an LU implementation based on 2D

decomposition). As the scope of this work is the I/O complexity, we

focus on the communication volume of these implementations. We

tested them on a wide range of problem sizes and numbers of pro-

cessors inspired by real scientific applications. In our experiments

on Piz Daint, we measure up to 4.1x communication reduction com-

pared to the second-best implementation. Furthermore, our 2.5D

decomposition is asymptotically better than SLATE and LibSci, with

even greater expected speedups on exascale machines. Compared

to the communication-avoiding CANDMC library with the I/O cost

of 5𝑁 3/(𝑃
√
𝑀) elements [56], COnf LUX communicates five times

less.

In this work, we provide the following contributions:

• A general method for deriving parallel I/O lower bounds of a

broad range of linear algebra kernels.

• An I/O lower bound of parallel LU factorization.

• COnf LUX, a provably near-I/O-optimal parallel algorithm for

LU factorization.

• A full analysis of communication volume in COnf LUX and a

comparison to the state-of-the-art implementations of LU factor-

ization (LibSci, SLATE, CANDMC), showing consistent benefits

of COnf LUX and thus our general approach over state-of-the-art

libraries.

1

ar
X

iv
:2

01
0.

05
97

5v
1

 [
cs

.D
C

]
 1

2
O

ct
 2

02
0

Technical Report, 2020, G. Kwasniewski et al.

2 BACKGROUND
2.1 Machine Model
To model the algorithmic I/O complexity, we start with a model of

a sequential machine equipped with a two-level deep memory hier-

archy (Sections 3 and 4). In Section 5, we use the parallel machine

model and show which complexity properties are invariant.

Sequential machine. A computation is performed on a sequential

machine with a fast memory of limited size and unlimited slow

memory. The fast memory can hold up to𝑀 elements at any given

time. To perform any computation, all input elements must reside

in fast memory, and the result is stored in fast memory.

Parallel machine. The sequential model is extended to a machine

equipped with 𝑃 processors, each equipped with a private fast mem-

ory of size𝑀 . There is no global memory of unlimited size — instead,

elements are transferred between processors’ fast memories.

2.2 Input Programs
We consider a general class of programs that operate on multidi-

mensional arrays. Array elements can be loaded from slow to fast

memory, stored from fast to slow memory, and computed inside

fast memory. Elements have versions, which are incremented ev-

ery time they are updated. We model the program execution as a

computational directed acyclic graph (cDAG, details in Section 2.3),

where each vertex corresponds to a different version of an element.

E.g., for a statement 𝐴[𝑖, 𝑗] ← 𝑓 (𝐴[𝑖, 𝑗]), a vertex corresponding
to 𝐴[𝑖, 𝑗] after applying 𝑓 is different from a vertex corresponding

to 𝐴[𝑖, 𝑗] before applying 𝑓 . In a cDAG, we model it as an edge

from vertex𝐴[𝑖, 𝑗] before 𝑓 to vertex𝐴[𝑖, 𝑗] after 𝑓 . Initial versions
of each element do not have any incoming edges and thus form

the cDAG inputs. The distinction between elements and vertices is
important for our I/O lower bounds analysis, as we will investigate

how many vertices are computed for a given number of loaded

vertices.

A program is a sequence of statements 𝑆 enclosed in loop nests,

each of the following form (we use the loop nest notation used by

Dinh and Demmel [21]):

for 𝑟1 ∈ 𝑅1, for 𝑟2 ∈ 𝑅2 (𝑟1), . . . for 𝑟 𝑙 ∈ 𝑅𝑙 (𝑟1, . . . , 𝑟 𝑙−1) :
𝑆 : 𝐴0 [𝝓0 (𝒓)] ← 𝑓 (𝐴1 [𝝓1 (𝒓)], 𝐴2 [𝝓2 (𝒓)], . . . , 𝐴𝑚 [𝝓𝒎 (𝒓)])

where (cf. Figure 1 and Table 1 for summaries):

(1) The statement 𝑆 is nested in a loop nest of depth 𝑙 .

(2) Each loop in the 𝑡-th level, 𝑡 = 1, . . . , 𝑙 is associated with its itera-
tion variable 𝑟𝑡 , which iterates over its set

𝑟𝑡 ∈ 𝑅𝑡 . Set 𝑅𝑡 may depend on iteration variables from outer

loops 𝑟1, . . . , 𝑟𝑡−1 (denoted as 𝑅𝑡 (𝑟1, . . . ,𝑟𝑡−1)).
(3) All 𝑙 iteration variables form the iteration vector

r = [𝑟1, . . . , 𝑟 𝑙] and we define the iteration domain 𝑹 as the set

of all iteration vectors ∀𝒓 : 𝒓 ∈ 𝑹.
(4) Each evaluation of statement 𝑆 is a function on𝑚 input elements,

each input belongs to a logical array 𝐴 𝑗 . Different logical arrays

may refer to the same memory region. The dimension of a logical

array is denoted as 𝑑𝑖𝑚(𝐴 𝑗).
(5) Elements of logical array 𝐴 𝑗 are referenced by an access function

vector 𝝓𝒋 = [𝜙1𝑗 , . . . , 𝜙
𝑑𝑖𝑚 (𝐴 𝑗)
𝑗

], which maps 𝑑𝑖𝑚(𝐴 𝑗) iteration
variables to a unique element in array 𝐴 𝑗 (access function vector

In
pu

tp
ro
g.

(§
2.
2) 𝐴0 Output of statement 𝑆 .

𝐴 𝑗 , 𝑗 = 1, . . . ,𝑚 Input 𝑗 of statement 𝑆 .
𝒓 =

[
𝑟1, . . . , 𝑟 𝑙

]
Iteration vector composed of 𝑙 iteration variables.

𝑅𝑡
Iteration domain of variable 𝑟𝑡 ∈ 𝑅𝑡 , which may
depend on iteration variables 1 . . . 𝑡 − 1.

𝝓 𝑗
Access vector mapping 𝑑𝑖𝑚 (𝝓 𝑗) iteration variab-
les to a 𝑑𝑖𝑚 (𝐴 𝑗) dimensional address in array𝐴 𝑗 .

𝑋
-P
ar
ti
ti
on

in
g
(§

2.
3)

𝐺 = (𝑉 , 𝐸) computational Directed Acyclic Graph (cDAG) with
𝑉 vertices and 𝐸 ⊂ 𝑉 ×𝑉 directed edges.

𝑀 Number of red pebbles (size of the fast memory).

𝑉ℎ ⊂ 𝑉
An ℎ-th subcomputation of an
𝑋 -partition, ℎ = 1, . . . , 𝑠

Dom (𝑉ℎ) Dominator set of subcomputation𝑉ℎ .

P(𝑋) = {𝑉1, . . . ,𝑉𝑠 }
An 𝑋 -partition composed of 𝑠 disjoint
subcomputations.

Π (𝑋) The set of all 𝑋 -partitions of size 𝑋 .
𝑄 A number of I/O operations of a schedule.
𝜌ℎ The computational intensity of subcomputation𝑉ℎ .
𝜌 = maxℎ {𝜌1, . . . , 𝜌𝑠 } The maximum computational intensity of P(𝑋) .

D
A
A
P
sc
he

d.
(§

3) 𝑅𝑡
ℎ

Set of all values iteration variable 𝑡 takes
during subcomputation ℎ.

𝑅𝑘
ℎ,𝑗

Set of all values 𝑘-th iteration variable of access
function vector 𝜙 𝑗 takes during subcomputation ℎ.

𝑹ℎ

Iteration domain of subcomputation ℎ — set of all
iteration vectors accessed during ℎ.

|𝐴 𝑗 (𝑹ℎ) |
Number of different vertices accessed
from array𝐴 𝑗 during subcomputation ℎ.

Table 1: Notation used in the paper.

is injective). Only vertices associated with the newest element

versions can be referenced.

(6) A given vertex can be referenced by only one access function

vector per statement. We will refer to this as disjoint access prop-
erty.

(7) The access dimension of 𝐴 𝑗 (𝝓 𝑗), denoted 𝑑𝑖𝑚(𝐴 𝑗 (𝝓 𝑗)), is the
number of different iteration variables present in 𝝓 𝑗 . Example:
consider access 𝐴 𝑗 [𝑘, 𝑘] used, e.g., in LU factorization. Its access
function vector 𝝓 𝑗 = [𝑘, 𝑘] is a function of only one iteration
variable 𝑘 . Therefore, 𝑑𝑖𝑚(𝐴 𝑗) = 2, but 𝑑𝑖𝑚(𝐴 𝑗 (𝝓𝒋)) = 1. If it

is clear from the context, we will refer to 𝑑𝑖𝑚(𝐴 𝑗 (𝝓 𝑗)) simply as

𝑑𝑖𝑚(𝝓 𝑗).
(8) The result of a statement evaluation is stored in array 𝐴0.

We denote an input program of this form as a Disjoint Array
Access Program (DAAP). In summary, for each innermost loop iter-

ation (and its corresponding iteration vector r), each statement is

an evaluation of some function 𝑓 on𝑚 inputs, where every input

is an element of array 𝐴 𝑗 , 𝑗 = 1, . . . ,𝑚, and the result of 𝑓 is stored

to the output array 𝐴0 at location 𝝓0 (r). The notation used in this

work is summarized in Table 1, along with an example program (LU

factorization) in Figure 1. We want to emphasize that even though

the evaluation in this paper focuses mostly on the I/O minimiza-

tion of the parallel LU factorization for illustrative purposes, our

universal method can be applied to other kernels, like Cholesky

and QR factorizations, or more general tensor contractions.

Note: Elements and vertices. Consider a program:

for k = 1:10 for i = k+1:10 for j = k+1:10
A(i,j) = A(i,j) - A(i,k)*A(k,j)
end; end; end;

Consider the element A(5,3). Even though it is referenced more than
once, for example for k=1;i=5;j=3; by access 𝐴1 (𝝓1)=A(i,j), and

2

Near-Optimal LU Factorization Technical Report, 2020,

Figure 1: In-place LU factorization (for simplicity, no pivoting is performed). LU contains two statements (𝑆1 and 𝑆2), for which
we provide key components of our program representation, together with the corresponding cDAG for 𝑁 = 4. For statement
𝑆2, we also provide a graphical visualization of a single subcomputation 𝑉ℎ in its 𝑋 -partition.

for k=3;i=5;j=4; (access 𝐴2 (𝝓2)= A(i,k)), this element has been
updated and has different versions in these two accesses, corresponding
to different vertices in the cDAG. Observe however, that if the second
loop iterated over range for i = k:10, this would not be a valid
DAAP program, as it would invalidate the disjoint access property.

2.3 I/O Complexity and Pebble Games
We now establish the relationship between DAAP and the red-blue

pebble game — a powerful abstraction for deriving lower bounds

and optimal schedules of cDAGs evaluation.

2.3.1 cDAG and Red-Blue Pebble Game. Introduced by Hong and

Kung [35], the red-blue pebble game is played on the computation

directed acyclic graph (cDAG)𝐺 = (𝑉 , 𝐸). Every vertex 𝑣 ∈ 𝑉 repre-

sents a result of a unique computation stored in some memory and

a directed edge (𝑢, 𝑣) ∈ 𝐸 represents a data dependency. Vertices

without any incoming (outgoing) edges are called inputs (outputs).
The vertices that are currently in fast memory are marked by a red

pebble on the corresponding vertex of the cDAG. Since the size of

fast memory is limited (we denote this size by the parameter 𝑀),

we can never have more than 𝑀 red pebbles on the cDAG at any

moment. Analogously, the contents of the slow memory (of unlim-

ited size) is represented by an unlimited number of blue pebbles.

To perform a computation, i.e., to evaluate the value corresponding

to vertex 𝑣 , all direct predecessors of 𝑣 must be loaded into fast

memory.

Rules and goal of the game. The game proceeds as follows: First,

all input vertices have blue pebbles placed on them, and no red

pebbles are present in the cDAG. At any time, one of the following

pebbling moves are allowed: 1) placing a red pebble on a vertex

which has a blue pebble (load), 2) placing a blue pebble on a vertex

which has a red pebble (store), 3) placing a red pebble on a vertex

which all direct predecessors have red pebbles (compute), 4) remov-

ing any pebble from a vertex (discard). The goal of a game is to find

a sequence of pebbling moves such that all output vertices have

blue pebbles placed on them, and the number of load and store

operations is minimized. For this, we need definitions of certain

sets of vertices that impose a structure on the cDAG.

2.3.2 Dominator and Minimum Sets. For any subset of vertices

𝑉ℎ ⊂ 𝑉 , a dominator setDom (𝑉ℎ) is a set such that every path in the
cDAG from an input vertex that enters𝑉ℎ must contain at least one

vertex inDom (𝑉ℎ). They further define theminimum set Min (𝑉ℎ)
as the set of all vertices in𝑉ℎ that do not have any immediate succes-

sors in 𝑉ℎ . To avoid the ambiguity of non-uniqueness of dominator

set size, we denote a minimum dominator set Dom𝑚𝑖𝑛 (𝑉ℎ) to be a

dominator set with the smallest size.

Intuition. A dominator set abstracts a set of inputs required to exe-
cute subcomputation𝑉ℎ and a minimum set a set of outputs of𝑉ℎ . We

3

Technical Report, 2020, G. Kwasniewski et al.

bound computation “volume” (number of vertices in𝑉ℎ) by its commu-
nication “surface”, comprised by its inputs - vertices in Dom𝑚𝑖𝑛 (𝑉ℎ)
and outputs - vertices in Min (𝑉ℎ).

2.3.3 𝑋 -Partitioning. Introduced by Kwasniewski et al. [42],

𝑋 -Partitioning generalizes the work by Hong and Kung [35]. An

𝑋 -partition of a cDAG is a collection of 𝑠 mutually disjoint subsets

𝑉ℎ (referred as subcomputations) P(𝑋) = {𝑉1, . . . ,𝑉𝑠 } of𝑉 to 𝑠 with

two additional properties:

• no cyclic dependencies between subcomputations,

• ∀ℎ, |𝐷𝑜𝑚𝑚𝑖𝑛 (𝑉ℎ) | ≤ 𝑋 and |𝑀𝑖𝑛 (𝑉ℎ) | ≤ 𝑋 .
For a given cDAG and for any given𝑋 > 𝑀 , denote Π(𝑋) a set of

all its valid 𝑋 -partitions, P(𝑋) ∈ Π(𝑋). Kwasniewski et al. prove
that an I/O optimal schedule of𝐺 , which performs𝑄 load and store

operations, has an associated 𝑋 -partition P𝑜𝑝𝑡 (𝑋) ∈ Π(𝑋) with
size |P𝑜𝑝𝑡 (𝑋) | ≤ 𝑄+𝑋−𝑀

𝑋−𝑀 for any 𝑋 > 𝑀 ([42] extended version,

Lemma 2).

Intuition. If a smallest dominator set of𝑉ℎ contains 𝑋 vertices, then
at least 𝑋 −𝑀 vertices need to loaded. Note that there may exist a
valid𝑋 -partitionP𝑚𝑖𝑛 (𝑋) ∈ Π(𝑋) such that |P𝑚𝑖𝑛 (𝑋) | < |P𝑜𝑝𝑡 (𝑋) |.
Such 𝑋 -partition cannot be directly translated to a valid schedule, but
may serve as a lower bound.

2.3.4 Deriving lower bounds. The following lemma bounds the

number I/O operations required to pebble a given cDAG:

Lemma 1. (Lemma 4 in [42], extended version) For any constant 𝑋𝑐 ,
the number of I/O operations𝑄 required to pebble a cDAG𝐺 = (𝑉 , 𝐸)
with |𝑉 | = 𝑛 vertices using 𝑀 red pebbles is bounded by 𝑄 ≥ 𝑛/𝜌 ,
where 𝜌 =

|𝑉𝑚𝑎𝑥 |
𝑋−𝑀 is the maximal computational intensity, 𝑉𝑚𝑎𝑥 =

argmax𝑉ℎ ∈P(𝑋𝑐) |𝑉ℎ | is the largest subcomputation among all valid
𝑋𝑐 -partitions.

Limitations of existingmethods. While pebbling-based approaches

have been successfully applied to algorithms like FFT [35], sort-

ing [25], and parallel MMM [42], they still pose several limitations:

• Parametric cDAGs. Existing methods operate on cDAGs where

vertices and edges are explicitly provided. To handle cDAGs of

parametric sizes (e.g., 𝑁 3
vertices of MMM or 𝑁 log𝑁 vertices

of FFT), additional, non-generalizable methods must be further

applied.

• Complexity. Finding an optimal pebbling sequence is P-SPACE

complete [43]; and 𝑆- or, more general,𝑋 -partitioning is NP-hard

(reducible to max-cut).

• Lower bounds vs. schedule. There is no general, direct method

to translate lower bounds derived from𝑋 -partitioning to a correct

schedule.

In the following section, we take advantage of a DAAP structure

(Section 2.2) to build up a new, general method for obtaining I/O

lower bounds. This allows capturing parametric cDAGs, as all vertex
sets are symbolic. It drastically reduces the complexity, as individual
vertices do not need to be modeled anymore.

3 GENERAL I/O LOWER BOUNDS
In this section, we derive I/O bounds for a single statement. In

Section 4 we extend our analysis to capture interactions and reuse

between different statements in the program.

In this paper, we present the key lemmas and the intuition be-

hind them to guide the reader to our main result — near optimal

parallel LU factorization. However, the method covers a much wider

spectrum of algorithms. For curious readers, we present all proofs

of provided lemmas, together with the full theoretical analysis, in

the attached supplementary material.

We start with stating our key lemma:

Lemma 2. If |𝑉𝑚𝑎𝑥 | can be expressed as a closed-form function of𝑋 ,
that is |𝑉𝑚𝑎𝑥 | = 𝜓 (𝑋), then the lower bound on 𝑄 may be expressed
as:

𝑄 ≥ 𝑛 (𝑋0 −𝑀)
𝜓 (𝑋0)

where 𝑋0 = argmin𝑋 𝜌 = argmin𝑋
𝜓 (𝑋)
𝑋−𝑀 .

Proof. Note that Lemma 1 is valid for any 𝑋𝑐 (i.e., for any 𝑋𝑐 ,

it gives a valid lower bound). Yet, these bounds are not necessar-

ily tight. As we want to find tight I/O lower bounds, we need to

maximize the lower bound. 𝑋0 by definition minimizes 𝜌 ; thus, it

maximizes the bound. Lemma 2 then follows directly from Lemma 1

by substituting 𝜌 =
𝜓 (𝑋0)
𝑋0−𝑀 . □

Intuition.𝜓 (𝑋) expresses computation “volume”, while 𝑋 is its in-
put “surface”. 𝑋0 corresponds to the situation where the ratio of this
“volume” to the required communication is minimized (corresponding
to a highest lower bound).

Note. If function 𝜓 (𝑋) is differentiable and has a global min-

imum, we can find 𝑋0 by, e.g., solving the equation

𝑑
𝜓 (𝑋)
𝑋−𝑀
𝑑𝑋

= 0.
The key limitation is that it is not always possible to find 𝜓 , that

is, to express |𝑉𝑚𝑎𝑥 | solely as a function of 𝑋 . However, for many

linear algebra kernels𝜓 (𝑋) exists. Furthermore, one can relax this

problem preserving the correctness of the lower bound, that is, by

finding a function𝜓 : ∀𝑋𝜓 (𝑋) ≥ 𝜓 (𝑋).

3.1 Iteration vector, domain, and access sizes
Each execution of statement 𝑆 is associated with the iteration vector
r = [𝑟1, . . . ,𝑟 𝑙] ∈ N𝑙 representing the current iteration, that is, values
of iteration variables 𝑟1, . . . ,𝑟 𝑙 . Each subcomputation𝑉ℎ is uniquely

defined by all iteration vectors associated with vertices pebbled in

𝑉ℎ : {r1ℎ, . . . ,r
|𝑉ℎ |
ℎ
} = Rℎ . For each iteration variable 𝑟𝑡 , 𝑡 = 1, . . . , 𝑙 ,

denote the set of all values that 𝑟𝑡 takes during𝑉ℎ as 𝑅
𝑡
ℎ
. We have 𝑟𝑡

ℎ

∈ 𝑅𝑡
ℎ
⊆ 𝑅𝑡 ⊂ N. We denote Rℎ ⊆ [𝑅1ℎ , . . . , 𝑅

𝑡
ℎ
] ⊆ R as the iteration

domain of subcomputation 𝑉ℎ .

Furthermore, recall that each input access 𝐴 𝑗 [𝝓𝒋 (𝒓)] is uniquely
defined by 𝑑𝑖𝑚(𝝓 𝑗) iteration variables 𝑟1

𝑗
, . . . , 𝑟

𝑑𝑖𝑚 (𝝓 𝑗)
𝑗

. Denote the

set of all values each of 𝑟𝑘
𝑗
takes during 𝑉ℎ as 𝑅𝑘

ℎ,𝑗
. Given Rℎ , we

also denote the number of different vertices that are accessed from

each input array 𝐴 𝑗 as |𝐴 𝑗 (Rℎ) |.
We now state the lemma which bounds |𝑉ℎ | by the iteration sets’

sizes |𝑅𝑡
ℎ
|:

Lemma 3. Given the ranges of all iteration variables 𝑅𝑡
ℎ
, 𝑡 = 1, . . . , 𝑙

during subcomputation 𝑉ℎ , if |𝑉ℎ | =
∏𝑙
𝑡=1 |𝑅𝑡ℎ |, then

∀𝑗 = 1, . . . ,𝑚 : |𝐴 𝑗 (Rℎ) | =
∏𝑑𝑖𝑚 (𝝓 𝑗)
𝑘=1

|𝑅𝑘
ℎ,𝑗
| and |𝑉ℎ | is maximized

among all valid subcomputations which iterate over 𝑹ℎ = [𝑅1
ℎ
, . . . , 𝑅𝑡

ℎ
].

To prove it, we now introduce two auxiliary lemmas:

4

Near-Optimal LU Factorization Technical Report, 2020,

Lemma 4. For statement 𝑆 , the size |𝑉ℎ | of subcomputation𝑉ℎ (num-
ber of vertices of 𝑆 computed during𝑉ℎ) is bounded by the sizes of the
iteration variables’ sets 𝑅𝑡

ℎ
, 𝑡 = 1, . . . , 𝑙 :

|𝑉ℎ | ≤
𝑙∏
𝑡=1

|𝑅𝑡
ℎ
|. (1)

Proof. Inequality 1 follows from a combinatorial argument:

each computation in 𝑉ℎ is uniquely defined by its iteration vector

[𝑟1, . . . , 𝑟 𝑙]. As each iteration variable 𝑟𝑡 takes |𝑅𝑡
ℎ
| different values

during 𝑉ℎ , we have |𝑅1ℎ | · |𝑅
2
ℎ
| · · · · · |𝑅𝑡

ℎ
| = ∏𝑙

𝑡=1 |𝑅𝑡ℎ | ways how to

uniquely choose the iteration vector in 𝑉ℎ . □

Now, given Rℎ , we want to assess how many different vertices

are accessed for each input array 𝐴 𝑗 . Recall that this number is

denoted as access size |𝐴 𝑗 (Rℎ) |.
We will apply the same combinatorial reasoning to 𝐴 𝑗 (Rℎ). For

each access𝐴 𝑗 [𝝓 𝑗 (𝒓)], each one of 𝑟𝑘
𝑗
, 𝑘 = 1, . . . , 𝑑𝑖𝑚(𝝓 𝑗) iteration

variables loops over set 𝑅𝑘
ℎ,𝑗

during subcomputation 𝑉ℎ . We can

thus bound size of 𝐴 𝑗 (Rℎ) similarly to Lemma 4:

Lemma 5. The access size |𝐴 𝑗 (Rℎ) | of subcomputation𝑉ℎ (the num-
ber of vertices from the array𝐴 𝑗 required to compute𝑉ℎ) is bounded by
the sizes of 𝑑𝑖𝑚(𝝓 𝑗) iteration variables’ sets 𝑅𝑘ℎ,𝑗 , 𝑘 = 1, . . . , 𝑑𝑖𝑚(𝝓 𝑗):

∀𝑗=1,...,𝑚 : |𝐴 𝑗 (Rℎ) | ≤
𝑑𝑖𝑚 (𝝓 𝑗)∏
𝑘=1

|𝑅𝑘
ℎ,𝑗
| (2)

where 𝑅𝑘
ℎ,𝑗
∋ 𝑟𝑘

𝑗
is the set over which iteration variable 𝑟𝑘

𝑗
iterates

during 𝑉ℎ .

Proof. We use the same combinatorial argument as in Lemma 4.

Each vertex in 𝐴 𝑗 (Rℎ) is uniquely defined by [𝑟1
𝑗
, . . . , 𝑟

𝑑𝑖𝑚 (𝝓 𝑗)
𝑗

].
Knowing the number of different values each 𝑟𝑘

𝑗
takes, we bound

the number of different access vectors 𝝓 𝑗 (𝒓ℎ). □

Example: Consider once more statement 𝑆1 from LU factorization in
Figure 1.We have 𝝓0 = [i, k], 𝝓1 = [i, k], and 𝝓2 = [k, k]. Denote the iter-
ation subdomain for subcomputation 𝑉ℎ as Rℎ =

{[𝑘1, 𝑖1], . . . , [𝑘 |𝑉ℎ |, 𝑖 |𝑉ℎ |] }, where each variable 𝑘 and 𝑖 iterates
over its set 𝑘𝑔 ∈ {𝑟𝑘,1, . . . , 𝑟𝑘,𝐾 } = 𝑅𝑘ℎ and 𝑖𝑔 ∈ {𝑟𝑖,1, . . . , 𝑟𝑖,𝐼 } = 𝑅𝑖ℎ ,
for 𝑔 = 1, . . . , |𝑉ℎ |. Denote the sizes of these sets as |𝑅𝑘ℎ | = 𝐾ℎ and
|𝑅𝑖
ℎ
| = 𝐼ℎ , that is, during 𝑉ℎ , variable 𝑘 takes 𝐾 different values and

𝑖 takes 𝐼ℎ different values. For 𝝓1, both iteration variables used are
different: k and i. Therefore, we have (Equation 2) |𝐴1 (Rℎ) | ≤ 𝐾ℎ · 𝐼ℎ .
On the other hand, for 𝝓2, the iteration variable 𝑘 is used twice. Recall
that the access dimension is the minimum number of different itera-
tion variables that uniquely address it (Section 2.2), so its dimension
is 𝑑𝑖𝑚(𝐴2) = 1 and the only iteration variable needed to uniquely
determine 𝝓2 is 𝑘 . Therefore, |𝐴2 (Rℎ) | ≤ 𝐾ℎ .

Dominator set. Input vertices𝐴1, . . . , 𝐴𝑚 form a dominator set

of vertices𝐴0, because any path from graph inputs to any vertex in

𝐴0 must include at least one vertex from 𝐴1, . . . , 𝐴𝑚 . This is also

theminimum dominator set, because of the disjoint access property

(Section 2.2): any path from graph inputs to any vertex in 𝐴0 can

include at most one vertex from 𝐴1, . . . , 𝐴𝑚 .

Proof of Lemma 3. For subcomputation𝑉ℎ , we have |
⋃𝑚
𝑗=1𝐴 𝑗 (Rℎ) | ≤

𝑋 (by the definition of an𝑋 -partition). Again, by the disjoint access

property, we have∀𝑗1 ≠ 𝑗2 : 𝐴 𝑗1 (𝑹ℎ)∩𝐴 𝑗2 (𝑹ℎ) = ∅. Therefore, we
also have |⋃𝑚𝑗=1𝐴 𝑗 (Rℎ) | = ∑𝑚

𝑗=1 |𝐴 𝑗 (Rℎ) |. We now want to maxi-

mize |𝑉ℎ |, that is to find 𝑉𝑚𝑎𝑥 to obtain computational intensity 𝜌

(Lemma 2).

Now we prove that to maximize |𝑉ℎ |, inequalities 1 and 2 must

be tight (become equalities).

From proof of Lemma 4 it follows that |𝑉ℎ | is maximized when

iteration vector 𝒓 takes all possible combinations of iteration vari-

ables 𝑟𝑡
ℎ
∈ 𝑅𝑡

ℎ
during 𝑉ℎ . But, as we visit each combination of

all 𝑙 iteration variables, for each access 𝐴 𝑗 every combination of

its [𝑟1
𝑗
, . . . , 𝑟

𝑑𝑖𝑚 (𝝓 𝑗)
𝑗

] iteration variables is also visited. Therefore,

for every 𝑗 = 1, . . . ,𝑚, each access size |𝐴 𝑗 (𝑹ℎ) | is maximized

(Lemma 5), as access functions are injective, which implies that for

each combination of [𝑟1
𝑗
, . . . , 𝑟

𝑑𝑖𝑚 (𝝓 𝑗)
𝑗

], there is one access to 𝐴 𝑗 .∏𝑙
𝑡=1 |𝑅𝑡ℎ | is then the upper bound on |𝑉ℎ |, and its tightness implies

that all bounds on access sizes |𝐴 𝑗 (𝑹ℎ) | ≤
∏𝑑𝑖𝑚 (𝝓 𝑗)
𝑘=1

|𝑅𝑘
ℎ,𝑗
| are also

tight. □
Intuition. Lemma 3 states that if each iteration variable 𝑟𝑡 , 𝑡=1, . . . , 𝑙
takes |𝑅𝑡

ℎ
| different values, then there are at most

∏𝑙
𝑡=1 |𝑅𝑡ℎ | different

iteration vectors 𝒓 which can be formed in𝑉ℎ . Therefore, to maximize
|𝑉ℎ |, all combinations of values 𝑟𝑡 should be evaluated. On the other
hand, this also implies maximization of all access sizes |𝐴 𝑗 (Rℎ) | =∏𝑑𝑖𝑚 (𝝓 𝑗)
𝑘=1

|𝑅𝑘
ℎ,𝑗
|.

3.2 Finding the I/O Lower Bound
Denoting 𝑉𝑚𝑎𝑥 = argmax𝑉ℎ ∈P(𝑋) |𝑉ℎ | the largest subcomputa-

tion among all valid 𝑋 -partitions, we use Lemma 3 and combine

it with the dominator set constraint. Note that all access set sizes

are strictly positive integers |𝑅𝑡𝑚𝑎𝑥 | ∈ N+, 𝑡 = 1, . . . , 𝑙 . Otherwise,
no computation can be performed. However, as we only want to

find the bound on number of I/O operations, we relax the integer

constraints and replace them with |𝑅𝑡𝑚𝑎𝑥 | ≥ 1. Then, we formulate

finding𝜓 (𝑋) (Lemma 2), as the optimization problem:

max
𝑙∏
𝑡=1

|𝑅𝑡𝑚𝑎𝑥 | s.t.

𝑚∑︁
𝑗=1

𝑑𝑖𝑚 (𝝓 𝑗)∏
𝑘=1

|𝑅𝑘𝑚𝑎𝑥,𝑗 | ≤ 𝑋

∀1 ≥ 𝑡 ≥ 𝑙 : |𝑅𝑡𝑚𝑎𝑥 | ≥ 1 (3)

We then find |𝑉𝑚𝑎𝑥 | = 𝜓 (𝑋) as a function of 𝑋 using Karush–

Kuhn–Tucker conditions [41]. Next, we solve

𝑑
𝜓 (𝑋)
𝑋−𝑀
𝑑𝑋

= 0. (4)

Denoting 𝑋0 as solution to Equation 4, we finally obtain

𝑄 ≥ |𝑉 | (𝑋0 −𝑀)
𝜓 (𝑋0)

. (5)

3.3 Out-degree-one Vertices
In some cDAGs, every non-input vertex has a certain number 𝑢 ≥ 0
of direct predecessors, which are input vertices with out-degree

1. We can use it to put an additional bound on the computational

intensity.

5

Technical Report, 2020, G. Kwasniewski et al.

non-input
vertex

input vertex
(degree=1)

input vertex
(degree>1)

matrix A
vector b

non-input
vertex

input vertex
(degree=1)

input vertex
(degree=1)

vector a
vector b

non-input
vertex

a) b)

matrix C final value
of c

Figure 2: cDAGs with out-degree 1 input vertices. a) 𝑢𝑎 = 1,
𝜌𝑎 ≤ 1. b) 𝑢𝑏 = 2, 𝜌𝑏 ≤ 1

2 .

Lemma 6. If in a cDAG 𝐺 = (𝑉 , 𝐸) every non-input vertex has
at least 𝑢 direct predecessors, with out-degree one, which are graph
inputs, then the maximum computational intensity 𝜌 of this cDAG is
bounded by 𝜌 ≤ 1

𝑢 .

Proof. By the definition of the red-blue pebble game, all inputs

start in slow memory, and therefore, have to be loaded. By the

assumption on the cDAG, to compute any non-input vertex 𝑣 ∈ 𝑉 , at
least𝑢 input vertices need to have red pebbles placed on them using

a load operation. Because these vertices do not have any other direct

successors (their out-degree is 1), they cannot be used to compute

any other non-input vertex 𝑤 . Therefore, each computation of a

non-input vertex requires at least 𝑢 unique input vertices to be

loaded. □

Example: Consider Figure 2. In a), each compute vertex 𝐶 [𝑖, 𝑗]
has two input vertices:𝐴[𝑖, 𝑗] with out-degree 1, and 𝑏 [𝑗] with out-

degree 𝑛, thus 𝑢 = 1. As both array 𝐴 and vector 𝑏 start in the slow

memory (having blue pebbles on each vertex), for each computed

vertex from𝐶 , at least one vertex from𝐴 has to be loaded, therefore

𝜌 ≤ 1. In b), each computation needs two out-degree 1 vertices,

one from vector 𝑎 and one from vector 𝑏, resulting in 𝑢 = 2. Thus,
𝜌 ≤ 1

2 .

Note. We use the above lemma to derive the computational inten-
sity of statement 𝑆1 in LU factorization (Figure 1).

4 DATA REUSE ACROSS MULTIPLE
STATEMENTS

Almost all computational kernels contain multiple statements con-

nected by data dependencies — e.g., column update (𝑆1) and trailing
matrix update (𝑆2) in LU factorization (Figure 1). In this section we

examine how these dependencies influence the total I/O cost of a

program.

Consider a program containing two statements 𝑆 and 𝑇 :

for 𝛾1 ∈ Γ1, for 𝛾2 ∈ Γ2 (𝛾1), ..., for 𝛾𝑘 ∈ Γ𝑘 (𝛾1, . . . , 𝛾𝑘−1) :
𝑆 : 𝐴0 [𝝓0 (𝛾)] ← 𝑓 (𝐴1 [𝝓1 (𝛾)], 𝐴2 [𝝓2 (𝛾)], . . . , 𝐴𝑚 [𝝓𝑚 (𝛾)])

for _1 ∈ Λ1 : for _2 ∈ Λ2 (_1), . . . , for _𝑙 ∈ Λ𝑙 (_1, . . . , _𝑙−1) :
𝑇 : 𝐵0 [𝝌0 (_)] ← 𝑔 (𝐵1 [𝝌1 (_)], 𝐵2 [𝝌2 (_)], . . . , 𝐵𝑛 [𝝌𝑛 (_)])

Denote𝑄𝑆 and𝑄𝑇 as I/O costs of statements 𝑆 and𝑇 if executed

separately, and 𝑄𝑡𝑜𝑡 a total I/O cost of the above program. Assume

that there is at least one array that is accessed both in 𝑆 and𝑇 , that

is ∃𝑖, 𝑗 : 𝐴𝑖 = 𝐵 𝑗 . An I/O optimal schedule could take advantage

of it by possibly fusing statements 𝑆 and 𝑇 : once some vertices of

𝐴𝑖 are loaded, they could be used to compute both 𝐴0 (statement

𝑆) and 𝐵0 (statement 𝑇), yielding 𝑄𝑡𝑜𝑡 < 𝑄𝑆 +𝑄𝑇 . However, deter-
mining explicitly which loops should be fused to maximize locality

is proven to be NP-hard [37]. Therefore, here we focus only on the

I/O lower bounds, or, in other words, what is the maximum possible

“benefit” of any data reuse between statements.

There are two cases in which the data reuse can occur (Figure 3):

I) input overlap, where shared arrays are inputs for all statements,

II) output overlap, where the output array of one statement is the

input array of another.

Case I). Assume there are𝑤 statements in the program, and there

are 𝑘 arrays 𝐴 𝑗 , 𝑗 = 1, . . . , 𝑘 which are shared between at least two

statements. We still evaluate each statement separately, but we will

subtract the upper bound on shared loads 𝑄𝑡𝑜𝑡 ≥∑𝑤
𝑖=1𝑄𝑖 −

∑𝑘
𝑗=1 |𝑅𝑒𝑢𝑠𝑒 (𝐴 𝑗) |, where |𝑅𝑒𝑢𝑠𝑒 (𝐴 𝑗) | is the reuse bound

on array 𝐴 𝑗 (Section 4.1).

Case II). Consider each pair of “producer-consumer” statements 𝑆

and𝑇 , that is, the output of 𝑆 is the input of𝑇 . The I/O lower bound

𝑄𝑆 of statement 𝑆 does not change due to the reuse. On the other

hand, it may invalidate 𝑄𝑇 , as the dominator set of 𝑇 formulated

in Section 3.1 may not be minimum — inputs of a statement may

not be graph inputs anymore. For each “consumer” statement 𝑇

we reevaluate 𝑄 ′
𝑇
≤ 𝑄𝑇 using Lemma 8. For a program consisting

of𝑤 statements connected by the output overlap, we have 𝑄𝑡𝑜𝑡 ≥∑𝑤
𝑖=1𝑄

′
𝑖
. Note that for each “producer” statement 𝑖 ,𝑄 ′

𝑖
= 𝑄𝑖 (output

overlap does not change their I/O lower bound).

4.1 Case I. Input Reuse and Reuse Size
Consider two statements 𝑆 and 𝑇 , which share one input array

𝐴𝑖 . Denote |𝐴𝑖 (𝑹𝑆) | the total number of accesses to 𝐴𝑖 during the

I/O optimal execution of a program that contains only statement

𝑆 . Analogously, denote |𝐴𝑖 (𝑹𝑇) | for a program containing only 𝑇 .

Define 𝑅𝑒𝑢𝑠𝑒 (𝐴𝑖) as a number of loads from 𝐴𝑖 which are shared

between statements.

Lemma 7. The I/O cost of a program containing statements 𝑆 and𝑇
which share the input array 𝐴𝑖 is bounded by

𝑄𝑡𝑜𝑡 ≥ 𝑄𝑆 +𝑄𝑇 − 𝑅𝑒𝑢𝑠𝑒 (𝐴𝑖)

where𝑄𝑆 ,𝑄𝑇 are the I/O costs of a program containing only state-
ment 𝑆 or 𝑇 , respectively. Furthermore, we have:

𝑅𝑒𝑢𝑠𝑒 (𝐴𝑖) ≤ min{|𝐴𝑖 (𝑹𝑆) |, |𝐴𝑖 (𝑹𝑇) |}

where |𝐴𝑖 (𝑹𝑆) | and |𝐴𝑖 (𝑹𝑇) | are the number of accesses to𝐴𝑖 during
the optimal execution of statements 𝑆 and 𝑇 separately.

6

Near-Optimal LU Factorization Technical Report, 2020,

Figure 3: Data reuse across multiple statements.

Proof. Consider an optimal sequential schedule of a cDAG

𝐺𝑆 containing statement 𝑆 only. For any subcomputation 𝑉𝑠 and

its associated iteration domain 𝑹𝑠 its minimum dominator set is

Dom (𝑉𝑠) =
⋃𝑚
𝑗=1𝐴 𝑗 (𝑹𝑠). To compute𝑉𝑆 , at least

∑𝑚
𝑖=1 |𝐴 𝑗 (𝑹𝑠) | −

𝑀 vertices have to be loaded, as only𝑀 vertices can be reused from

previous subcomputations.

We seek if any loads can be avoided in the common schedule if

we add statement 𝑇 , denoting its cDAG 𝐺𝑆+𝑇 . Consider a subset
𝐴𝑖 (𝑹𝑥) of vertices in 𝐴𝑖 .

Consider some subset of vertices in 𝐴𝑖 which potentially could

be reused and denote itΘ𝑖 . Now denote all vertices in𝐴0 (statement

𝑆) which depend on any vertex from Θ𝑖 as Θ𝑆 , and, analogously,
set Θ𝑇 for statement 𝑇 . Now consider these two subsets Θ𝑆 and

Θ𝑇 separately. If Θ𝑆 is computed before Θ𝑇 , then it had to load all

vertices from Θ𝑖 , avoiding no loads compared to the schedule of𝐺𝑆
only. Now, computation of Θ𝑇 may take benefit of some vertices

from Θ𝑖 , which can still reside in fast memory, avoiding up to |Θ𝑖 |
loads.

The total number of avoided loads is bounded by the num-

ber of loads from 𝐴𝑖 which are shared by both 𝑆 and 𝑇 . Because

statement 𝑆 loads at most |𝐴𝑖 (𝑹𝑆) | vertices from 𝐴𝑖 during op-

timal schedule of 𝐺𝑆 , and 𝑇 loads at most |𝐴𝑖 (𝑹𝑇) | of them for

𝐺𝑇 , the upper bound of shared, and possibly avoided loads is

𝑅𝑒𝑢𝑠𝑒 (𝐴𝑖) = min{|𝐴𝑖 (𝑹𝑆) |, |𝐴𝑖 (𝑹𝑇) |}.
□

The reuse size is defined as𝑅𝑒𝑢𝑠𝑒 (𝐴𝑖) = min{|𝐴𝑖 (𝑹𝑆) |, |𝐴𝑖 (𝑹𝑇) |}.
Now, how to find |𝐴𝑖 (𝑹𝑆) | and |𝐴𝑖 (𝑹𝑇) |?

Observe that |𝐴𝑖 (𝑹𝑆) | is a property of 𝐺𝑆 , that is, the cDAG

containing statement 𝑆 only. Denote the I/O optimal schedule pa-

rameters of 𝐺𝑆 : 𝑉
𝑆
𝑚𝑎𝑥 , 𝑋

𝑆
0 , and |𝐴𝑖 (𝑹

𝑆
𝑚𝑎𝑥 (𝑋𝑆0)) | (Section 3.2). Simi-

larly, for𝐺𝑇 :𝑉
𝑇
𝑚𝑎𝑥 , 𝑋

𝑇
0 , and |𝐴𝑖 (𝑹

𝑇
𝑚𝑎𝑥 (𝑋𝑇0)) |. We now derive: 1) at

least how many subcomputations does the optimal schedule have:

𝑠 ≥ |𝑉 |
|𝑉𝑚𝑎𝑥 | , 2) at least how many accesses to 𝐴𝑖 are performed per

optimal subcomputation |𝐴𝑖 (𝑹𝑚𝑎𝑥 (𝑋0)) |. Then:

𝑅𝑒𝑢𝑠𝑒 (𝐴𝑖) = min{|𝐴𝑖 (𝑹𝑆𝑚𝑎𝑥 (𝑋𝑆0)) |
|𝑉 𝑆 |
|𝑉 𝑆𝑚𝑎𝑥 |

, (6)

|𝐴𝑖 (𝑹𝑇𝑚𝑎𝑥 (𝑋𝑇0)) |
|𝑉𝑇 |
|𝑉𝑇𝑚𝑎𝑥 |

}

Example: Consider the following code:

1 for i = 1:N for j = 1:N for k = 1:N
2 S: D[i,j,k] = A[i,k] * B[k,j]
3 T: E[i,j,k] = C[i,k] * B[k,j]
4 end; end; end

We now derive the I/O lower bound of this program:

(1) statement S. Denote 𝐼ℎ, 𝐽ℎ, 𝐾ℎ as the number of different

values iteration variables 𝑖 , 𝑗 , and 𝑘 take during the maximal

subcomputation 𝑉ℎ . Then:

• Access sizes (Lemma 3):

|𝑉 𝑆
ℎ
| = 𝐼ℎ 𝐽ℎ𝐾ℎ , |𝐴[𝑖, 𝑘] (R𝑆ℎ) | = 𝐼ℎ𝐾ℎ , |𝐵 [𝑘, 𝑗] (R𝑆ℎ) | =

𝐾ℎ 𝐽ℎ
• Finding𝜓 (𝑋) (Optimization problem 3):

|𝑉 𝑆
ℎ
| =

(
𝑋
2

)2
, |𝐴[𝑖, 𝑘] (R𝑆

ℎ
) | = |𝐵 [𝑘, 𝑗] (R𝑆

ℎ
) | =

(
𝑋
2

)2
• Finding 𝑋0 (Equation 4):

𝑋𝑆0 = 2𝑀 , 𝐼ℎ = 𝐽ℎ = 𝐾ℎ = 𝑀 , 𝑉 𝑆
ℎ

= 𝑀2
,

• Finding the lower bound (Equation 5):

𝜌𝑆 = 𝑀 , 𝑄𝑆 = 𝑁 3

𝑀
(2) statement T. Analogous to S
(3) Reuse(B)
• |𝑉 𝑆 |
|𝑉 𝑆
𝑚𝑎𝑥 |

=
|𝑉𝑇 |
|𝑉𝑇
𝑚𝑎𝑥 |

= 𝑁 3

𝑀2 , |𝐵 [𝑘, 𝑗] (RS
max) | = 𝐾𝐽 = 𝑀 ,

• Reuse(B) = 𝑁 3

𝑀
(4) I/O lower bound (Lemma 7):𝑄𝑡𝑜𝑡 = 𝑄𝑆 +𝑄𝑇 −𝑅𝑒𝑢𝑠𝑒 (B) =

𝑁 3

𝑀

Note: This bound is attainable by fusing the statements, caching

𝑀 − 1 elements of matrix 𝐵, and streaming matrices 𝐴 and 𝐶 .

4.2 Case II. Output Reuse and Access Sizes
Consider the case where output 𝐴0 of the statement 𝑆 is also the

input 𝐵 𝑗 of statement 𝑇 . Consider furthermore subcomputation 𝑉ℎ
of statement 𝑇 (and its associated iteration domain 𝑹ℎ). Any path

from the graph inputs to vertices in 𝐵0 (𝑹ℎ) must pass through

vertices in 𝐵 𝑗 (𝑹ℎ). Now the question is the following: is there a

smaller set of vertices 𝐵′
𝑗
(𝑹ℎ), |𝐵′𝑗 (𝑹ℎ) | < 𝐵 𝑗 (𝑹ℎ) such that every

path from graph inputs to 𝐵 𝑗 (𝑹ℎ) must pass through it?

Denote computational intensity of statement 𝑆 as 𝜌𝑆 . Then we

state the following lemma:

Lemma 8. Any dominator set of set 𝐵 𝑗 (𝑹ℎ) must be of size at least

|Dom (𝐵 𝑗 (𝑹ℎ)) | ≥
|𝐵 𝑗 (𝑹ℎ) |
𝜌𝑆

.
7

Technical Report, 2020, G. Kwasniewski et al.

Proof. By Lemma 1, for one loaded vertex, we may compute

at most 𝜌𝑆 vertices of 𝐴0. These are also vertices of 𝐵 𝑗 . Thus, to

compute |𝐵 𝑗 (𝑹ℎ) | vertices of 𝐵 𝑗 , at least
|𝐵 𝑗 (𝑹ℎ) |
𝜌𝑆

loads must be

performed. We just need to show that at least that many vertices

have to be in any dominator set Dom (𝐵 𝑗 (𝑹ℎ)). Now, consider
the converse: There is a vertex set 𝐷 = Dom (𝐵 𝑗 (𝑹ℎ)) such that

|𝐷 | < |𝐵 𝑗 (𝑹ℎ) |
𝜌𝑆

. But that would mean, that we could potentially

compute all |𝐵 𝑗 (𝑹ℎ) | vertices by only loading |𝐷 | vertices, violating
Lemma 1. □

Corollary 1. Combining Lemmas 8 and 3, the data access size of
|𝐵 𝑗 (𝑹ℎ) | during subcomputation 𝑉ℎ is

|𝐵 𝑗 (𝑹ℎ) | ≥
∏𝑑𝑖𝑚 (𝝓 𝑗)
𝑘=1

|𝑅𝑘
ℎ,𝑗
|

𝜌𝑆
. (7)

Example (Modified Matrix Multiplication [12]):
1 for i = 1:N
2 for j = 1:N

3 S: A[i,j] = 𝑒2𝜋
√
−1(𝑖−1) (𝑗−1)/𝑁

4 for k = 1:N
5 T: C[i,j] = A[i,k]*B[k,j] + C[i,j]
6 end; end; end

Consider the code above. Statement 𝑆 does not have any in-

put arrays (we assume that iteration variables 𝑖 and 𝑗 are always

loaded in the registers. Therefore, there are no loads performed

during the execution of 𝑆 , so 𝜌𝑆 →∞ for large 𝑁 . Statement 𝑇 ,

on the other hand, if executed separately, would perform at least

𝑄𝑇 ≥ 2𝑁 3
√
𝑀

loads. However, using Corollary 1, we obtain access size

|𝐴1 (𝑹ℎ) | ≥
|𝑅𝑖

ℎ
| |𝑅𝑘

ℎ
|

𝜌𝑆
≥ 0, and the combined bound is 𝑄𝑇+𝑆 ≥ 𝑁 3

𝑀
.

This bound is tight, as the I/O optimal schedule would cache𝑀 − 1
vertices of𝐶 , and for each loaded vertex of 𝐵 would compute𝑀 − 1
new vertices of 𝐶 .

5 DERIVING PARALLEL I/O LOWER BOUNDS
We now establish how our method applies to a parallel machine

with 𝑃 processors (Section 2.1). Each processor 𝑝𝑖 owns its private

fast memory which can hold up to 𝑀 words, represented in the

cDAG as 𝑀 red vertices with 𝑝𝑖 ’s “hue”. Red vertices of different

hues (belonging to different processors) cannot be shared between

them, but any number of different red pebbles may be placed on

one vertex.

All the standard red-blue pebble game rules apply with the fol-

lowing modifications:

(1) compute if all direct predecessors of vertex 𝑣 have red pebbles

of 𝑝𝑖 ’s hue placed on them, one can place a red pebble of 𝑝𝑖 ’s

hue on 𝑣 (no sharing of red pebbles between processors),

(2) load if a vertex 𝑣 has any pebble placed on them, a red pebble

of any other hue may be placed on a vertex.

From this game definition, it follows that from a perspective

of a single processor 𝑝𝑖 , any data is either local (the correspond-

ing vertex has 𝑝𝑖 ’s red pebble placed on it), or remote, without a

distinction on the remote location (remote access cost is uniform).

Lemma 9. The minimum number of I/O operations in a parallel
red-blue pebble game, played on a cDAG with |𝑉 | vertices with 𝑃
processors each equipped with𝑀 red pebbles, is 𝑄 ≥ |𝑉 |

𝑃 ·𝜌 , where 𝜌 is
the maximum computational intensity independent of 𝑃 (Lemma 1).

Proof. Following the analysis of Section 3 and the parallel ma-

chine model (Section 5), the computational intensity 𝜌 is indepen-

dent of a number of parallel processors - it is solely a property

of a cDAG and private fast memory size 𝑀 . Therefore, following

Lemma 1, what changes with 𝑃 is the volume of computation |𝑉 |,
as now at least one processor will compute at least |𝑉𝑝 | = |𝑉 |𝑃 ver-

tices. By the definition of the computational intensity, the minimum

number of I/O operations required to pebble these |𝑉𝑝 | vertices is
|𝑉𝑝 |
𝜌 . □

6 BOUNDS OF PARALLEL LU
FACTORIZATION

In the previous sections, we have analyzed all components of the

LU factorization algorithm (Figure 1) separately. We now provide

a full, end-to-end derivation of its parallel I/O lower bound using

our method. Previously, Olivry et al. [49] reported a lower bound

for a sequential machine
2
3
𝑁 3
√
𝑀
. To the best of our knowledge, this

is the first parallel result for this algorithm.

Recall that the algorithm contains two statements:

S1: A[i,k] = A[i,k]/A[k,k]
Denote |𝑅𝑘

ℎ
| = 𝐾ℎ , |𝑅𝑖ℎ | = 𝐼ℎ . Then, we have the following

(Lemma 3):

• |𝑉ℎ | = 𝐾ℎ𝐼ℎ
• |𝐴1 (Rℎ) | = 𝐾ℎ𝐼ℎ ; |𝐴2 (Rℎ) | = 𝐾ℎ
• |Dom (𝑉ℎ) | = |𝐴1 (Rℎ) | + |𝐴2 (Rℎ) | = 𝐾ℎ𝐼ℎ + 𝐾ℎ

We then solve the optimization problem from Section 3.2:

max 𝐾ℎ𝐼ℎ, s.t.

𝐾ℎ𝐼ℎ + 𝐾ℎ ≤ 𝑋
𝐼ℎ ≥ 1

𝐾ℎ ≥ 1

Which gives |𝑉𝑚𝑎𝑥 | = 𝜓 (𝑋) = 𝑋 − 1 for 𝐾ℎ = 1 and 𝐼ℎ =

𝑋 − 1. Then 𝜌 (𝑋) = |𝑉𝑚𝑎𝑥 |
𝑋−𝑀 = 𝑋−1

𝑋−𝑀 . However, because 𝐴1 has out-

degree 1, we use the bound from Lemma 6: 𝜌𝑆1 ≤ 1. Preserving the
correctness of I/O lower bounds, we use its upper bound 𝜌𝑆1 = 1.

Finally, we calculate total number of vertices in statement S1:
|𝑉𝑆1 | =

∑𝑁
𝑘=1
(𝑁 − 𝑘 − 1) = 𝑁 (𝑁−1)

2 and conclude that 𝑄𝑆1 ≥
|𝑉1 |
𝜌1

=
𝑁 (𝑁−1)

2 (Lemma 1).

S2: A[i,j] = A[i,j] - A[i,k]*A[k,j]
Denote |𝑅𝑘

ℎ
| = 𝐾ℎ , |𝑅𝑖ℎ | = 𝐼ℎ , |𝑅

𝑗

ℎ
| = 𝐽ℎ . Observe that there is an

output reuse (Section 4.2) of A[i,k] between statements 𝑆1 (as

𝐴0) and 𝑆2 (as 𝐴2) . We therefore have the access size in statement

S2: |𝐴2 (R𝑆2) | = 𝐼ℎ𝐾ℎ

𝜌𝑆1
= 𝐼ℎ𝐾ℎ (Equation 7). Note that in this case,

where the computational intensity is 𝜌𝑆1 ≤ 1, the output reuse does
not change the access size |𝐴2 (R𝑆2) | of statement 𝑆2. This follows
the intuition that it is not beneficial to recompute vertices if the

recomputation cost is not lower than loading it from the memory.

The remaining steps of the I/O lower bound analysis are sim-

ilar to 𝑆1. We then obtain 𝜌𝑆2 =

√
𝑀
2 , |𝑉𝑆2 | = 𝑁 3

3 − 𝑁
2 + 2𝑁

3 and

finally 𝑄𝑆2 ≥ 2𝑁 3−6𝑁 2+4𝑁
3
√
𝑀

. The I/O lower bound of the full LU

factorization is therefore:

𝑄𝐿𝑈 ≥ 𝑄1 +𝑄2 ≥
2𝑁 3 − 6𝑁 2 + 4𝑁

3
√
𝑀

+ 𝑁 (𝑁 − 1)
2

8

Near-Optimal LU Factorization Technical Report, 2020,

Figure 4: LU cDAG for 𝑛 = 4 together with the logical decomposition to 𝐴00, 𝐴10, 𝐴01, and 𝐴11. Dashed arrows represent com-
mutative dependencies (reduction of a value). Solid arrows represent non-commutative operations, so any parallel pebbling
has to respect the induced order (e.g., no vertex in 𝐴11 can be pebbled before 𝐴00 is pebbled).

Using Lemma 9 we have the parallel I/O lower bound

𝑄𝑃,𝐿𝑈 ≥
2𝑁3 − 6𝑁2 + 4𝑁

3𝑃
√
𝑀

+ 𝑁 (𝑁 − 1)
2𝑝

=
2𝑁3

3𝑃
√
𝑀
+ O

(𝑁2

𝑃

)
,

which is one of the main contributions of our work.

7 COnf LUX
In this section we present COnf LUX — a near Communication
Optimal LU factorization using 𝑋 -Partitioning.

7.1 LU Dependencies and Parallelization
Due to the dependency structure of LU, the input matrix is of-

ten divided recursively into four submatrices 𝐴00, 𝐴10, 𝐴01, and

𝐴11 [23, 56]. Arithmetic operations performed in LU create non-

commutative dependencies (Figure 4) between vertices in 𝐴00 (LU

factorization of the top-left corner of the matrix), 𝐴10, and 𝐴01

(triangular solve of vertical and top panels of the matrix). Only

𝐴11 (Schur complement update) has no such dependencies, and

may therefore be efficiently parallelized in the reduction dimen-

sion. Our parallel algorithm utilizes this fact and applies different

strategies for different parts. Its high-level summary is presented

in Algorithm 1.

7.2 Computation Routines
The computation is performed in

𝑁
𝑣 steps, where 𝑣 is a tunable

blocking parameter. In each step, only submatrix𝐴𝑡 of input matrix

𝐴 is updated. Initially, 𝐴𝑡 is set to 𝐴. 𝐴𝑡 is further decomposed to

four submatrices𝐴00,𝐴10,𝐴01, and𝐴11 which are updated by rou-

tines 𝑇𝑜𝑢𝑟𝑛𝑃𝑖𝑣𝑜𝑡 , 𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝐴10, 𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝐴01, and 𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝐴11

(see Figure 5):

• 𝑨00. This 𝑣 × 𝑣 submatrix contains first 𝑣 elements of current 𝑣

pivot rows. It is computed during𝑇𝑜𝑢𝑟𝑛𝑃𝑖𝑣𝑜𝑡 , and as it is required

to compute𝐴10 and𝐴01, it is redundantly copied to all processors.

• 𝑨10 and 𝑨01. Submatrices 𝐴10 and 𝐴01 of sizes (𝑁 − 𝑡 · 𝑣) × 𝑣
and 𝑣 × (𝑁 − 𝑡 · 𝑣) are distributed using 1D decomposition among

all processors. They are updated using a triangular solve. 1D de-

composition guarantees that there are no dependencies between

Algorithm 1 COnf LUX

𝐴𝑡 ← 𝐴

for 𝑡 = 1, . . . , 𝑁
𝑣

do

1. Reduce next block column ⊲ Cost:
(𝑁−𝑡 ·𝑣) ·𝑣·𝑀

𝑁2

2.𝑇𝑜𝑢𝑟𝑛𝑃𝑖𝑣𝑜𝑡 (𝐴𝑡) ⊲ Cost: 𝑣2
⌈
log(𝑁√

𝑀
)
⌉

3. Scatter computed𝐴00 and 𝑣 pivot rows ⊲ Cost: 𝑣2 + 𝑣
4. Scatter𝐴10 ⊲ Cost:

(𝑁−𝑡 ·𝑣)𝑣
𝑃

5. Reduce 𝑣 pivot rows ⊲ Cost:
(𝑁−𝑡 ·𝑣) ·𝑣·𝑀

𝑁2

6. Scatter𝐴01 ⊲ Cost:
(𝑁−𝑡 ·𝑣)𝑣

𝑃

7. 𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝐴10 (𝐴𝑡) ⊲ 1D parallel., block-row

8. Send data from panel𝐴10 ⊲ Cost:
(𝑁−𝑡 ·𝑣)𝑁 ·𝑣

𝑃
√
𝑀

9. 𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝐴01 (𝐴𝑡) ⊲ 1D parallel., block-column

10. Send data from panel𝐴01 ⊲ Cost:
(𝑁−𝑡 ·𝑣)𝑁 ·𝑣

𝑃
√
𝑀

11. 𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝐴11 (𝐴𝑡) ⊲ 2.5D parallel.

𝐴𝑡 ← 𝐴𝑡 [𝑟𝑜𝑤𝑠, 𝑣 : 𝑒𝑛𝑑]
end for

processors, so no communication or synchronization is performed

during computation (𝐴00 is already owned by every processor).

• 𝑨11 This (𝑁 − 𝑡 · 𝑣) × (𝑁 − 𝑡 · 𝑣) submatrix is distributed using

2.5D, block-cyclic distribution (Figure 5). First, updated submatri-

ces 𝐴10 and 𝐴01 are broadcast among the processes. Then, 𝐴11

(Shur complement) is updated. Finally, the first block column and

𝑣 chosen pivot rows are reduced, which will form 𝐴10 and 𝐴01

in the next iteration.

Blocking parameter 𝒗. The minimum size of each block is the

number of processor layers in the reduction dimension 𝑣 ≥ 𝑐 = 𝑃𝑀
𝑁 2 .

However, to secure high performance, this value should also be

adjusted to hardware parameters of a given machine (e.g., vector

length, prefetch distance of a CPU, or warp size of a GPU). Through-

out the analysis, we assume that 𝑣 = 𝑎 · 𝑃𝑀
𝑁 2 for some small constant

𝑎.

7.3 Pivoting
Our pivoting strategy differs from state-of-the-art block [4], tile [3],

or recursive [24] pivoting approaches in two aspects:

9

Technical Report, 2020, G. Kwasniewski et al.

Figure 5: CO𝑛𝑓 LUX parallel decomposition for 𝑃 = 8 processors decomposed into 2 × 2 × 2 grid, together with indicated steps
of Algorithm 1.

• To minimize I/O, we do not swap pivot rows. Instead, we keep

track which rows were chosen as pivots and we use masks to

update remaining rows.

• To reduce latency, we take advantage of our derived blocks and

use tournament pivoting [29].

The tournament pivoting finds 𝑣 pivot rows in each step, which

are then used to mask which rows will form the new 𝐴01 and then

filter the non-processed row in the next step.

Tournament Pivoting is shown to be as stable as partial pivot-

ing [29], which might be an issue for, e.g., incremental pivoting [50].

On the other hand, it reduces the O(𝑁) latency cost of the partial

pivoting, which requires step-by-step column reduction to find

consecutive pivots, to O
(
𝑁
𝑣

)
, where 𝑣 is the tunable block size

parameter.

Row Swapping vs. Row Masking. To achieve close to optimal

I/O cost, we use 2.5D decomposition. This, however, implies that

in the presence of extra memory, the matrix data is replicated

𝑃𝑀
𝑁 2 times. This increases the row swapping cost from O

(
𝑁 2

𝑃
) to

O
(
𝑁 3

𝑃
√
𝑀

)
which asymptotically matches the I/O lower bound of the

entire factorization. Performing row swapping would then increase

the constant term of the leading factor of the algorithm from
𝑁 3

𝑃
√
𝑀

to
2𝑁 3

𝑃
√
𝑀
. To keep the I/O cost of our algorithm as low as possible,

instead of performing row-swapping, we only propagate pivot row

indices. When the tournament pivoting finds the 𝑣 pivot rows, they

are broadcast to all processors with only 𝑣 cost per step.

Pivoting in COnf LUX. In each step 𝑡 of the outer loop (line 1 in

Algorithm 1),
𝑁√
𝑀

processors perform a tournament pivoting rou-

tine using a butterfly communication pattern [51]. Each processor

owns

√
𝑀 𝑁−𝑣𝑡

𝑁
rows, among which it chooses 𝑣 local candidate

pivots. Then, final pivots are chosen in log(𝑁√
𝑀
) of “playoff-like”

tournament rounds, after which all
𝑁√
𝑀

processors own both 𝑣 pivot

row indices and already factored new𝐴00. This result is distributed

to all remaining processors (line 2). Pivot row indices are then used

to determine which processors participate in the reduction of cur-

rent 𝐴01 (line 4). Then, the new 𝐴𝑡 is formed by masking currently

chosen rows 𝐴𝑡 ← 𝐴𝑡 [𝑟𝑜𝑤𝑠, 𝑣 : 𝑒𝑛𝑑] (Line 12).

7.4 I/O cost of COnf LUX
We now prove the I/O cost of COnf LUX, which is only a factor of

1
3 higher than the lower bound for large 𝑁 .

Lemma10. The total I/O cost of COnf LUX, presented in Algorithm 1,

is 𝑄𝐶𝑂𝑛𝑓 𝐿𝑈𝑋 = 𝑁 3

𝑃
√
𝑀
+ O

(
𝑁 2

𝑃

)
.

Proof. We assume that the input matrix𝐴 is already distributed

in the block cyclic layout imposed by the algorithm. Otherwise,

any data reshuffling imposes only a Ω
(
𝑁 2

𝑃

)
cost, which does not

contribute to the leading order term. We first derive the cost of a

single iteration 𝑡 of the main loop of the algorithm, proving its cost

to be𝑄𝑠𝑡𝑒𝑝 (𝑡) = 2𝑁𝑣 (𝑁−𝑡𝑣)
𝑃
√
𝑀

+ O
(
𝑁𝑣
𝑃

)
. Then, the total cost after

𝑁
𝑣

iterations is:

𝑄𝐶𝑂𝑛𝑓 𝐿𝑈𝑋 =

𝑁
𝑣∑︁

𝑡=1

𝑄𝑠𝑡𝑒𝑝 (𝑡) =
𝑁 3

𝑃
√
𝑀
+ O

(
𝑁 2

𝑃

)
.

We denote 𝑃1 = 𝑁 2

𝑀
and 𝑐 = 𝑃𝑀

𝑁 2 . 𝑃 processors are decomposed

in the 3D grid [
√
𝑃1,
√
𝑃1, 𝑐]. We refer to all processors which share

the same second and third coordinate as [:, 𝑗, 𝑘]. We now examine

each of 11 steps of Algorithm 2.

Step 1. [:, 𝑡 mod
√
𝑃1, 𝑡 mod 𝑐] processors perform the tourna-

ment pivoting. Every processor owns first 𝑣 elements of𝑁 − (𝑡 − 1)𝑣
rows, among which they choose the next 𝑣 pivots. First, they locally

perform the LUP decomposition to choose local 𝑣 candidate rows.

Then, in ⌈log2 (
√
𝑃1)⌉ rounds they exchange 𝑣 × 𝑣 blocks to decide

on the final pivots. After the exchange, these processors also hold

the factorized submatrix 𝐴00. I/O cost per proc.: 𝑣2 ⌈log2 (
√
𝑃1)⌉.

10

Near-Optimal LU Factorization Technical Report, 2020,

LibSci SLATE CANDMC COnf LUX

Decomposition 2D, panel decomp. 2D, block decomp. Nested 2.5D, block decomp. 1D / 2.5D, block decomp.

Block size user-specified
user-specified,

(default 16)

𝑁3

𝑃 ·𝑀 ,
𝑁2

𝑃
√
𝑀

tunable, ≥ 𝑃 ·𝑀
𝑁2

User param. required yes no no no

Parallel I/O cost 𝑁2
√
𝑃
+ O

(
𝑁2

𝑃

)
𝑁2
√
𝑃
+ O

(
𝑁2

𝑃

)
5𝑁3

𝑃
√
𝑀
+ O

(
𝑁2

𝑃
√
𝑀

)
[56]

𝑁3

𝑃
√
𝑀
+ O

(
𝑁2

𝑃
√
𝑀

)
Total comm. volume for 𝑁 = 4,096measured/modeled [GB] (prediction %)

𝑷 = 64 1.17 / 1.21 (102%) 1.18 / 1.21 (102%) 2.5 / 4.9 (196%) 1.11 / 1.08 (97%)

𝑷 = 1, 024 4.45 / 4.43 (99%) 4.35 / 4.43 (102%) 9.3 / 12.13 (130%) 3.13 / 3.07 (98%)

Total comm. volume for 𝑁 = 16,384measured/modeled [GB] (prediction %)
𝑷 = 64 18.79 / 19.33 (103%) 18.84 / 19.33 (102%) 39.8 / 78.74 (197%) 17.61 / 17.19 (98%)

𝑷 = 1, 024 70.91 / 70.87 (99.9%) 71.1 / 70.87 (99.7%) 144 / 194.09 (135%) 45.42 / 44.77 (98%)

Table 2: Classification and I/O cost models of the measured LU factorization implementations. CANDMC model is taken from the
authors [56]. Due to the space constraints, we omit the lower order terms of the models.

Steps 2, 3, 5. Factorized𝐴00 and 𝑣 pivot row indices are broadcast.

First 𝑣 columns and 𝑣 pivot rows are scattered to all 𝑃 . I/O cost per
proc.: 𝑣2 + 𝑣 + 2(𝑁−𝑡𝑣)𝑣

𝑃
.

Steps 4 and 11. Reduce 𝑣 columns and 𝑣 pivot rows. With high

probability, pivots are evenly distributed among all processors.

There are 𝑐 layers to reduce, each of size (𝑁 − 𝑡𝑣)𝑣 . I/O cost per
proc.: (𝑁−𝑡𝑣)𝑣𝑐

𝑃
=

2(𝑁−𝑡𝑣)𝑣𝑀
𝑁 2 .

Steps 6, 8, 10. The updates 𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝐴10, 𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝐴01, and

𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝐴11 are local and incur no additional I/O cost.

Steps 7 and 9. Factorized 𝐴10 and 𝐴01 are scattered among all

processors. Each processor requires
𝑣 (𝑁−𝑡𝑣)
𝑐
√
𝑃1

elements from 𝐴10

and 𝐴10. I/O cost per proc.: 2(𝑁−𝑡𝑣)𝑁𝑣
𝑃
√
𝑀

.

Summing steps 1-11: 𝑄𝑠𝑡𝑒𝑝 (𝑡) = 2𝑁𝑣 (𝑁−𝑡𝑣)
𝑃
√
𝑀

+ O
(
𝑁𝑣
𝑃

)
. □

8 EXPERIMENTAL EVALUATION
We implement COnf LUX and compare it with state-of-the-art im-

plementations of distributed LU factorization. We measure their I/O

complexity by counting their aggregated communication volume in

distributed runs. We provide both measured values and theoretical

cost models, on a variety of problem sizes and number of nodes

based on scientific computing applications.

Implementation.We implement COnf LUX in C++ usingMPI one-

sided [31] for inter-node communication. To secure the best perfor-

mance for all combinations of processor counts and matrix sizes, we

use Processor Grid Optimization [42], which finds the 3D processor

grid with the lowest communication cost by possibly disabling a

minor fraction of nodes. Other implementations, which greedily

try to utilize all resources, often find communication-suboptimal

decompositions for difficult-to-factorize number of ranks.

Infrastructure and Measurement. We run our experiments on

the CSCS Piz Daint supercomputer, which comprises 5,704 XC50

nodes equipped with Intel Xeon E5-2690 v3 processors (12 cores, 64

GiB DDR3 RAM), interconnected by the Cray Aries network with a

Dragonfly network topology. To measure communication volume,

we instrument the implementations with the Score-P library [39]

and count the aggregate bytes sent over the network.

ComparisonTargets. For comparison, we use 1) the vendor-optimized

ScaLAPACK implementation on Piz Daint (Cray LibSci v19.06.1).
While the library is proprietary, our measurements reaffirm that,

like ScaLAPACK, the implementation uses the suboptimal 2D pro-

cessor decomposition; 2) SLATE [28] — a state-of-the-art distributed

linear algebra framework targeted at exascale supercomputers; 3)

the latest version of the CANDMC library [54], which uses the

asymptotically-optimal 2.5D decomposition. The implementations

and their characteristics are listed in Table 2.

Problem Sizes. We choose our benchmarks to reflect problems in

scientific computing. Specifically, we choose 4, 096 ≤ 𝑁 ≤ 16, 384.
For example, Physical Chemistry or Density Functional Theory

(DFT) simulations require factorizing matrices of atom interactions,

yielding sizes of 𝑁 ≥ 10, 000 [65]. For node count, we measure the

algorithms starting from small square and cube nodes (𝑃 = 4, 8) up
to 𝑃 = 1, 024, reflecting different scales for various use-cases. In

other domains, matrix sizes can be larger — the High-Performance

Linpack benchmark uses a maximal size of 𝑁 = 16, 473, 600 [60],

and in quantum physics matrix size scales with 2qubits. Therefore,
we extrapolate our models to match these problem sizes and the

number of processors on the current top supercomputers (Summit,

TaihuLight) and show predicted communication results.

Theoretical Models. Together with empirical measurements, we

put significant effort into understanding the underlying communi-

cation patterns of the compared LU factorization implementations.

Both LibSci and SLATE base on the standard partial pivoting al-

gorithm using the 2D decomposition [9]. For CANDMC, we use

the model provided by the authors [56]. For COnf LUX, we use the
results from Section 7. These models are summarized in Table 2.

9 RESULTS
Our experiments confirm a clear advantage of COnf LUX in terms of

communication volume over all other implementations tested. Not

only do the measured values exhibit a significant communication

reduction (1.42 times compared with the second-best implemen-

tation for 𝑃 = 1,024), but the performance models predict even

greater benefits for larger runs (expected 2.1 times communication

reduction for a full-machine run on the Summit supercomputer).

Scaling Experiments. Fig. 6a presents the measured communica-

tion volume per node, as well as our derived cost models (Table 2)

presented with solid lines, for 𝑁 = 16,384. Observe that COnf LUX
communicates the least for all values of 𝑃 . Furthermore, thanks to

the Processor Grid Optimization, it always finds the best processor

grid given available resources, resulting in smooth and predictable

performance. Other implementations try to aggressively use all

11

Technical Report, 2020, G. Kwasniewski et al.

(a) Communication volume per node for varying node counts 𝑃 and a fixed
𝑁 = 16, 384. Only the leading factors of the models are shown. The models
are scaled by the element size (8 bytes).

(b) Communication volume per node for weak scaling (constant work per
node), 𝑁 = 3200 · 3√

𝑃 . 2.5D algorithms (CANDMC and COnf LUX) retain con-
stant communication volume per processor.

Figure 6: Communication volume measurements across different scenarios for LibSci, SLATE, CANDMC, and COnf LUX. In all considered
scenarios, enough memory𝑀 ≥ 𝑁 2

𝑃2/3 was present to allow the maximum number of replications 𝑐 = 𝑃1/3.

Figure 7: Communication reduction vs. second-best algorithm
(L=LibSci, S=SLATE), for varying 𝑃 , 𝑁 , for both measured and pre-
dicted scenarios.

available resources, which leads to suboptimal performance and

visible outliers with highly increased communication, as seen in

the inset. Note that since both LibSci and SLATE use similar 2D

decomposition, their communication volumes are mostly equal,

with a slight advantage of SLATE for non-square processor grids.

In Fig. 6b, we show the weak scaling characteristics of the analyzed

implementations. Observe that for a fixed work per node, the 2D

algorithms - LibSci and SLATE - scale sub-optimally.

Implications for Exascale. Figure 7 summarizes the communica-

tion volume reduction of COnf LUX compared with the second-best

implementation, both for measurements and theoretical predictions.

It can be seen that in all combinations of 𝑃 and𝑁 , COnf LUX always

communicates less. For all measured data points, the asymptotically

optimal CANDMC performed worse than LibSci or SLATE. The

figure also presents the predicted communication cost of all consid-

ered implementations for up to 𝑃 = 262,144, based on our theoretical

models. Considering the use of one (MPI) process per socket and/or

accelerator of each node, such scales will be attainable in the near

future. Observe that (a) the asymptotically optimal CANDMC is pre-

dicted to communicate less than suboptimal 2D implementations

only for 𝑃 > 450,000 ranks for 𝑁 = 16, 384, showing that asymptotic
optimality is not enough to secure practical performance; and (b) for

a full-scale run on Summit, COnf LUX is expected to communicate

2.1 times less than SLATE, a library designed specifically for such

machines.

10 RELATEDWORK
Data movement analysis, while being prevalent for decades, has

branched in multiple directions, In summary, previous work can be

categorized into three classes (see Table 3): (1) work based on direct

pebbling or variants of it, such as Vitter’s block-based model [63];

(2) works using geometric arguments of projections based on the

Loomis Whitney inequality [44]; and (3) works applying optimiza-

tions limited to specific structural properties of computations such

as affine loops [27], and more generally, the polyhedral model pro-

gram representation [8, 45, 49]. Although the scopes of those ap-

proaches significantly overlap — for example, kernels like matrix

multiplication can be captured by most of the models — there are

still important differences both in methodology and end-results

they provide, as summarized in Table 3.

Dense linear algebra operators are among the standard core

kernels in scientific applications. Ballard et al. [7] present a com-

prehensive overview of their asymptotic I/O lower bounds and I/O

minimizing schedules, both for sparse and dense matrices. Recently,

Olivry et al. introduced IOLB [49] — an automated framework for as-

sessing sequential lower bounds for polyhedral programs. However,

their computational model disallows recomputation, and therefore

cannot capture programs like the one presented in Section 4.2.

12

Near-Optimal LU Factorization Technical Report, 2020,

Pebbling [11, 25, 36, 42, 52] Projection-based [7, 13, 18, 20, 22, 49] Problem specific [1, 8, 15, 45, 65]

Scope General cDAGs Programs with static geometric

structure of iteration space

 Individually tailored for given problem

Key
Features

 General scope - can handle irregular

program structures

 Expresses complex data dependencies

 Directly exposes schedules

 Intuitive

 P-SPACE complete in general case

 No guarantees that a solution exists

 No well-established method how to

automatically translate code to cDAGs

 Well-developed theory and tools

 Guaranteed to find solution

for given class of programs

 Bounds are often not tight

 Fails to capture dependencies

between statements

 Limited scope

 Takes advantage of problem-specific

features

 Tends to provide best practical results

 Requires large manual effort

for each algorithm separately

 Difficult to generalize

 Often based on heuristics

with no guarantees on optimality

Table 3: Overview of different approaches to modeling data movement.

As such, linear solvers are implemented in various libraries for

shared-memory environments [3, 4, 19, 30, 33, 47, 59]. For dis-

tributed memory, vendor-optimized libraries [14, 33] typically im-

plement the ScaLAPACK interface [9], and are based on 2D de-

composition, as we empirically verify (Section 8). On the algorith-

mic side, research is conducted into implementing communication-

avoiding solvers with 2.5D [55, 56], and 3D decomposition [5, 32]

strategies. For heterogeneous hardware (e.g., GPU-accelerated) sys-

tems, recent frameworks focus on implementing modified inter-

faces for asynchronous offloading [10], and fine-grained task paral-

lelism [2, 28].

11 CONCLUSIONS
In this work, we present a novel method of analyzing DAAP — a

general class of programs that covers many fundamental compu-

tational motifs. We show, both theoretically and in practice, that

our pebbling-based approach for deriving the I/O lower bounds is

more general: programs with disjoint array accesses cover a wide

variety of applications,more powerful: it can explicitly capture

inter-statement dependencies, more precise: it derives tighter I/O
bounds, and more constructive: 𝑋 -partition provides powerful

hints for obtaining parallel schedules.

When applying the approach to LU factorization, we were able

to derive new lower bounds, as well as the COnf LUX schedule. Not

only is COnf LUX asymptotically optimal, but we also see that in

practice, the reduction in the leading term yields communication

volumes that are better than state-of-the-art 2D and 3D decompo-

sition, by a factor of up to 4.1×. This promising result mandates

the exploration of the parallel pebbling strategy to algorithms such

as Cholesky factorization, other nontrivial dense linear algebra

kernels, and beyond.

REFERENCES
[1] A. Aggarwal and S. Vitter, Jeffrey, “The input/output complexity of sorting and

related problems,” Communications of the ACM, vol. 31, no. 9, pp. 1116–1127,

1988.

[2] E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst, S. Thibault,

and S. Tomov, “Faster, Cheaper, Better – a Hybridization Methodology to

Develop Linear Algebra Software for GPUs,” in GPU Computing Gems, W. mei

W. Hwu, Ed. Morgan Kaufmann, Sep. 2010, vol. 2. [Online]. Available:

https://hal.inria.fr/inria-00547847

[3] E. Agullo, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, J. Langou, H. Ltaief,

P. Luszczek, and A. YarKhan, “Plasma users’ guide. parallel linear algebra software

for multicore architectures,” Rapport technique, Innovative Computing Laboratory,
University of Tennessee, 2011.

[4] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dongarra, J. Du Croz, A. Green-

baum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ guide.
Siam, 1999, vol. 9.

[5] G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, and N. Knight, “A 3d parallel

algorithm for qr decomposition,” in Proceedings of the 30th on Symposium on
Parallelism in Algorithms and Architectures, ser. SPAA ’18. New York, NY,

USA: Association for Computing Machinery, 2018, p. 55–65. [Online]. Available:

https://doi.org/10.1145/3210377.3210415

[6] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, “Communication-optimal paral-

lel and sequential cholesky decomposition,” SIAM Journal on Scientific Computing,
vol. 32, no. 6, pp. 3495–3523, 2010.

[7] ——, “Minimizing communication in numerical linear algebra,” SIAM Journal on
Matrix Analysis and Applications, vol. 32, no. 3, pp. 866–901, 2011.

[8] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul, “The polyhe-

dral model is more widely applicable than you think,” in International Conference
on Compiler Construction. Springer, 2010, pp. 283–303.

[9] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,

S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley,

ScaLAPACK Users’ Guide. Philadelphia, PA: Society for Industrial and Applied

Mathematics, 1997.

[10] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault, J. Kurzak,

J. Langou, P. Lemarinier, H. Ltaief, P. Luszczek, A. YarKhan, and J. Dongarra,

“Flexible development of dense linear algebra algorithms on massively parallel

architectures with dplasma,” in 2011 IEEE International Symposium on Parallel
and Distributed Processing Workshops and Phd Forum, 2011, pp. 1432–1441.

[11] J. Bruno and R. Sethi, “Code generation for a one-register machine,” Journal of
the ACM (JACM), vol. 23, no. 3, pp. 502–510, 1976.

[12] M. Christ, J. Demmel, N. Knight, T. Scanlon, and K. Yelick, “Communication lower

bounds and optimal algorithms for programs that reference arrays–part 1,” arXiv
preprint arXiv:1308.0068, 2013.

[13] ——, “Communication lower bounds and optimal algorithms for programs that

reference arrays–part 1,” arXiv preprint arXiv:1308.0068, 2013.
[14] Cray, “LibSci: Cray scientific libraries,” 2020. [Online]. Available: https:

//olcf.ornl.gov/software_package/libsci/

[15] A. Darte, “On the complexity of loop fusion,” in 1999 International Conference
on Parallel Architectures and Compilation Techniques (Cat. No. PR00425). IEEE,

1999, pp. 149–157.

[16] M. Del Ben et al., “Enabling simulation at the fifth rung of DFT: Large scale RPA

calculations with excellent time to solution,” Comp. Phys. Comm., 2015.
[17] J. Demmel and G. Dinh, “Communication-optimal convolutional neural nets,”

arXiv preprint arXiv:1802.06905, 2018.
[18] ——, “Communication-optimal convolutional neural nets,” arXiv preprint

arXiv:1802.06905, 2018.
[19] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, “Communication-optimal

parallel and sequential qr and lu factorizations,” SIAM Journal on Scientific Com-
puting, vol. 34, no. 1, pp. A206–A239, 2012.

[20] J. Demmel and A. Rusciano, “Parallelepipeds obtaining hbl lower bounds,” arXiv
preprint arXiv:1611.05944, 2016.

[21] G. Dinh and J. Demmel, “Communication-optimal tilings for projective nested

loops with arbitrary bounds,” arXiv preprint arXiv:2003.00119, 2020.
[22] ——, “Communication-optimal tilings for projective nested loops with arbitrary

bounds,” arXiv preprint arXiv:2003.00119, 2020.
[23] J. Dongarra, M. Faverge, H. Ltaief, and P. Luszczek, “Achieving numerical accuracy

and high performance using recursive tile lu factorization with partial pivoting,”

Concurrency and Computation: Practice and Experience, vol. 26, no. 7, pp. 1408–
1431, 2014.

[24] ——, “Achieving numerical accuracy and high performance using recursive tile lu

factorization with partial pivoting,” Concurrency and Computation: Practice and
Experience, vol. 26, no. 7, pp. 1408–1431, 2014.

[25] V. Elango et al., “Data access complexity: The red/blue pebble game revisited,”

Tech. Rep., 2013.

[26] V. Elango, F. Rastello, L.-N. Pouchet, J. Ramanujam, and P. Sadayappan, “On

characterizing the data access complexity of programs,” in Proceedings of the
42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

13

https://hal.inria.fr/inria-00547847
https://doi.org/10.1145/3210377.3210415
https://olcf.ornl.gov/software_package/libsci/
https://olcf.ornl.gov/software_package/libsci/

Technical Report, 2020, G. Kwasniewski et al.

Languages, ser. POPL ’15. New York, NY, USA: ACM, 2015.

[27] P. Feautrier, “Some efficient solutions to the affine scheduling problem. i. one-

dimensional time,” International journal of parallel programming, vol. 21, no. 5,
pp. 313–347, 1992.

[28] M. Gates, J. Kurzak, A. Charara, A. YarKhan, and J. Dongarra, “Slate: design of a

modern distributed and accelerated linear algebra library,” in Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, 2019, pp. 1–18.

[29] L. Grigori, J. W. Demmel, and H. Xiang, “Communication avoiding gaussian elimi-

nation,” in SC’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing.
IEEE, 2008, pp. 1–12.

[30] G. Guennebaud, B. Jacob et al., “Eigen v3,” 2010. [Online]. Available:

http://eigen.tuxfamily.org

[31] T. Hoefler et al., “Remote Memory Access Programming in MPI-3,” TOPC, 2015.
[32] E. Hutter and E. Solomonik, “Communication-avoiding cholesky-qr2 for rect-

angular matrices,” in 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2019, pp. 89–100.

[33] Intel, “Math kernel library,” 2020. [Online]. Available: https://software.intel.com/

en-us/mkl

[34] D. Irony et al., “Communication lower bounds for distributed-memory matrix

multiplication,” JPDC, 2004.
[35] H. Jia-Wei and H.-T. Kung, “I/o complexity: The red-blue pebble game,” in STOC,

1981.

[36] ——, “I/o complexity: The red-blue pebble game,” in Proceedings of the thirteenth
annual ACM symposium on Theory of computing, 1981, pp. 326–333.

[37] K. Kennedy and K. S. McKinley, “Maximizing loop parallelism and improving

data locality via loop fusion and distribution,” in LCPC, 1993.
[38] G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie, “Quantifying the energy cost

of data movement in scientific applications,” in 2013 IEEE international symposium
on workload characterization (IISWC). IEEE, 2013, pp. 56–65.

[39] A. Knüpfer, C. Rössel, D. a. Mey, S. Biersdorff, K. Diethelm, D. Eschweiler,

M. Geimer, M. Gerndt, D. Lorenz, A. Malony, W. E. Nagel, Y. Oleynik, P. Philippen,

P. Saviankou, D. Schmidl, S. Shende, R. Tschüter, M. Wagner, B. Wesarg, and

F. Wolf, “Score-p: A joint performance measurement run-time infrastructure

for periscope,scalasca, tau, and vampir,” in Tools for High Performance Comput-
ing 2011, H. Brunst, M. S. Müller, W. E. Nagel, and M. M. Resch, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2012, pp. 79–91.

[40] A. Krishnamoorthy and D. Menon, “Matrix inversion using cholesky decom-

position,” in 2013 signal processing: Algorithms, architectures, arrangements, and
applications (SPA). IEEE, 2013, pp. 70–72.

[41] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Traces and emergence
of nonlinear programming. Springer, 2014, pp. 247–258.

[42] G. Kwasniewski, M. Kabić, M. Besta, J. VandeVondele, R. Solcà, and T. Hoefler,

“Red-Blue Pebbling Revisited: Near Optimal ParallelMatrix-MatrixMultiplication,”

in Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC19), Nov. 2019.

[43] Q. Liu, “Red-blue and standard pebble games : Complexity and applications in

the sequential and parallel models,” 2018.

[44] L. H. Loomis and H. Whitney, “An inequality related to the isoperimetric inequal-

ity,” Bull. Amer. Math. Soc., vol. 55, no. 10, pp. 961–962, 10 1949.
[45] S. Mehta, P.-H. Lin, and P.-C. Yew, “Revisiting loop fusion in the polyhedral

framework,” in Proceedings of the 19th ACM SIGPLAN symposium on Principles
and practice of parallel programming, 2014, pp. 233–246.

[46] C. D. Meyer, Matrix analysis and applied linear algebra. SIAM, 2000.

[47] NVIDIA, “CUSOLVER reference guide,” 2020. [Online]. Available: https:

//docs.nvidia.com/cuda/cusolver

[48] A. Olivry, J. Langou, L.-N. Pouchet, P. Sadayappan, and F. Rastello, “Automated

derivation of parametric data movement lower bounds for affine programs,” arXiv
preprint arXiv:1911.06664, 2019.

[49] ——, “Automated derivation of parametric data movement lower bounds for affine

programs,” in Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2020, pp. 808–822.

[50] G. Quintana-Ortí, E. S. Quintana-Ortí, R. A. V. D. Geijn, F. G. V. Zee, and E. Chan,

“Programming matrix algorithms-by-blocks for thread-level parallelism,” ACM
Transactions on Mathematical Software (TOMS), vol. 36, no. 3, pp. 1–26, 2009.

[51] R. Rabenseifner and J. L. Träff, “More efficient reduction algorithms for non-

power-of-two number of processors in message-passing parallel systems,” in

European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting.
Springer, 2004, pp. 36–46.

[52] R. Sethi, “Complete register allocation problems,” SIAM journal on Computing,
vol. 4, no. 3, pp. 226–248, 1975.

[53] E. Solomonik et al., “Scaling Betweenness Centrality using Communication-

Efficient Sparse Matrix Multiplication,” in SC, 2017.
[54] E. Solomonik, “Communication avoiding numerical dense matrix computations.”

[Online]. Available: https://github.com/solomonik/CANDMC

[55] ——, “Provably efficient algorithms for numerical tensor algebra,” Ph.D. disserta-

tion, UC Berkeley, 2014.

[56] E. Solomonik and J. Demmel, “Communication-optimal parallel 2.5D matrix

multiplication and LU factorization algorithms,” in Euro-Par 2011 Parallel
Processing, ser. Lecture Notes in Computer Science, E. Jeannot, R. Namyst, and

J. Roman, Eds. Springer Berlin Heidelberg, 2011, vol. 6853, pp. 90–109. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-23397-5_10

[57] E. Solomonik et al., “Trade-offs between synchronization, communication, and

computation in parallel linear algebra omputations,” TOPC, 2016.
[58] E. Solomonik, D. Matthews, J. R. Hammond, J. F. Stanton, and J. Demmel, “A mas-

sively parallel tensor contraction framework for coupled-cluster computations,”

Journal of Parallel and Distributed Computing, vol. 74, no. 12, pp. 3176–3190, 2014.
[59] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense linear algebra for hybrid

GPU accelerated manycore systems,” Parallel Computing, vol. 36, no. 5-6, pp.
232–240, Jun. 2010.

[60] TOP500 list, “November 2019 TOP500 list,” https://www.top500.org/lists/2019/11/

(April. 2020).

[61] D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham, M. Bianco, B. L. Chamber-

lain, R. Cledat, H. C. Edwards, H. Finkel, K. Fuerlinger, F. Hannig, E. Jeannot,

A. Kamil, J. Keasler, P. H. J. Kelly, V. Leung, H. Ltaief, N. Maruyama, C. J. New-

burn, and M. Pericás, “Trends in data locality abstractions for hpc systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 10, pp. 3007–3020,
2017.

[62] D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham, M. Bianco, B. L. Chamberlain,

R. Cledat, H. C. Edwards, H. Finkel, K. Fuerlinger, F. Hannig, E. Jeannot, A. Kamil,

J. Keasler, P. H. J. Kelly, V. Leung, H. Ltaief, N. Maruyama, C. J. Newburn, ,

and M. Pericas, “Trends in Data Locality Abstractions for HPC Systems,” IEEE
Transactions on Parallel and Distributed Systems (TPDS), vol. 28, no. 10, Oct. 2017.

[63] J. S. Vitter, “External memory algorithms,” in European Symposium on Algorithms.
Springer, 1998, pp. 1–25.

[64] Q. Zheng and J. D. Lafferty, “Convergence analysis for rectangular matrix com-

pletion using burer-monteiro factorization and gradient descent,” CoRR, 2016.
[65] A. N. Ziogas, T. Ben-Nun, G. I. Fernández, T. Schneider, M. Luisier, and T. Hoefler,

“A data-centric approach to extreme-scale ab initio dissipative quantum transport

simulations,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019, pp. 1–13.

14

http://eigen.tuxfamily.org
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
https://docs.nvidia.com/cuda/cusolver
https://docs.nvidia.com/cuda/cusolver
https://github.com/solomonik/CANDMC
http://dx.doi.org/10.1007/978-3-642-23397-5_10

	Abstract
	1 Introduction
	2 Background
	2.1 Machine Model
	2.2 Input Programs
	2.3 I/O Complexity and Pebble Games

	3 General I/O Lower Bounds
	3.1 Iteration vector, domain, and access sizes
	3.2 Finding the I/O Lower Bound
	3.3 Out-degree-one Vertices

	4 Data Reuse Across Multiple Statements
	4.1 Case I. Input Reuse and Reuse Size
	4.2 Case II. Output Reuse and Access Sizes

	5 Deriving Parallel I/O Lower Bounds
	6 Bounds of Parallel LU Factorization
	7 COnfLUX
	7.1 LU Dependencies and Parallelization
	7.2 Computation Routines
	7.3 Pivoting
	7.4 I/O cost of COnfLUX

	8 Experimental Evaluation
	9 Results
	10 Related Work
	11 Conclusions
	References

