7IHzürich

Maciej Besta, Dimitri Stanojevic, Tijana Zivic, Jagpreet Singh, Maurice Hoerold, Torsten Hoefler

Log(Graph): A Near-Optimal High-Performance Graph Representation

ЄНzürich

Large graphs...

Large graphs...

Large graphs...

Large graphs...

Large graphs...

Running on...

Large graphs...

Used in.

$\left.\left.\frac{1}{1}\left(\frac{1}{2}\right)\right\rangle \left.+\frac{1}{2} \right\rvert\,=\frac{1}{2}\right)$

Large graphs...

Running on..

Used in...

$\left.\frac{1}{1}\left|\frac{1}{2}\right| \lambda+\frac{1}{2} \right\rvert\,$

Large graphs...

Running on...

Used in..

$\left.\frac{1}{1}\left(\frac{1}{2}\right)+\frac{1}{2} \right\rvert\,$

ЄН_ürich

Large graphs...

$\tan \rightarrow \rho[L$

en	vvinipeula euls（ell）	－ーローし	
Tw	Twitter（WWW）	，ロ－D	41，652，230 1，468，365，182
TF	Twitter（MPI）		52，579，682 1，963，263，821
FR	Friendster	，ロ－D－L	68，349，466 2，586，147，869
uL	UK domain（2007）		105，153，952 3，301，876，564

tancral

en	vviniveula Euls（ell）	－レローし	
${ }^{\text {TW }}$	Twitter（WWW）	，ロ－近哭	41，652，230 1，468，365，182
TF	Twitter（MPI）		52，579，682 1，963，263，821
FR	Friendster	－D D－L	68，349，466 2，586，147，869
UL	UK domain（2007）		105，153，952 3，301，876，564

Graph500 Benchmark										
Top Ten from June 2018 BFS										
1	кcomputer	Fujitu		Kobe Hyogo	Japan	2011	82944	66352	40	${ }^{36621.4}$
2	Sunway TaihuLight	NлCPC	$\begin{aligned} & \text { National } \\ & \text { Supercomputing } \\ & \text { Center in Wuxi } \end{aligned}$	wuxi	China	2015	${ }^{40768}$	10599880	40	23755.7
3	DOE／NNSA／LLNL Sequoia	вм	Lawrence Livermore National Laboratory	Livemore CA	usa	2012	93364	157284	41	23751
4	DOE／SC／Argonne National Laboratory Mir	вмм	Argonne Nationa Laboratory	chicagoll	usa	2012	49152	786332	40	19882

en	Vvikipeula euls（ely）	ツ－10ーレ	
TW	Twitter（WWW）	，\square D－［i	41，652，230 1，468，365，182
TF	Twitter（MPI）	，\square D－［	52，579，682 1，963，263，821
FR	Friendster	v \square D－［	68，349，466 2，586，147，869
UL	UK domain（2007）		105，153，952 3，301，876，564

				$\square K O N E$	CT gra	h da	ets					
	Graph500 Benchmark											
	Webgraph datasets				$\left(\begin{array}{c} \text { GRAPH } \\ 500 \end{array}\right.$							
Graph	－	$\begin{array}{r} \text { Crawl date } \\ \hline 2014 \end{array}$	$\begin{array}{\|c\|} \hline \text { Nodes } \\ \hline 787801471 \end{array}$	Arcs								
uk－2014				47614527250	COUNTRY \leqslant YEAR					scale＊gteps＊		
eu－2015		2015	1070557254	91792261600								
gsh－2015		2015	988490691	33877399152								
uk－2014－host		2014	4769354	50829923		Japan	2011			66355	40	38621.4
eu－2015－host		2015	11264052	386915963								
gsh－2015－hos		2015	68660142	1802747600		China	2015	40768	10599680	40	23755.7	
uk－2014－tpd		2014	1766010	18244650								
eu－2015－tpd		2015	6650532	170145510								
gsh－2015－tpd		2015	30809122	602119716	CA	USA	2012	98304	1572864	41	23751	
cluewebl2		2012	978408098	42574107469		USA	2012	49152	786432	40	14982	
$\underline{\text { uk－2002 }}$		2002	18520486	298113762								

GHzürich

$\begin{aligned} & \text { en } \\ & \text { TW } \\ & \text { TF } \\ & \text { FR } \\ & \text { UL } \end{aligned}$	Twitter (WWW) Twitter (MPI) Friendster UK domain (2007)			Web data commons datasets			
				Granularity	\#Nodes	\#Arcs	
				3,563 million	128,736 million		
			NECT graph dataset		Host	101 million	2,043 million
	Graph500 Ben			Pay-Level-Domain	43 million	623 million	

\＃｜Hzürich

en	vvinkeula euls（ell）	vープーし	
TW	Twitter（WWW）		41，652，230 1，468，365，182
TF	Twitter（MPI）	－D D－L	52，579，682 1，963，263，821
FR	Friendster	，ロ－D－L	68，349，466 2，586，147，869
uL	UK domain（2007）		105，153，952 3，301，876，564

Web data commons datasets

Granularity	\＃Nodes	\＃Arcs
Page	3,563 million	128,736 million
Host	101 million	2,043 million
Pay－Level－Domain	43 million	623 million

Large graphs...

Running on...

Used in..

$\left.\frac{1}{1}\left(\frac{1}{2}\right)+\frac{1}{2} \right\rvert\,$

Running on...

Used in..

$\left.\frac{1}{1}\left(\frac{1}{2}\right)\right\rangle \left.+\frac{1}{2} \right\rvert\,$

What is the lowest storage we can (hope to) use to store a graph?

What is the lowest storage we can (hope to) use to store a graph?

- The storage lower bound $\boldsymbol{\Delta}$

What is the lowest storage we can (hope to) use to store a graph?

The storage lower bound

Which one?

What is the lowest storage we can (hope to) use to store a graph?

The storage lower bound $\sqrt{ }$

Which one? ©

Counting bounds. They are logarithmic (one needs at least log $|S|$ bits to store an object from an arbitrary set S)

What is the lowest storage we can (hope to) use to store a graph?

$$
S=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \begin{aligned}
& x_{1} \rightarrow 0 \ldots 01 \\
& x_{2} \rightarrow 0 \ldots 10 \\
& x_{3} \rightarrow 0 \ldots 11
\end{aligned}
$$

The storage lower bound 1

Which one? ©

Counting bounds. They are logarithmic (one needs at least $\log |S|$ bits to store an object from an arbitrary set S)

What is the lowest storage we can (hope to) use to store a graph?

$$
S=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \begin{aligned}
& x_{1} \rightarrow 0 \ldots 01 \\
& x_{2} \rightarrow 0 \ldots 10 \\
& x_{3} \rightarrow 0 \ldots 11
\end{aligned}
$$

${ }_{\bullet}^{*}$ Key Idea

Counting bounds. They are logarithmic (one needs at least log $|S|$ bits to store an object from an arbitrary set S)

What is the lowest storage we can (hope to) use to store a graph?

$$
S=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \begin{aligned}
& x_{1} \rightarrow 0 \ldots 01 \\
& x_{2} \rightarrow 0 \ldots 10 \\
& x_{3} \rightarrow 0 \ldots 11
\end{aligned}
$$

The storage lower bound Which one? P

Encode different parts of a graph representation using (logarithmic) storage lower bounds

What is the lowest storage we can (hope to) use to store a graph?

$$
S=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \begin{aligned}
& x_{1} \rightarrow 0 \ldots 01 \\
& x_{2} \rightarrow 0 \ldots 10 \\
& x_{3} \rightarrow 0 \ldots 11
\end{aligned}
$$

Which one?

Counting bounds. They are logarithmic (one needs at least log $|S|$ bits to store an object from an arbitrary set S)

"'K Key idea

Vertex labels

Encode different parts of a graph representation using (logarithmic) storage lower bounds

What is the lowest storage we can (hope to) use to store a graph?

$$
S=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \begin{aligned}
& x_{1} \rightarrow 0 \ldots 01 \\
& x_{2} \rightarrow 0 \ldots 10 \\
& x_{3} \rightarrow 0 \ldots 11
\end{aligned}
$$

Which one?

Counting bounds. They are logarithmic (one needs at least log $|S|$ bits to store an object from an arbitrary set S)

"'~Key idea

Vertex labels

Encode different parts of a graph representation using (logarithmic) storage lower bounds

What is the lowest storage we can (hope to) use to store a graph?

$$
S=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \begin{aligned}
& x_{1} \rightarrow 0 \ldots 01 \\
& x_{2} \rightarrow 0 \ldots 10 \\
& x_{3} \rightarrow 0 \ldots 11
\end{aligned}
$$

The storage lower bound Which one? (3)

Counting bounds. They are logarithmic (one needs at least log $|S|$ bits to store an object from an arbitrary set S)

*" Key idea

Vertex labels

Encode different parts of a graph representation using (logarithmic) storage lower bounds

Adjacency arrays (edges adjacent to each vertex)

What is the lowest storage we can (hope to) use to store a graph?

$$
S=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \begin{aligned}
& x_{1} \rightarrow 0 \ldots 01 \\
& x_{2} \rightarrow 0 \ldots 10 \\
& x_{3} \rightarrow 0 \ldots 11
\end{aligned}
$$

The storage lower bound Which one? (3)

Counting bounds. They are logarithmic (one needs at least log $|S|$ bits to store an object from an arbitrary set S)

"'K Key idea

Vertex labels

Encode different parts of a graph representation using (logarithmic) storage lower bounds

What is the lowest storage we can (hope to) use to store a graph?

$$
S=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \begin{aligned}
& x_{1} \rightarrow 0 \ldots 01 \\
& x_{2} \rightarrow 0 \ldots 10 \\
& x_{3} \rightarrow 0 \ldots 11
\end{aligned}
$$

The storage lower bound Which one? (?)

Counting bounds. They are logarithmic (one needs at least log $|S|$ bits to store an object from an arbitrary set S)

当 Key idea

$\log \binom{$ Vertex }{ labels }

Encode different parts of a graph representation using (logarithmic) storage lower bounds
 (edges adjacent to each vertex)

Offsets (locations) of adj. arrays

What is the lowest storage we can (hope to) use to store a graph?

$$
S=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \begin{aligned}
& x_{1} \rightarrow 0 \ldots 01 \\
& x_{2} \rightarrow 0 \ldots 10 \\
& x_{3} \rightarrow 0 \ldots 11
\end{aligned}
$$

The storage lower bound Which one? P

Counting bounds. They are logarithmic (one needs at least $\log |S|$ bits to store an object from an arbitrary set S)

"'K Key idea

$\log \binom{$ Vertex }{ labels }

Encode different parts of a graph representation using (logarithmic) storage lower bounds

(4)

5
Offsets (locations) of adj. arrays

What is the lowest storage we can (hope to) use to store a graph?

$$
S=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \begin{aligned}
& x_{1} \rightarrow 0 \ldots 01 \\
& x_{2} \rightarrow 0 \ldots 10 \\
& x_{3} \rightarrow 0 \ldots 11
\end{aligned}
$$

The storage lower bound Which one? P

Counting bounds. They are logarithmic (one needs at least $\log |S|$ bits to store an object from an arbitrary set S)

"'K Key idea

$\log \binom{$ Vertex }{ labels }

Encode different parts of a graph representation using (logarithmic) storage lower bounds Adjacency arrays
$\log ($ (edges adjacent $)$ to each vertex)

Offsets (locations) of adj. arrays

What is the lowest storage we can (hope to) use to store a graph?

$$
S=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \begin{aligned}
& x_{1} \rightarrow 0 \ldots 01 \\
& x_{2} \rightarrow 0 \ldots 10 \\
& x_{3} \rightarrow 0 \ldots 11
\end{aligned}
$$

The storage lower bound Which one? P

Counting bounds. They are logarithmic (one needs at least log $|S|$ bits to store an object from an arbitrary set S)

$\log \binom{$ Vertex }{ labels }

,

Encode different parts of a graph representation using (logarithmic) storage lower bounds

ज1Hzürich
Adjacency Array Graph Representation

Representation

Adjacency Array Graph Representation

Representation

0

1
2
3
4
5

Adjacency Array Graph Representation

GHzürich

Adjacency Array Graph Representation

ヨ円zürich

Adjacency Array Graph Representation

Representation
 （edges adjacent to each vertex）

Physical realization

Adjacency Array Graph Representation

Representation
 (edges adjacent to each vertex)

Physical realization
Adjacency arrays (one contiguous array)

1	2	0	3	0	3	1	2	4	3	5	4

Adjacency Array Graph Representation

Physical realization

Offsets (another contiguous array)

Adjacency Array Graph Representation

Representation	
1	2
$\rightarrow 0$	3
$\rightarrow 0$	3
$\rightarrow 1$	2
$\rightarrow 3$	5
Adjacency arrays (edges adjacent to each vertex)	

Physical realization

Adjacency arrays (one contiguous array)

Offsets (another contiguous array)

Adjacency Array Graph Representation

Representation	
1	2
$\rightarrow 0$	3
$\rightarrow 0$	3
$\rightarrow 1$	2
$\rightarrow 3$	5
Adjacency arrays (edges adjacent to each vertex)	

Physical realization

Adjacency arrays (one contiguous array)

Offsets (another contiguous array)

Adjacency Array Graph Representation

Representation	
$0 \longrightarrow 1$	2
$\rightarrow 0$	3
$\rightarrow 0$	3
$\rightarrow 1$	24
$\rightarrow 3$	5
5 4 Offsets	
Adjacency arrays (edges adjacent to each vertex)	

Physical realization

Adjacency arrays (one contiguous array)

Offsets (another contiguous array)

Adjacency Array Graph Representation

Representation	
$0 \longrightarrow 1$	2
$\rightarrow 0$	3
$\rightarrow 0$	3
$\rightarrow 1$	24
$\rightarrow 3$	5
5 4 Offsets	
Adjacency arrays (edges adjacent to each vertex)	

Physical realization

Offsets (another contiguous array)
$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }
(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Symbols
 n : \#vertices,
 m : \#edges,
 d_{v} : degree of vertex v,
 N_{v} : neighbors (adj. array) of vertex v,
 $\widehat{N_{v}}$: maximum among N_{v}

캐zürich

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Lower bounds (global)

Symbols
n : \#vertices,
m : \#edges,

$$
d_{v}: \text { degree of vertex } v,
$$

$$
N_{v}: \text { neighbors (adj. array) of }
$$

$\widehat{N_{v}}$: maximum among N_{v}

דㅐzürich

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Lower bounds (global)

$\lceil\log n\rceil$

Symbols
 n : \#vertices,
 m : \#edges,
 d_{v} : degree of vertex v,
 N_{v} : neighbors (adj. array) of vertex v,
 $\widehat{N_{v}}$: maximum among N_{v}

캐zürich

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Lower bounds (global)
$\lceil\log n\rceil$

This is it?
Not really ©

Symbols
 n : \#vertices,
 m : \#edges,
 d_{v} : degree of vertex v,
 N_{v} : neighbors (adj. array) of vertex v,
 $\widehat{N_{v}}$: maximum among N_{v}

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Lower bounds (global)
$\lceil\log n\rceil$

This is it?
Not really ©

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Lower bounds (global)

$\lceil\log n\rceil$

This is it?
Not really ©

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

Assume:

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Lower bounds (global)
$\lceil\log n\rceil$

This is it?
Not really ()

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

Assume:

- a graph, e.g., $V=\left\{1, \ldots, 2^{22}\right\}$

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Lower bounds (global)

$\lceil\log n\rceil$

This is it?
Not really ()

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

Assume:

- a graph, e.g., $V=\left\{1, \ldots, 2^{22}\right\}$
- A vertex v with few neighbors: $d_{v} \ll n$

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Lower bounds (global)

$\lceil\log n\rceil$
This is it?

Not really (;)

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of
$\widehat{N_{v}}$: maximum among N_{v}

캐zürich

Lower bounds (local)

Assume:

- a graph, e.g., $V=\left\{1, \ldots, 2^{22}\right\}$
- A vertex v with few neighbors: $d_{v} \ll n$
- ... all these neighbors have small labels: $\widehat{N_{v}} \ll n$

Lower bounds (global)

$\lceil\log n\rceil$

This is it?
Not really ()

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

Assume:

- a graph, e.g., $V=\left\{1, \ldots, 2^{22}\right\}$
- A vertex v with few neighbors: $d_{v} \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

Lower bounds (global)

$\lceil\log n\rceil$

This is it?
Not really ()

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

эПHzürich

Lower bounds (local)

Assume:

$$
\left\lceil\log 2^{22}\right\rceil=22
$$

- a graph, e.g., $V=\left\{1, \ldots, 2^{22}\right\}$
- A vertex v with few neighbors: $d_{v} \ll n$
$-\ldots$ all these neighbors have small labels: $\widehat{N_{v}} \ll n$

Lower bounds (global)
$\lceil\log n\rceil$

This is it?
Not really ©

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of
 vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Lower bounds (global)
$\lceil\log n\rceil$

This is it?
Not really ©

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

캐zürich

Lower bounds (local)

Assume:
$\left\lceil\log 2^{22}\right\rceil=22$

- a graph, e.g., $V=\left\{1, \ldots, 2^{22}\right\}$
- A vertex v with few neighbors: $d_{v} \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

19 zeros!

1) $\log \binom{$ Vertex }{ labels }, $\log \left(\begin{array}{c}\left.\begin{array}{c}\text { Edge } \\ \text { weights }\end{array}\right)\end{array}\right.$

Lower bounds (global)
$\lceil\log n\rceil$

This is it?
Not really ©

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

эПHzürich

Lower bounds (local)
Assume:

19 zeros!
Thus, use the local bound $\left\lceil\log \widehat{N_{v}}\right\rceil$

캐zürich

This is it?
 Not really ()

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of
 vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local): problem

- a graph, e.g., $V=\left\{1, \ldots, 2^{22}\right\}$
- A vertex v with few neighbors: $d_{v} \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

This is it?

Not really ©

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of
 vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local): problem

What if:

- a graph, e.g., $V=\left\{1, \ldots, 2^{22}\right\}$
- A vertex v with few neighbors: $d_{v} \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

This is it?

Not really ()

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of
 vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local): problem

What if:

- a graph, e.g., $V=\left\{1, \ldots, 2^{22}\right\}$
- A vertex v with few neighbors: $d_{v} \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

- ...one neighbor has a large ID:

This is it? (?)

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of
 Not really (:)
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local): problem

What if:

- a graph, e.g., $V=\left\{1, \ldots, 2^{22}\right\}$
- A vertex v with few neighbors: $d_{v} \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

- ...one neighbor has a large ID:

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of
 Not really ©

$$
\text { vertex } v \text {, }
$$

$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local): problem
What if:

- a graph, e.g., $V=\left\{1, \ldots, 2^{22}\right\}$
- A vertex v with few neighbors: $d_{v} \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$
- ...one neighbor has a large ID:

$$
\left\lceil\log 2^{20}\right\rceil=20
$$

Symbols

This is it?

Not really ()

vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of

Lower bounds (local): problem
What if:

- a graph, e.g., $V=\left\{1, \ldots, 2^{22}\right\}$
- A vertex v with few neighbors: $d_{v} \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$
- ...one neighbor has a large ID:
$\left\lceil\log 2^{20}\right\rceil=20$

17 zeros!
(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Symbols
 n : \#vertices,
 m : \#edges,
 d_{v} : degree of vertex v,
 N_{v} : neighbors (adj. array) of vertex v,
 $\widehat{N_{v}}$: maximum among N_{v}

캐zürich

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

[^0]

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

..Use Integer Linear Programming (ILP)!

Symbols
n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local) enhanced with ILP

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of
 Programming (ILP)! vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

...Use Integer Linear ! Programming (ILP)!

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local) enhanced with ILP
Permute vertex labels to reduce
such maximum labels in as many neighborhoods as possible

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

...Use Integer Linear! Programming (ILP)!

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local) enhanced with ILP
Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Programming (ILP)!

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible

(simultaneously for all other neighborhoods)

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Programming (ILP)!

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local) enhanced with ILP
Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible

m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

דㅐzürich

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Programming (ILP)!
 ...Use Integer Linear !

Symbols

n : \#vertices,

Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible

Heuristics:

$$
\min \sum_{v \in V} \widehat{N_{v}} \frac{1}{d_{v}}
$$

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

דㅐzürich

Programming (ILP)!
 ...Use Integer Linear!

Lower bounds (local) enhanced with ILP
Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Symbols

n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of
 Programming (ILP)!
vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local) enhanced with ILP
Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible

Intuition:
maximum
labels in new neighborhoods will be smaller

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }
Symbols
\widehat{W} : max edge weight,
n : \#vertices,
p, α, β : constants

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }
\oiint Formal analyses

Power-law graphs

Symbols

\widehat{W} : max edge weight,
n : \#vertices,
p, α, β : constants

Random uniform graphs

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }
\oiiint Formal analyses

Symbols

\widehat{W} : max edge weight,
n : \#vertices,
p, α, β : constants

Power-law graphs

The probability that a vertex has degree d is:
αd^{β}

Random uniform graphs

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }
\oiiint Formal analyses

Symbols

\widehat{W} : max edge weight,
n : \#vertices,
p, α, β : constants

Power-law graphs

The probability that a vertex has degree d is:
αd^{β}

Random uniform graphs

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }
\oiiint Formal analyses

Symbols

\widehat{W} : max edge weight,
n : \#vertices,
p, α, β : constants

Power-law graphs

The probability that a vertex has degree d is:
αd^{β}

Random uniform graphs

The probability that a vertex has degree d is:

$$
p d
$$

דㅐzürich

(1) Log $\binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights } \oiiint Formal analyses

Power-law graphs

The probability that a vertex has degree d is:
αd^{β}

Symbols

\widehat{W} : max edge weight,
n : \#vertices,
p, α, β : constants

Random uniform graphs

The probability that a vertex has degree d is:

$$
p d
$$

$1 \log ($ Vertex $), \log ($ Edge $\left.{ }_{\text {labels }}\right), \log \left(\begin{array}{l}\text { weights }\end{array}\right)$ \oiiint Formal analyses

Power-law graphs

The probability that a vertex has degree d is:

Symbols

\widehat{W} : max edge weight,
n : \#vertices,
p, α, β : constants

Random uniform graphs

The probability that a vertex has degree d is:

$$
p d
$$

Expected size of the adjacency array

$$
E[\mid \mathcal{A} \|]=(\lceil\log n\rceil+\lceil\log \widehat{\mathcal{W}}\rceil) p n^{2}
$$

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

$$
E[|\mathcal{O}|]=n\left\lceil\log \left(2 p n^{2}\right)\right\rceil=n\lceil\log 2 p+2 \log n\rceil
$$

\oiint Formal analyses: more (check the paper ©)

$$
\forall_{v, u \in V}\left(u \in N_{v}\right) \Rightarrow\left[\mathcal{N}(u) \leq \widehat{N}_{v}\right]
$$

$$
\begin{array}{rr}
|\mathscr{A}|=\sum_{v \in V}\left(d_{v}\left\lceil\log \widehat{N}_{v}\right\rceil+\left\lceil\log \log \widehat{N}_{v}\right\rceil\right) & |\mathscr{A}|=\sum_{v \in V}\left(d_{v}\left\lceil\log \widehat{N}_{v}\right\rceil+\left\lceil\log \log \widehat{N}_{v}\right\rceil\right) \\
|\mathcal{A}|=n\left\lceil\log \frac{n}{\mathcal{H}}\right\rceil+\mathcal{H}\lceil\log \mathcal{H}\rceil & |\mathcal{A}|=2 m(\lceil\log n\rceil+\lceil\log \widehat{\mathcal{W}}\rceil) \\
|\mathcal{A}|=\sum_{v \in V}\left(d_{v}\left(\left\lceil\log \widehat{N}_{v}\right\rceil+\lceil\log \widehat{\mathcal{W}}\rceil\right)+\left\lceil\log \log \widehat{N}_{v}\right\rceil+\lceil\log \log \widehat{\mathcal{W}}\rceil\right)
\end{array}
$$

$$
E[|\mathcal{A}|] \approx \frac{\alpha}{2-\beta}\left(\left(\frac{\alpha \eta \log n}{\beta-1}\right)^{\frac{2-\beta}{\beta-1}-1}\right)(\lceil\log n\rceil+\lceil\log \widehat{\mathcal{W}}\rceil) \quad E[|\mathcal{A}|]=(\lceil\log n\rceil+\lceil\log \widehat{\mathcal{W}}\rceil) p n^{2}
$$

(1) $\log \binom{$ Vertex $)}{$ labels }, $\log \binom{$ Edge }{ weights }

$$
E[|\mathcal{O}|]=n\left\lceil\log \left(2 p n^{2}\right)\right\rceil=n\lceil\log 2 p+2 \log n\rceil
$$

\oiint Formal analyses: more (check the paper ©)

$$
\begin{aligned}
& |\mathscr{A}|=\sum_{v \in V}\left(d_{v}\left\lceil\log \widehat{N}_{v}\right\rceil+\left\lceil\log \log \widehat{N}_{v}\right\rceil\right) \quad|\mathscr{A}|=\sum_{v \in V} \\
& |\mathcal{A}|=n\left\lceil\log \frac{n}{\mathcal{H}}\right\rceil+\mathcal{H}\lceil\log \mathcal{H}\rceil \\
& |\mathcal{A}|=\sum_{v \in V}\left(d_{v}\left(\left\lceil\log \widehat{N}_{v}\right\rceil+\right\rceil\right.
\end{aligned}
$$

$$
E[|\mathcal{A}|] \approx \frac{\alpha}{2-\beta}\left(\left(\frac{\alpha n \log n}{\beta-1}\right)^{\frac{2-\beta}{\beta-1}}-1\right)(\lceil\log n\rceil+\lceil\log \widehat{\mathcal{W}}\rceil)
$$

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }
Key methods

ヨ|Hzürich
(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

* Key methods

(1) $\log \left(\begin{array}{l}\text { labelts }\end{array}\right), \log \binom{$ (edge }{ weights }
\% Key methods

Use the BEXTR bitwise ! operation to help extract an arbitrary sequence of bits


```
1 /* v_ID is an opaque type for IDs of vertices. */
2 v_ID N Ni,v
3 int64_t exactBitOffset = s * (\mathcal{O}[v] + i);
4 int8_t* address = (int8_t*) \mathcal{A + (exactBitOffset >> 3);}
5 int64_t distance = exactBitOffset & 7;
6 int64_t value = ((int64_t*) (address))[0];
7 return _bextr_u64(value, distance, s); }
```

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }
\% Key methods

Use the BEXTR bitwise ! operation to help extract an arbitrary sequence of bits

Return i-th
 neighbor of vertex v

```
1 /* v_ID is an opaque tove for IDs of vertices. */
```



```
3 int64_t exactBitOffset = s * (\mathcal{O}[v] + i);
4 int8_t* address = (int8_t*) \mathcal{A + (exactBitOffset >> 3);}
5 int64_t distance = exactBitOffset & 7;
6 int64_t value = ((int64_t*) (address))[0];
7 return _bextr_u64(value, distance, s); }
```

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }
K Key methods

Use the BEXTR bitwise ? operation to help extract an arbitrary sequence of bits

Pointer to the offset array

Return i-th neighbor of vertex v

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }
K Key methods

Use the BEXTR bitwise ! operation to help extract an arbitrary sequence of bits

Return i-th neighbor of vertex v

Pointer to the offset array

Pointer to the adjacency array

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }
K Key methods

Use the BEXTR bitwise ! operation to help extract an arbitrary sequence of bits

Return i-th neighbor of vertex v

Pointer to the offset array

Pointer to the adjacency array $s=\lceil\log n\rceil$
$1 / *$ V_ID is an opaque tone for IDs of ertices. */
2 v_ID $N_{i, v}\left(v_{-} I D v, i n t 32 _t i, \operatorname{int64_ t*} \mathcal{O}\right.$, int64_t* \mathcal{A}, int8_t s)\{
3 int64_t exactBitOffset $=s *(\mathcal{O}[v]+i)$;
4 int8_t* address $=\left(i n t 8 _t *\right) \mathcal{A}+(e x a c t B i t 0 f f s e t \gg 3)$;
5 int64_t distance = exactBitOffset \& 7;
6 int64_t value = ((int64_t*) (address)) [0];
7 return _bextr_u64 (value, distance, s) ; \}
$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }
K Key methods

Use the BEXTR bitwise ! operation to help extract an arbitrary sequence of bits

Return i-th
neighbor of
vertex v

Derive exact offset (in bits) to the neighbor label

Pointer to the offset array

Pointer to the adjacency array $s=\lceil\log n\rceil$

v_ID $N_{i, v}\left(v_{-} I D v, i n t 32 _t i, i n i 64 _t * \mathcal{O}\right.$, int 64_t* \mathcal{A}, int 8_t $\left.s\right)\{$
3 int64_t exactBitOffset $=s *(\mathcal{O}[v]+i)$;
4 int 8_t* address $=$ (int8_t*) $\mathcal{A}+$ (exactBitOffset >> 3);
5 int64_t distance = exactBitOffset \& 7;
6 int 64_t value = ((int64_t*) (address)) [0];
7 return _bextr_u64 (value, distance, s) ; \}
(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

K Key methods

Use the BEXTR bitwise ! operation to help extract an arbitrary sequence of bits

Return i-th neighbor of vertex v

Derive exact offset (in bits) to the neighbor label

Pointer to the offset array

Pointer to the adjacency array

Get the closest byte alignment int 64_t exactBitOffset $=s *(\mathcal{O}[v]+i)$; int 8_t* address $=\left(i n t 8 _t *\right) \mathcal{A}+(e x a c t B i t O f f s e t \gg 3)$; int 64_t distance = exactBitOffset \& 7; int64_t value = ((int64_t*) (address)) [0]; return _bextr_u64 (value, distance, s) ; \}
(1) Log $\binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }
\% Key methods

Use the BEXTR bitwise ! operation to help extract an arbitrary sequence of bits

Return i-th neighbor of vertex v

Derive exact offset (in bits) to the neighbor label

Pointer to the offset array

Pointer to the adjacency array $s=\lceil\log n\rceil$

Get the closest byte alignment int64_t exactBitOffset $=s *(\mathcal{O}[v]+i)$; int8_t* address $=\left(i n t 8 _t *\right)(\mathcal{A}+(e x a c t B i t O f f s e t \gg 3)$; int64_t distance $=$ exactBitoffset \& 7; int64_t value = ((int64_t*) (address)) [0]; return _bextr_u64 (value, distance, s) ; \} Get the distance from the byte alignment
$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }
\% Key methods

Use the BEXTR bitwise ! operation to help extract an arbitrary sequence of bits

Return i-th neighbor of vertex v

Derive exact offset (in bits) to the neighbor label

Pointer to the offset array

Pointer to the adjacency array

Get the closest byte alignment int64_t exactBitOffset $=s *(\mathcal{O}[v]+i)$; int8_t* address $=\left(i n t 8 _t *\right)(\mathcal{A}+(e x a c t B i t O f f s e t \gg 3)$; int64_t distance $=$ exactBitoffset \& 7;

6 int64_t value $=(($ int64_t*) (address)) [0];
7 return _bextr_u64 (value, distance, s) ; \}

Get the distance from the byte alignment

Access the derived 64 -bit value

$1 \log \binom{$ Vertex }{ labels }, $\log ($ Edge labels $)$ LOg (weights
 K Key methods

Use the BEXTR bitwise ! operation to help extract an arbitrary sequence of bits

Return i-th neighbor of vertex v

Derive exact offset (in bits) to the neighbor label

Pointer to the offset array

Pointer to the adjacency array

Get the closest byte alignment
4 int8_t* address $=\left(i n t 8 _t *\right)(\mathcal{A}+$ (exactBitOffset $\gg 3)$;
5 int64_t distance $=$ exactBitoffset \& 7;
6 int64_t value $=(($ int64_t*) $($ address) $)[0]$;
return _bextr_u64(value, distance, s); \}

Get the distance from the byte alignment

Access the derived 64-bit value
(2) \log (offset structure)

EHzürich
(2) \log (offset structure)

(2) LO\% (Offset structure)

Use a bit vector instead of an array of offsets...

ज्ञzürich

(2) Log (offset structure)

Use a bit vector instead of an array of offsets...

Bit vectors instead of offset arrays
(2) Log (offset structure)

Use a bit vector instead of an array of offsets...

Bit vectors instead of offset arrays

(2) Log (offset structure)

Use a bit vector instead of an array of offsets...

Bit vectors instead of offset arrays

(2) Log (offset structure)

Use a bit vector instead of an array of offsets...

Bit vectors instead of offset arrays

(2) Log (offset structure)

Use a bit vector instead of an array of offsets...

Bit vectors instead of offset arrays

i-th set bit has a position $x \rightarrow$
the adjacency array of a vertex i
starts at a word x

(2) Log (offset structure)

Use a bit vector instead of an array of offsets...

Bit vectors instead of offset arrays

How many 1s are set before a given i-th bit?
i-th set bit has a position $x \rightarrow$ the adjacency array of a vertex i starts at a word x
(2) Log (offset structure)
...Encode the resulting bit vectors as succinct bit vectors [1]

7Hzürich

(2) \log (offset structure)

...Encode the resulting bit vectors as succinct bit vectors [1]

(2) Log (Offset structure)

Succinct bit vectors

They use $[\mathrm{Q}]+o(\mathrm{Q})$ bits ($[\mathrm{Q}]$ - lower bound), they answer various queries in $o(Q)$ time.

(2) Log (Offset structure)

Succinct bit vectors

They use $[\mathrm{Q}]+o(\mathrm{Q})$ bits ($[\mathrm{Q}]$ - lower bound), they answer various queries in $o(Q)$ time. = small + fast (hopefully) !
(2) Log (Offset structure)

Succinct bit vectors

They use [Q] +o(Q) bits ([Q] - lower bound), they answer various queries in $o(Q)$ time.

= small + fast

 (hopefully)!(2) Log (Offset structure)

Succinct bit vectors

They use [Q] +o(Q) bits ([Q] - lower bound), they answer various queries in $o(Q)$ time.
= small + fast (hopefully) !
(2) Log (Offset structure)

Succinct bit vectors

They use [Q] + o(Q) bits ([Q] - lower bound), = small + fast they answer various queries in $o(Q)$ time. (hopefully)

n bits $101010100101000101010111110000001100001 \ldots$
(2) Log (Offset structure)

Succinct bit vectors

They use $[\mathrm{Q}]+o(\mathrm{Q})$ bits ($[\mathrm{Q}]$ - lower bound), they answer various queries in $o(Q)$ time.
= small + fast (hopefully)!

(2) Log (offset structure)

Succinct bit vectors

They use $[\mathrm{Q}]+o(\mathrm{Q})$ bits ($[\mathrm{Q}]$ - lower bound), they answer various queries in $o(Q)$ time.
= small + fast

(2) Log (offset structure)

...Encode the resulting bit vectors as succinct bit vectors [1]

Succinct bit vectors

They use $[\mathrm{Q}]+o(\mathrm{Q})$ bits ($[\mathrm{Q}]$ - lower bound), they answer various queries in $o(Q)$ time.

(2) Log (offset structure)

...Encode the resulting bit vectors as succinct bit vectors [1]

Succinct bit vectors

They use $[\mathrm{Q}]+o(\mathrm{Q})$ bits ($[\mathrm{Q}]$ - lower bound), they answer various queries in $o(Q)$ time.
= small + fast

(2) Log (offset structure)

...Encode the resulting bit vectors as succinct bit vectors [1]

Succinct bit vectors
 They use $[\mathrm{Q}]+o(\mathrm{Q})$ bits ($[\mathrm{Q}]$ - lower bound),
 = small + fast they answer various queries in $o(Q)$ time.

(2) Log (offset structure)

...Encode the resulting bit vectors as succinct bit vectors [1]

Succinct bit vectors
 They use [Q] +o(Q) bits ([Q] - lower bound), (hopefully)

1

(2) Log (offset structure)
...Encode the resulting bit vectors as succinct bit vectors [1]

Compute \& store
 the number of 1 s
 Succinct bit vectors

They use $[\mathrm{Q}]+o(\mathrm{Q})$ bits ($[\mathrm{Q}]$ - lower bound),
= small + fast
they answer various queries in $o(Q)$ time.

(2) Log (offset structure)

...Encode the resulting bit vectors as succinct bit vectors [1]

Compute \& store
 the number of 1 s
 Succinct bit vectors

They use $[\mathrm{Q}]+o(\mathrm{Q})$ bits ($[\mathrm{Q}]$ - lower bound),
= small + fast they answer various queries in $o(Q)$ time.
e

2 Log (Offset structure)

...Encode the resulting bit vectors as succinct bit vectors [1]

$2 \log$ (offset structure)

...Encode the resulting bit vectors as succinct bit vectors [1]

$\begin{gathered}\text { Compute \& store } \\ \text { the number of 1s }\end{gathered}=O\left(\frac{n}{t_{1}} \log n\right)=O\left(\frac{n}{\log n}\right)=o(n)$

$2 \log$ (offset structure)

...Encode the resulting bit vectors as succinct bit vectors [1]

2 Log (Offset structure)

...Encode the resulting bit vectors as succinct bit vectors [1]

Succinct bit vectors

Total storage:

$n+o(n)+o(n)+\cdots$
They use [Q] +o(Q) bits ([Q] - lower bound), = small + fast they answer various queries in $o(Q)$ time.
$\begin{aligned} & \text { Compute \& store } \\ & \text { the number of } 1 \mathrm{~s}\end{aligned}=O\left(\frac{n}{t_{1}} \log n\right)=O\left(\frac{n}{\log n}\right)=O(n)$

(2) Log (Offset structure)

...Encode the resulting bit vectors as succinct bit vectors

(2) Log (offset structure)

...Encode the resulting bit vectors as succinct bit vectors
\oiint Formal analyses

(2) Log (offset structure)

...Encode the resulting bit vectors as succinct bit vectors

丹 Formal analyses

\mathcal{O}	ID	Asymptotic size [bits]	Exact size [bits]	select or $\mathcal{O}[v]$
Pointer array	ptr W	$O(W n)$	$W(n+1)$	$O(1)$
Plain [44]	bvPL	$O\left(\frac{W m}{B}\right)$	$\frac{2 W m}{B}$	$O(1)$
Interleaved [44]	bvIL	$O\left(\frac{W m}{B}+\frac{W m}{L}\right)$	$2 W m\left(\frac{1}{B}+\frac{64}{L}\right)$	$O\left(\log \frac{W m}{B}\right)$
Entropy based [31, 78]	bvEN	$O\left(\frac{W m}{B} \log \frac{W m}{B}\right)$	$\approx \log \left(\frac{2 W m}{B}\right)$	$O\left(\log \frac{W m}{B}\right)$
Sparse [76]	bvSD	$O\left(n+n \log \frac{W m}{B n}\right)$	$\approx n\left(2+\log \frac{2 W m}{B n}\right)$	$O(1)$
B-tree based [1]	bvBT	$O\left(\frac{W m}{B}\right)$	$\approx 1.1 \cdot \frac{2 W m}{B}$	$O(\log n)$
Gap-compressed [1]	bvGC	$O\left(\frac{W m}{B} \log \frac{W m}{B n}\right)$	$\approx 1.3 \cdot \frac{2 W m}{B} \log \frac{2 W m}{B n}$	$O(\log n)$

(2) Log (offset structure)

...Encode the resulting bit vectors as succinct bit vectors

\oiint Formal analyses

Check the paper for details ©

\mathcal{O}	ID	Asymptotic size [bits]	Exact size [bits]	select or $\mathcal{O}[v]$
Pointer array	ptr W	$O(W n)$	$W(n+1)$	$O(1)$
Plain [44]	bvPL	$O\left(\frac{W m}{B}\right)$	$\frac{2 W m}{B}$	$O(1)$
Interleaved [44]	bvIL	$O\left(\frac{W m}{B}+\frac{W m}{L}\right)$	$2 W m\left(\frac{1}{B}+\frac{64}{L}\right)$	$O\left(\log \frac{W m}{B}\right)$
Entropy based [31, 78]	bvEN	$O\left(\frac{W m}{B} \log \frac{W m}{B}\right)$	$\approx \log \left(\frac{2 W m}{B}\right)$	$O\left(\log \frac{W m}{B}\right)$
Sparse [76]	bvSD	$O\left(n+n \log \frac{W m}{B n}\right)$	$\approx n\left(2+\log \frac{2 W m}{B n}\right)$	$O(1)$
B-tree based [1]	bvBT	$O\left(\frac{W m}{B}\right)$	$\approx 1.1 \cdot \frac{2 W m}{B}$	$O(\log n)$
Gap-compressed [1]	bvGC	$O\left(\frac{W m}{B} \log \frac{W m}{B n}\right)$	$\approx 1.3 \cdot \frac{2 W m}{B} \log \frac{2 W m}{B n}$	$O(\log n)$

(2) Log (offset structure)

...Encode the resulting bit vectors as succinct bit vectors

Æ Formal analyses

Check the paper for details ;)

\mathcal{O}	ID	Asymptotic size [bits]	Exact size [bits]		select or $\mathcal{O}[v]$
Pointer array	ptr	$O(W n)$	$W(n+1)$		$O(1)$
Plain [44] Interleaved [44]					
	Me wi show g $\frac{W m}{B}$)				
Entropy based [3	$\text { in pactice ooth smat and fast } \mathrm{g} \frac{W m}{B} \text {) }$				
Sparse [76]					
B-tree based [1]	bvbr $\left(\frac{1}{B}\right) \sim 1.1 \cdot \frac{B}{B}(\log n)$				
Gap-compressed [1]		$O\left(\frac{W m}{B} \log \frac{W m}{B n}\right)$	$\approx 1.3 \cdot \frac{2 W m}{B} \log$	$\frac{2 W m}{B n}$	$O(\log n)$

АПНürich
(3) $\log \binom{$ Adjacency }{ structure }

F|Hzürich

(3) $\log \binom{$ Adjacency }{ structure }

Use different relabelings

(3) $\log \binom{$ Adjacency }{ structure }

Use different relabelings

Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

(3) $\log \binom{$ Adjacency }{ structure }

Use different relabelings

Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

ㅋHzürich

More schemes that assume specific classes of graphs

(3) $\log \binom{$ Adjacency }{ structure }

Use different relabelings

Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

(simultaneously for all
other neighborhoods)

More schemes that assume specific classes of graphs

3 log Adjacency structure
 Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

Use different relabelings

(simultaneously for all
other neighborhoods)
(1) The more often a label occurs (i.e., the higher vertex degree), the smaller permuted value it receives

More schemes

 that assume specific classes of graphs
3 Log Adjacency structure
 Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

Use different relabelings

More schemes

 that assume specific classes of graphs
3 Log Adjacency structure
 (no assumptions on graph structure)

(simultaneously for all other neighborhoods)

More schemes that assume specific classes of graphs

(2) Encode new labels with gap encoding (differences between consecutive labels instead of full labels)

An \rightarrow FPLL

Overview of Full Log(Graph) Design

Overview of Full Log(Graph) Design

캐zürich

Overview of Full Log(Graph) Design

Overview of Full Log(Graph) Design

How to ensure fast, manageable, and extensible implementation of all these schemes?

-.. they all can be arbitrarily combined.

We analyzed / implemented (in total):
6 schemes for compressing fine elements, 10+ schemes for compressing offset structures, 4+ schemes for compressing adjacency structures

Overview of Full Log(Graph) Design

How to ensure fast, manageable, and extensible implementation of all these schemes?

We use C++ templates to develop a library that facilitates implementation, benchmarking, analysis, and extending the discussed schemes

2.1

-

 10 ally -3. I

We analyzed / implemented (in total):
6 schemes for compressing fine elements, 10+ schemes for compressing offset structures, 4+ schemes for compressing adjacency structures
spcl.inf.ethz.ch

Performance Analysis

TYpes of machines

CSCS Cray Piz Daint

CSCS Cray Piz Daint

2 Performance Analysis

Types of machines

IIIFIT

spcl.inf.ethz.ch @spcl_eth

द्मzürich

CSCS Cray Piz Daint

Performance Analysis

Types of graphs

Performance Analysis

Types of graphs
Synthetic graphs
ЄНzürich

Performance Analysis

TYpes of Graphs
Synthetic graphs

Performance Analysis

Types of graphs

Performance Analysis

Types of graphs

Real-world graphs (SNAP [3], KONECT [4], Webgraph [5], DIMACS [6])

Real-world graphs (SNAP [3], KONECT [4], Webgraph [5], DIMACS [6])

[3] SNAP. https://snap.stanford.edu
[4] KONECT. https://konect.cc
[5] DIMACS Challenge
[6] Webgraphs. https://law.di.unimi.it/datasets.php

Performance Analysis

TYpes of graphs

Performance Analysis

Algorithms

Performance Analysis

Algorithms

Connected

Components

(Shiloach-Vishkin [1])

Performance Analysis

Algorithms

Connected

Components

(Shiloach-Vishkin [1])

[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

Performance Analysis

Algorithms

Connected

Components

(Shiloach-Vishkin [1])

[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

Performance Analysis

Algorithms

Connected BFS (direction
Components optimization [2])

(Shiloach-Vishkin [1])

[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.
[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

Performance Analysis

Algorithms

Connected
 Components

(Shiloach-Vishkin [1])

[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.
[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

Performance Analysis

Algorithms

Connected

Components
BFS (direction
optimization [2])
(Shiloach-Vishkin [1])

[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.
[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

Performance Analysis

Algorithms

Connected

Components
BFS (direction
optimization [2])
(Shiloach-Vishkin [1])

[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

Performance Analysis

Algorithms

Connected

Components
 (Shiloach-Vishkin [1])

[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

Performance Analysis

Algorithms

Connected

Components
BFS (direction
optimization [2]) (Shiloach-Vishkin [1])

[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

Performance Analysis

Algorithms

Connected

Components (Shiloach-Vishkin [1])

[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

Performance Analysis

Connected

Components (Shiloach-Vishkin [1])

Triangle Counting

[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.
[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.
[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.
[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.
[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003. [2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

parallel connectivity algorithm. 1980.
[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003. [4] U. Brandes. A Faster Algorithm for Betweenness Centrality. 2001.

[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003. [2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

Performance Analysis

COMPARISON TARGETS

Performance Analysis

Comparison Targets

GAPBS: Graph Algorithm Platform Benchmark Suite [1]. Comparison to a traditional adjacency array implementation

Performance Analysis

Comparison Targets

GAPBS: Graph Algorithm Platform Benchmark Suite [1]. Comparison to a traditional adjacency array implementation

Performance Analysis

Comparison Targets

Zlib [2].

Comparison to a traditional

> GAPBS: Graph Algorithm Platform Benchmark Suite [1].

Comparison to a traditional adjacency array implementation compression scheme

Performance Analysis

Comparison Targets

Zlib [2].

Comparison to a traditional compression scheme

GAPBS: Graph Algorithm Platform Benchmark Suite [1]. Comparison to a traditional adjacency array implementation

Recursive Partitioning [4].

Comparison to a tuned scheme for compressing adjacency data
(1) Log $\binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights } Storage, Performance
SSSP

Kronecker graphs Number of vertices: 4M

캐zürich

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights } Storage, Performance

SSSP

Kronecker graphs Number of vertices: 4M

Number of edges per vertex

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights } Storage, Performance

SSSP

Number of edges per vertex

Kronecker graphs Number of vertices: 4M

Log(Graph) consistently reduces storage overhead

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights } Storage, Performance

Number of edges per vertex

Log(Graph) accelerates GAPBS

SSSP

Kronecker graphs Number of vertices: 4M

Log(Graph) consistently reduces storage overhead (by 20-35\%)

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights } Storage, Performance

Number of edges per vertex

Log(Graph) accelerates GAPBS

SSSP

Kronecker graphs Number of vertices: 4M

Both storage and performance are improved simultaneously

Log(Graph) consistently reduces storage overhead (by 20-35\%)

(2) Log (offset structure) Storage

Offsets:

(2) Log (offset structure) Storage

Offsets:

Lots of data : $^{\text {) }}$

Conclusions:

(2) -of Stfset structure) Storage

Lots of data ;
Conclusions:

(2) Log (Offset structure) Storage

ptr64, ptr32: traditional array of offsets
ptrLogn: separate compression of each offset bvPL: plain bit vectors
bvIL: compact bit vectors
bvEN, bvSD: succinct bit vectors

Lots of data ;
Conclusions:

(2) \log (offset structure)
 Storage

ptr64, ptr32: traditional array of offsets
ptrLogn: separate compression of each offset bvPL: plain bit vectors
bvIL: compact bit vectors
bvEN, bvSD: succinct bit vectors

Lots of data ;
Conclusions:

(2) Log (offset structure)
 Storage

ptr64, ptr32: traditional array of offsets
ptrLogn: separate compression of each offset bvPL: plain bit vectors
bvIL: compact bit vectors
bvEN, bvSD: succinct bit vectors

Lots of data ${ }^{\text {© }}$ Conclusions:

Succinct bit vectors consistently ensure best storage reductions

2 Log (Offset structure) Storage

Lots of data $)^{-}$ Conclusions:

Succinct bit vectors consistently ensure best storage reductions
ptr64, ptr32: traditional array of offsets
ptrLogn: separate compression of each offset bvPL: plain bit vectors
bvIL: compact bit vectors
bvEN, bvSD: succinct bit vectors

The main reason: succinct designs work well for sparse bit vectors, and graphs „that matter" are sparse

Accessing randomly selected neighbors

(2) \log (Offset structure) Performance

Accessing randomly selected neighbors

Kronecker graphs Number of vertices: 4M

2 Log (Offset structure) Performance

Accessing randomly selected neighbors
ptr64: traditional array of offsets bvPL: plain bit vectors
bvIL: compact bit vectors bvEN, bvSD: succinct bit vectors
zlib(.): zlib-compressed variants

Kronecker graphs Number of vertices: 4M

2 Log (Offset structure) Performance

Lots of data again ;) Conclusions:

Accessing randomly selected neighbors
ptr64: traditional array of offsets bvPL: plain bit vectors
bvIL: compact bit vectors bvEN, bvSD: succinct bit vectors
zlib(.): zlib-compressed variants

Kronecker graphs Number of vertices: 4M

2 Log (Offset structure) Performance

Lots of data again © Conclusions:

In sequential settings (or settings with low parallelism), simple offset arrays are the fastest

Accessing randomly selected neighbors
ptr64: traditional array of offsets bvPL: plain bit vectors
bvIL: compact bit vectors bvEN, bvSD: succinct bit vectors
zlib(.): zlib-compressed variants

Kronecker graphs Number of vertices: 4M

2 Log (Offset structure) Performance

Lots of data again © Conclusions:

In sequential settings (or settings with low parallelism), simple offset arrays are the fastest

Once parallelism overheads kick in, performance of accessing succinct bit vectors and offset arrays becomes comparable

ptr64: traditional array of offsets bvPL: plain bit vectors
bvIL: compact bit vectors bvEN, bvSD: succinct bit vectors zlib(.): zlib-compressed variants

Kronecker graphs Number of vertices: 4M

2 Log (Offset structure) Performance

Lots of data again () Conclusions:

In sequential settings (or settings with low parallelism), simple offset arrays are the fastest

Once parallelism overheads kick in, performance of accessing succinct bit vectors and offset arrays becomes comparable

Accessing randomly selected neighbors
ptr64: traditional array of offsets bvPL: plain bit vectors bvIL: compact bit vectors bvEN, bvSD: succinct bit vectors zlib(.): zlib-compressed variants
bvSD: the fastest and (usually) the smallest

Kronecker graphs Number of vertices: 4M

NAREL

(3) Log ($\left.\begin{array}{c}\text { Adjacency } \\ \text { structure }\end{array}\right) \begin{gathered}\text { Storage, }\end{gathered}$ Performane

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

(3) Log ($\left.\begin{array}{c}\text { Adjacency } \\ \text { structure }\end{array}\right)$ Storage, Performane

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

(3) Log $\binom{$ Adjacency }{ structure } $\begin{gathered}\text { Storage, }\end{gathered}$ Performane

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

Conclusions:

(3) $\log \binom{$ Adjacency }{ structure } $\begin{gathered}\text { Storage, }\end{gathered}$ Performane

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

Conclusions:

WebGraph
best for web
graphs ()

(3) Log $\binom{$ Adjacency }{ structure } $\begin{gathered}\text { Storage, } \\ \text { Performane }\end{gathered}$

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

Conclusions:

WebGraph
best for web
graphs ()

BRB, RB: various tradeoffs but very expensive preprocessing (details in the paper)

(3) $\log \binom{$ Adjacency }{ structure } $\begin{gathered}\text { Storage, }\end{gathered}$ Performane

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

Conclusions:

WebGraph best for web graphs ()

DMd: much better than DMf, often comparable to WG

BRB, RB: various tradeoffs but very expensive preprocessing (details in the paper)

(3) Log ($\left.\begin{array}{c}\text { Adjacency } \\ \text { structure }\end{array}\right) \begin{gathered}\text { Storage, }\end{gathered}$ Performane

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

Lots of data ${ }^{\text {: }}$

Conclusions:

WebGraph best for web graphs ()

DMd: much better than DMf, often comparable to WG

BRB, RB: various tradeoffs but very expensive preprocessing (details in the paper)

(3) $\log \binom{$ Adjacency }{ structure } $\begin{gathered}\text { Storage, } \\ \text { Performan }\end{gathered}$ Performane

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

Lots of data ;

Conclusions:

WebGraph best for web graphs ()

DMd: much better than DMf, often comparable to WG

BRB, RB: various tradeoffs but very expensive preprocessing (details in the paper)

WebGraph is the slowest, DM somewhat slower than Trad

Takeaway (Results): Log(Graph) ensures Space-Performance sweetspot (tunable!)

Key insight (vertex labels)
$\mathbf{2 0 - 3 5 \%}$ storage reductions (compared to uncompressed data) and negligible
decompression overheads

Takeaway (Results): Log(Graph) ensures Space-Performance sweetspot (tunable!)

Key insight (vertex labels)
20-35\% storage reductions (compared to uncompressed data) and negligible
decompression overheads

Takeaway (Results): Log(Graph) ensures Space-Performance sweetspot (tunable!)

Key insight (offsets)
Up to $\mathbf{> 9 0 \%}$ storage reductions (compared to uncompressed data) and comparable performance to that of uncompressed data accesses (in parallel environments)
$\mathbf{2 0 - 3 5 \%}$ storage reductions (compared to uncompressed data) and negligible decompression overheads
80% storage reductions (compared to uncompressed data) and up to $>2 x$ speedup over modern graph compression schemes (Webgraph)

Takeaway (Results): Log(Graph) ensures Space-Performance sweetspot (tunable!)

Key insight (offsets)
Up to $\mathbf{> 9 0 \%}$ storage reductions (compared to uncompressed data) and comparable performance to that of uncompressed data accesses (in parallel environments)

Other results

A Near-Optimal Graph Representation

What is Log(Graph)?

A Near-Optimal Graph Representation

An Extensible Graph Representation

WNGPEL	Wamm Erizürich
What is the lowest storage we (hope to) use to store a grap	! $s=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \begin{aligned} & x_{1} \rightarrow 0 . \ldots 1 \\ & x_{2} \rightarrow 0 . \ldots 10 \\ & x_{3} \rightarrow 0 \ldots 11\end{aligned}$

What is Log(Graph)?

\section*{8

-58
-8
-88
.8
.8
 A High-Performance Graph Representation

A Near-Optimal Graph Representation

An Extensible Graph Representation

What is Log(Graph)?

A High-Performance Graph Representation

A Condensed Graph Representation

An Extensible Graph Representation

What is Log(Graph)?

A High-Performance Graph Representation

A Condensed Graph Representation

http://spcl.inf.ethz.ch/
Research/
Performance/
LogGraph

An Extensible Graph Representation

What is Log(Graph)?

Thank you for your attention

http://spcl.inf.ethz.ch/
Research/
Performance/
LogGraph

A Condensed Graph Representation

A High-Performance Graph Representation

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }
(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Symbols
 \widehat{W} : max edge weight,
 n : \#vertices,
 m : \#edges,
 d_{v} : degree of vertex v,
 N_{v} : neighbors (adj. array) of vertex v,
 $\widehat{N_{v}}$: maximum among N_{v}

캐zürich
(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Lower bounds (global)

Symbols
 \widehat{W} : max edge weight,
 n : \#vertices,
 m : \#edges,
 d_{v} : degree of vertex v,
 N_{v} : neighbors (adj. array) of vertex v,
 $\widehat{N_{v}}$: maximum among N_{v}

캐zürich

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Lower bounds (global)

$\lceil\log n\rceil$

Symbols
 \widehat{W} : max edge weight,
 n : \#vertices,
 m : \#edges,
 d_{v} : degree of vertex v,
 N_{v} : neighbors (adj. array) of vertex v,
 $\widehat{N_{v}}$: maximum among N_{v}

דㅐzürich
(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Lower bounds (global)
$\lceil\log n\rceil\lceil\log \widehat{W}\rceil$

Symbols
 \widehat{W} : max edge weight,
 n : \#vertices,
 m : \#edges,
 d_{v} : degree of vertex v,
 N_{v} : neighbors (adj. array) of vertex v,
 $\widehat{N_{v}}$: maximum among N_{v}

캐zürich

(1) Log $\binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Lower bounds (global)
$\lceil\log n\rceil\lceil\log \widehat{W}\rceil$

This is it?
Not really (;)

Symbols

\widehat{W} : max edge weight,
n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of
 vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Lower bounds (global)

$\lceil\log n\rceil\lceil\log \widehat{W}\rceil$

This is it?
Not really ()

Symbols

$\widehat{W}:$ max edge weight,
n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Lower bounds (global)

$\lceil\log n\rceil\lceil\log \widehat{W}\rceil$

This is it?
Not really ()

Symbols

\widehat{W} : max edge weight,
n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

Assume:

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Lower bounds (global)

$\lceil\log n\rceil\lceil\log \widehat{W}\rceil$

This is it?
Not really ()

Symbols

\widehat{W} : max edge weight,
n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

Assume:

- a graph, e.g., $V=\left\{1, \ldots, 2^{22}\right\}$

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Lower bounds (global)

$\lceil\log n\rceil\lceil\log \widehat{W}\rceil$

This is it?
Not really ©

Symbols

$\widehat{W}:$ max edge weight,
n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

캐zürich

Lower bounds (local)

Assume:

- a graph, e.g., $V=\left\{1, \ldots, 2^{22}\right\}$
- A vertex v with few neighbors: $d_{v} \ll n$

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Lower bounds (global)

$\lceil\log n\rceil\lceil\log \widehat{W}\rceil$

Symbols

\widehat{W} : max edge weight,
n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

Assume:

- a graph, e.g., $V=\left\{1, \ldots, 2^{22}\right\}$
- A vertex v with few neighbors: $d_{v} \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

Lower bounds (global)

$\lceil\log n\rceil\lceil\log \widehat{W}\rceil$

Symbols

\widehat{W} : max edge weight,
n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

캐zürich

Lower bounds (local)

Assume:

- a graph, e.g., $V=\left\{1, \ldots, 2^{22}\right\}$
- A vertex v with few neighbors: $d_{v} \ll n$
$-\ldots$ all these neighbors have small labels: $\widehat{N_{v}} \ll n$

Lower bounds (global)

$\lceil\log n\rceil\lceil\log \widehat{W}\rceil$

Symbols

\widehat{W} : max edge weight,
n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Not really (:)

ЕІІzürich

Lower bounds (local)

Assume:

$$
\left\lceil\log 2^{22}\right\rceil=22
$$

- a graph, e.g., $V=\left\{1, \ldots, 2^{22}\right\}$
- A vertex v with few neighbors: $d_{v} \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

1) $\log \left({ }^{\text {Vertex }}\right), \log ($ Edge labels $), \log ($ weights $)$

Lower bounds (global)
$\lceil\log n\rceil\lceil\log \widehat{W}\rceil$

This is it?
Not really ()

Symbols

\widehat{W} : max edge weight,
n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

Assume:
$\left\lceil\log 2^{22}\right\rceil=22$

- a graph, e.g., $V=\left\{1, \ldots, 2^{22}\right\}$
- A vertex v with few neighbors: $d_{v} \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

1) $\log \left({ }^{\text {Vertex }}\right), \log ($ Edge labels $), \log ($ weights $)$

Lower bounds (global)
$\lceil\log n\rceil\lceil\log \widehat{W}\rceil$

This is it?
Not really ()

Symbols

\widehat{W} : max edge weight,
n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

Assume:
$\left\lceil\log 2^{22}\right\rceil=22$

- a graph, e.g., $V=\left\{1, \ldots, 2^{22}\right\}$
- A vertex v with few neighbors: $d_{v} \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

19 zeros!

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

Lower bounds (global)

$\lceil\log n\rceil\lceil\log \widehat{W}\rceil$

Symbols

\widehat{W} : max edge weight,
n : \#vertices,
m : \#edges,
d_{v} : degree of vertex v,
N_{v} : neighbors (adj. array) of
 vertex v,
$\widehat{N_{v}}$: maximum among N_{v}

Lower bounds (local)

Assume:

19 zeros!
Thus, use the local bound $\left\lceil\log \widehat{N_{v}}\right\rceil$
(1) Log $\binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

(1) Log $\binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

This is it? Still not really

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

This is it? Still not really

Lower bounds (local):

 distributed memories
(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

This is it? Still not really

n	$:$ \#ver
m	$: \#$ ed
H	$:$ num
H_{i}	$:$ num
	elem
N	$:$ num
XE/XT	
computer	

Lower bounds (local): distributed memories

A Cray XE/XT
supercomputer

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

This is it? Still not really

n	: \#vertices, Symbols
m	: \#edges,
H	: number of compute nodes
H_{i}	: number of machine
	elements at level i,

Lower bounds (local): distributed memories

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

This is it? Still not really

n	$:$ \#vertices, Symbols
m	$:$ \#edges,
H	: number of compute nodes
H_{i}	: number of machine
	elements at level i,

Lower bounds (local): distributed memories

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

This is it? Still not really

n	: \#vertices, Symbols
m	: \#edges,
H	: number of compute nodes
H_{i}	: number of machine
	elements at level i,

Lower bounds (local): distributed memories

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

This is it? Still not really

n	: \#vertices, Symbols
m	: \#edges,
H	: number of compute nodes
H_{i}	: number of machine
	elements at level i,

N : number of machine levels

Lower bounds (local): distributed memories

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

This is it? Still not really

n	: \#vertices, Symbols
m	: \#edges,
H	: number of compute nodes
H_{i}	: number of machine
	elements at level i,

N : number of machine levels

Lower bounds (local): distributed memories

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

This is it? Still not really

n	$:$ \#vertices, Symbols
m	$:$ \#edges,
H	: number of compute nodes
H_{i}	: number of machine
	elements at level i,

Lower bounds (local): distributed memories

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

This is it? Still not really

n	$:$ \#vertices, Symbols
m	$:$ \#edges,
H	: number of compute nodes
H_{i}	: number of machine
	elements at level i,

Lower bounds (local): distributed memories

ज्İzürich

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

This is it? Still not really

n	$:$ \#vertices, Symbols
m	$:$ \#edges,
H	: number of compute nodes
H_{i}	: number of machine
	elements at level i,

N : number of machine levels

Lower bounds (local): distributed memories

The number of vertices that can be stored in the memory of one node:

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

This is it? Still not really

n	$:$ \#vertices, Symbols
m	$:$ \#edges,
H	: number of compute nodes
H_{i}	: number of machine
	elements at level i,

Lower bounds (local): distributed memories

The number of vertices that can be stored in the memory of one node: \bar{H}

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

This is it? Still not really

n	$:$ \#vertices, Symbols
m	$:$ \#edges,
H	: number of compute nodes
H_{i}	: number of machine
	elements at level i,

Lower bounds (local): distributed memories

The number of vertices that can be stored in the memory of one node: \bar{H}

The „intra-node" vertex label thus takes [bits]: $\left\lceil\log \frac{n}{H}\right\rceil$

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

This is it? Still not really

n	$:$ \#vertices, Symbols
m	$:$ \#edges,
H	: number of compute nodes
H_{i}	: number of machine
	elements at level i,

Lower bounds (local): distributed memories

The number of vertices that can be stored in the memory of one node: \bar{H}

The „intra-node" vertex label thus takes [bits]:
$\left\lceil\log \frac{n}{H}\right\rceil$
The ,,inter-node" vertex label is unique for a whole node and it takes [bits]: $\lceil\log H\rceil$

A Cray XE/XT
supercomputer

4 cabinets:

3 chassis:

8 blades:

4 nodes:
$H=4$
32 cores:

€Нzürich

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

This is it? Still not really

n	$:$ \#vertices, Symbols
m	$:$ \#edges,
H	: number of compute nodes
H_{i}	: number of machine
	elements at level i,

N : number of machine levels

Lower bounds (local): distributed memories

The number of vertices that can be stored in the memory of one node: \bar{H}

The „intra-node" vertex label thus takes [bits]:
$\left\lceil\log \frac{n}{H}\right\rceil$
The ,,inter-node" vertex label is unique for a whole node and it takes [bits]: $\lceil\log H\rceil$

A Cray XE/XT supercomputer

4 cabinets

3 chassis:

8 blades:

4 nodes:
$H=4$
32 cores:

The total size of the adjacency arrays is thus [bits]:

$$
n\left\lceil\log \frac{n}{H}\right\rceil+H\lceil\log H\rceil
$$

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

This is it? Still not really

n : \#vertices,
Symbols
m : \#edges,
H : number of compute nodes,
H_{i} : number of machine elements at level i,
N : number of machine levels

Lower bounds (local): distributed memories

The number of vertices that can be stored in the memory of one node: \bar{H}

The „intra-node" vertex label thus takes [bits]:
$\left\lceil\log \frac{n}{H}\right\rceil$
The „inter-node" vertex label is unique for a whole node and it takes [bits]: $\lceil\log H\rceil$

A Cray XE/XT
supercomputer

4 cabinets:

3 chassis:

8 blades

4 nodes:
$H=4$
32 cores:

The total size of the adjacency arrays is thus [bits]:

$$
n\left\lceil\log \frac{n}{H}\right\rceil+H\lceil\log H\rceil
$$

We also generalize this to arbitrarily many levels
(details in the paper ©) and derive the total size:

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

This is it? Still not really

n : \#vertices,
Symbols
m : \#edges,
H : number of compute nodes,
H_{i} : number of machine elements at level i,
N : number of machine levels

Lower bounds (local): distributed memories

The number of vertices that can be stored in the memory of one node: \bar{H}

The „intra-node" vertex label thus takes [bits]:
$\left\lceil\log \frac{n}{H}\right\rceil$
The „inter-node" vertex label is unique for a whole node and it takes [bits]: $\lceil\log H\rceil$

A Cray XE/XT
supercomputer

4 cabinets:

3 chassis:

8 blades

4 nodes:
$H=4$
32 cores:

The total size of the adjacency arrays is thus [bits]:

$$
n\left\lceil\log \frac{n}{H}\right\rceil+H\lceil\log H\rceil
$$

We also generalize this to arbitrarily many levels (details in the paper ©) and derive the total size:

$$
n\left\lceil\log \frac{n}{H_{N}}\right\rceil+\sum_{j=2}^{N-1} H_{j}\left\lceil\log H_{j}\right\rceil
$$

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }

$$
E[|\mathcal{O}|]=n\left\lceil\log \left(2 p n^{2}\right)\right\rceil=n\lceil\log 2 p+2 \log n\rceil
$$

\oiint Formal analyses: more (check the paper ©)

$$
\forall_{v, u \in V}\left(u \in N_{v}\right) \Rightarrow\left[\mathcal{N}(u) \leq \widehat{N}_{v}\right]
$$

$$
\begin{array}{rr}
|\mathscr{A}|=\sum_{v \in V}\left(d_{v}\left\lceil\log \widehat{N}_{v}\right\rceil+\left\lceil\log \log \widehat{N}_{v}\right\rceil\right) & |\mathscr{A}|=\sum_{v \in V}\left(d_{v}\left\lceil\log \widehat{N}_{v}\right\rceil+\left\lceil\log \log \widehat{N}_{v}\right\rceil\right) \\
|\mathcal{A}|=n\left\lceil\log \frac{n}{\mathcal{H}}\right\rceil+\mathcal{H}\lceil\log \mathcal{H}\rceil & |\mathcal{A}|=2 m(\lceil\log n\rceil+\lceil\log \widehat{\mathcal{W}}\rceil) \\
|\mathcal{A}|=\sum_{v \in V}\left(d_{v}\left(\left\lceil\log \widehat{N}_{v}\right\rceil+\lceil\log \widehat{\mathcal{W}}\rceil\right)+\left\lceil\log \log \widehat{N}_{v}\right\rceil+\lceil\log \log \widehat{\mathcal{W}}\rceil\right)
\end{array}
$$

$$
E[|\mathcal{A}|] \approx \frac{\alpha}{2-\beta}\left(\left(\frac{\alpha \eta \log n}{\beta-1}\right)^{\frac{2-\beta}{\beta-1}-1}\right)(\lceil\log n\rceil+\lceil\log \widehat{\mathcal{W}}\rceil) \quad E[|\mathcal{A}|]=(\lceil\log n\rceil+\lceil\log \widehat{\mathcal{W}}\rceil) p n^{2}
$$

(1) $\log \binom{$ Vertex $)}{$ labels }, $\log \binom{($ Edge }{ weights }

$$
E[|\mathcal{O}|]=n\left\lceil\log \left(2 p n^{2}\right)\right\rceil=n\lceil\log 2 p+2 \log n\rceil
$$

Æ Formal analyses: more (check the paper ©)

$$
\begin{aligned}
& \forall_{v, u \in V}\left(u \in N_{v}\right) \Rightarrow\left[\mathcal{N}(u) \leq \widehat{N}_{v}\right] \\
& I=\sum_{v \in V}\left(d_{v}\left\lceil\log \widehat{N}_{v}\right\rceil+\left\lceil\log \log \widehat{N}_{v}\right\rceil\right) \\
& \quad|\mathcal{A}|=2 m(\lceil\log n\rceil+\lceil\log \widehat{\mathcal{N}}\rceil) \\
& \left.\left.\widehat{N}_{v}\right\rceil+\lceil\log \widehat{\mathcal{W}}\rceil\right)+\left\lceil\log \log \widehat{N}_{v}\right\rceil+\lceil\log \log \widehat{\mathcal{W} \mid}) \\
& E[|\mathcal{A}|]=(\lceil\log n\rceil+\lceil\log \widehat{\mathcal{W}}\rceil) p n^{2}
\end{aligned}
$$

/* Input: graph G, Output: a new relabeling $\mathcal{N}(v), \forall v \in V$. */
void relabel (G) \{
$I D[0 . . n-1]=[0 . . n-1] ; / / A n$ array with vertex IDs.
$D[0 . . n-1]=\left[d_{0} . . d_{n-1}\right] ; / / A n$ array with degrees of vertices
//An auxiliary array for determining if a vertex was relabeled:
visit $[0 . . n-1]=[$ false..false $]$;
$n l=1 ; / / A n$ auxiliary variable ${ }^{\prime}$ new label'
sort(ID); sort (D);
for (int $i=1 ; i<n ;++i) / / F o r ~ e a c h ~ v e r t e x ~$
for (int $j=0 ; j<D[i] ;++j$) \{ //For each neighbor
int $i d=N_{j, I D[i]} ; / / N_{j, I D[i]}$ is j th neighbor of vertex with ID $I D[i]$
if(visit $[$ id $]==$ false) \{
$\mathcal{N}(i d)=n l++$;
visit $[$ id $]=$ true;
\}\}
for (int $i=1 ; i<n ;++i$)
if(visit $[i]==$ false)
$\mathcal{N}(i d)=n l++$;
\}

(2) Log (Offset structure)

...Encode the resulting bit vectors as succinct bit vectors

जНzürich

(2) Log (offset structure)

...Encode the resulting bit vectors as succinct bit vectors

\oiint Formal analyses

(2) Log (offset structure)

...Encode the resulting bit vectors as succinct bit vectors

\oiint Formal analyses

\mathcal{O}	ID	Asymptotic size [bits]	Exact size [bits]	select or $\mathcal{O}[v]$
Pointer array	ptr W	$O(W n)$	$W(n+1)$	$O(1)$
Plain [44]	bvPL	$O\left(\frac{W m}{B}\right)$	$\frac{2 W m}{B}$	$O(1)$
Interleaved [44]	bvIL	$O\left(\frac{W m}{B}+\frac{W m}{L}\right)$	$2 W m\left(\frac{1}{B}+\frac{64}{L}\right)$	$O\left(\log \frac{W m}{B}\right)$
Entropy based [31, 78]	bvEN	$O\left(\frac{W m}{B} \log \frac{W m}{B}\right)$	$\approx \log \left(\frac{2 W m}{B}\right)$	$O\left(\log \frac{W m}{B}\right)$
Sparse [76]	bvSD	$O\left(n+n \log \frac{W m}{B n}\right)$	$\approx n\left(2+\log \frac{2 W m}{B n}\right)$	$O(1)$
B-tree based [1]	bvBT	$O\left(\frac{W m}{B}\right)$	$\approx 1.1 \cdot \frac{2 W m}{B}$	$O(\log n)$
Gap-compressed [1]	bvGC	$O\left(\frac{W m}{B} \log \frac{W m}{B n}\right)$	$\approx 1.3 \cdot \frac{2 W m}{B} \log \frac{2 W m}{B n}$	$O(\log n)$

(2) Log (offset structure)

...Encode the resulting bit vectors as succinct bit vectors

\oiint Formal analyses
Check the paper for details \odot

\mathcal{O}	ID	Asymptotic size [bits]	Exact size [bits]	select or $\mathcal{O}[v]$
Pointer array	ptr W	$O(W n)$	$W(n+1)$	$O(1)$
Plain [44]	bvPL	$O\left(\frac{W m}{B}\right)$	$\frac{2 W m}{B}$	$O(1)$
Interleaved [44]	bvIL	$O\left(\frac{W m}{B}+\frac{W m}{L}\right)$	$2 W m\left(\frac{1}{B}+\frac{64}{L}\right)$	$O\left(\log \frac{W m}{B}\right)$
Entropy based [31, 78]	bvEN	$O\left(\frac{W m}{B} \log \frac{W m}{B}\right)$	$\approx \log \left(\frac{2 W m}{B}\right)$	$O\left(\log \frac{W m}{B}\right)$
Sparse [76]	bvSD	$O\left(n+n \log \frac{W m}{B n}\right)$	$\approx n\left(2+\log \frac{2 W m}{B n}\right)$	$O(1)$
B-tree based [1]	bvBT	$O\left(\frac{W m}{B}\right)$	$\approx 1.1 \cdot \frac{2 W m}{B}$	$O(\log n)$
Gap-compressed [1]	bvGC	$O\left(\frac{W m}{B} \log \frac{W m}{B n}\right)$	$\approx 1.3 \cdot \frac{2 W m}{B} \log \frac{2 W m}{B n}$	$O(\log n)$

2 Log (offset structure)

...Encode the resulting bit vectors as succinct bit vectors

\oiiint Formal analyses

\mathcal{O}	ID	Asymptotic size [bits]	Exact size [bits]	select or $\mathcal{O}[v]$
Pointer array	ptr W	$O(W n)$	$W(n+1)$	$O(1)$
Plain [44]	bvPL	$O\left(\frac{W m}{B}\right)$	$\frac{2 W m}{B}$	$O(1)$
Interleaved [44]	bvIL	$O\left(\frac{W m}{B}+\frac{W m}{L}\right)$	$2 W m\left(\frac{1}{B}+\frac{64}{L}\right)$	$O\left(\log \frac{W m}{B}\right)$
Entropy based [31, 78]	bvEN	$O\left(\frac{W m}{B} \log \frac{W m}{B}\right)$	$\approx \log \left(\frac{2 W m}{B}\right)$	$O\left(\log \frac{W m}{B}\right)$
Sparse [76]	bvSD	$O\left(n+n \log \frac{W m}{B n}\right)$	$\approx n\left(2+\log \frac{2 W m}{B n}\right)$	$O(1)$
B-tree based [1]	bvBT	$O\left(\frac{W m}{B}\right)$	$\approx 1.1 \cdot \frac{2 W m}{B}$	$O(\log n)$
Gap-compressed [1]	bvGC	$O\left(\frac{W m}{B} \log \frac{W m}{B n}\right)$	$\approx 1.3 \cdot \frac{2 W m}{B} \log \frac{2 W m}{B n}$	$O(\log n)$

x. Key methods

Use the sdsl-lite sequential library of succinct bit vectors [1] and investigate if it fares well when being accessed by multiple threads

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights } Storage

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights } Storage

(1) $\log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights } Storage

(1) Log $\binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights } Storage

Log(Graph) consistently reduces storage overhead (by 20-35\%)

ヨНzürich

(1) Log $\binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }\quad Performance

SSSP

Kronecker graphs Number of vertices: 4M

Number of edges per vertex

(1) Log $\binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights } Performance

SSSP

Number of edges per vertex

Log(Graph) accelerates GAPBS
 Log(Graph)

 -

Kronecker graphs Number of vertices: 4M

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights } Performance

Number of edges per vertex

Log(Graph) accelerates GAPBS

SSSP

Kronecker graphs Number of vertices: 4M

Both storage and performance are improved simultaneously

(1) Log $\binom{$ Vertex }{ labels } , $\log \binom{$ Edge }{ weights } Performance

Betweenness Centrality

"LG": Log(Graph) Trad: Traditional (non compressed, GAPBS)
" g ": global scheme
" I ": local scheme "gap": additional gap encoding

Kronecker graphs Number of vertices: 4M

$1 \log \binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }\quad Performance

Sparse graphs

Dense graphs

"LG": Log(Graph) Trad: Traditional (non compressed, GAPBS)
" g ": global scheme " I ": local scheme "gap": additional gap encoding

Kronecker graphs Number of vertices: 4M

$1 \log \binom{$ Vertex }{ labels } , $\log \binom{$ Edge }{ weights }\quad Performance

Sparse graphs

Dense graphs

Betweenness Centrality
"LG": $\log ($ Graph $)$ Trad: Traditional (non compressed, GAPBS)
" g ": global scheme "I": local scheme "gap": additional gap encoding

Log(Graph) incurs negligible overheads

Kronecker graphs Number of vertices: 4M

(1) Log $\binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights } Performance

BFS
"LG": Log(Graph) Trad: Traditional (non compressed, GAPBS)
" g ": global scheme
"I": local scheme "gap": additional gap encoding

Kronecker graphs Number of vertices: 4M

(1) Log $\binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights }\quad Performance

BFS
"LG": Log(Graph) Trad: Traditional (non compressed, GAPBS)
" g ": global scheme "I": local scheme "gap": additional gap encoding

Kronecker graphs Number of vertices: 4M

(1) Log $\binom{$ Vertex }{ labels }, $\log \binom{$ Edge }{ weights } Performance

BFS
"LG": Log(Graph) Trad: Traditional (non compressed, GAPBS)
"g": global scheme
"l". Iocal scheme
Both storage and performance are improved simultaneously

Kronecker graphs Number of vertices: 4 M

(1) $\log \binom{$ Vertex }{ thets }, $\log \binom{$ Edge }{ wdights } labels), LOg (weights

Log(Graph) accelerates GAPBS

Performance

Dense graphs

Sparse graphs
"LG": Log(Graph) Trad: Traditional (non compressed, GAPBS)
"g": global scheme
"l". Iocal scheme
Both storage and performance are improved simultaneously

Kronecker graphs Number of vertices: 4M

(1) $\log ($ Vertex $), \log ($ Edge $)$ Communicated labels $), \log ($ weights $)$ data

Various real-world and synthetic graphs

(1) $\log ($ Vertex $) \log ($ Edge $)$ Communicated labels $) \operatorname{LOg}($ weights $)$ data

Various real-world and synthetic graphs

The amount of communicated data is
consistently reduced by ~37\%

NAREL

ЄHzürich

(3) Log $\binom{$ Adjacency }{ structure } Storage

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

(3) Log $\binom{$ Adjacency }{ structure } Storage

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

(3) $\log \binom{$ Adjacency }{ structure } Storage

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

Scheme:

Trad
DMd
DMf
\square
BRB
\square RB
\square

Lots of data ©
Various real-world graphs

Conclusions:

(3) $\log \binom{$ Adjacency }{ structure }\quad Storage

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

Scheme:

Trad
DMd
DMf
-BRB
RB
$W G$

Lots of data $;$
Conclusions:

Various real-world graphs

(3) Log $\binom{$ Adjacency }{ structure } Storage

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

Scheme:

$\substack{\text { Trad } \\ \text { DMd } \\ \text { DMI } \\ \text { DMI } \\ \text { BRB } \\ \text { BB } \\ \hline W G \\ \hline \\ \hline}$

Lots of data © Conclusions:

Various real-world graphs

BRB, RB: various tradeoffs but very expensive preprocessing (details in the paper)

3 log Adjacency structure
 Storage

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

Scheme:

$\substack{\text { Trad } \\ \text { DMd } \\ \text { DMI } \\ \text { DMI } \\ \text { BRB } \\ \text { BB } \\ \hline W G \\ \hline \\ \hline}$

Lots of data © Conclusions:

WebGraph best for web graphs ©

Various real-world graphs

DMd: much better than DMf, often comparable to others

BRB, RB: various tradeoffs but very expensive preprocessing (details in the paper)

NAREL

(3) Log $\binom{$ Adjacency }{ structure } Performance

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
RB: Scheme targeting certain specific classes of graphs

Scheme:
Trad \square RB \square DMd
$\square \mathrm{DMf} \square \mathrm{WG}$

(3) Log $\binom{$ Adjacency }{ structure } Performance

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
RB: Scheme targeting certain specific classes of graphs

Scheme:
Trad \square RB
\square DMd
\square DM
$\square W G$

(3) Log $\binom{$ Adjacency }{ structure } Performance

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
RB: Scheme targeting certain specific classes of graphs

Scheme:
Trad \square RB
\square DMd
\square DM
$\square W G$

Log(Graph) full design...

Log(Graph) full design...

Log(Graph) full design...

Log(Graph) full design...

Log(Graph) full design...

Log(Graph) full design...

Log(Graph) full design...

Log(Graph) full design...

Understand storage lower bounds and the theory

Log(Graph) full design...

Understand storage lower bounds and the theory

Log(Graph) full design...

Understand storage lower bounds and the theory

Ensure high-performance implementation

Use Integer Linear Programming (ILP) for more storage reductions

\mathcal{X} Key method (vertex labels)

※ Key method (vertex labels)

Bit packing: use $\lceil\log n\rceil$ bits for one vertex label

※ Key method (vertex labels)

Bit packing: use $\lceil\log n\rceil$ bits for one vertex label

Modern bitwise operations

* Key method (vertex labels)

Bit packing: use $\lceil\log n\rceil$ bits for one vertex label

Modern bitwise operations

※ Key method (offsets)

* Key method (vertex labels)

Bit packing: use $\lceil\log n\rceil$ bits for one vertex label

Modern bitwise operations

※X Key method (offsets)

Succinct bit vectors:

understand state-of-the-art
designs and use
the best ones
in a given context

\mathcal{O}	ID	Asymptotic size [bits]	Exact size [bits]	select or $\mathcal{O}[v]$
Pointer array	ptr W	$O(W n)$	$W(n+1)$	$O(1)$
Plain [44]	bvPL	$O\left(\frac{W m}{B}\right)$	$\frac{2 W m}{B}$	$O(1)$
Interleaved [44]	bvIL	$O\left(\frac{W m}{B}+\frac{W m}{L}\right)$	$2 W m\left(\frac{1}{B}+\frac{64}{L}\right)$	$O\left(\log \frac{W m}{B}\right)$
Entropy based [31, 78]	bvEN	$O\left(\frac{W m}{B} \log \frac{W m}{B}\right)$	$\approx \log \left(\frac{2 W m}{B}\right)$	$O\left(\log \frac{W m}{B}\right)$
Sparse [76]	bvSD	$O\left(n+n \log \frac{W m}{B n}\right)$	$\approx n\left(2+\log \frac{2 W m}{B n}\right)$	$O(1)$
B-tree based [1]	bvBT	$O\left(\frac{W m}{B}\right)$	$\approx 1.1 \cdot \frac{2 W m}{B}$	$O(\log n)$
Gap-compressed [1]	bvGC	$O\left(\frac{W m}{B} \log \frac{W m}{B n}\right)$	$\approx 1.3 \cdot \frac{2 W m}{B} \log \frac{2 W m}{B n}$	$O(\log n)$

天 Key method (vertex labels)

K Key method (neighborhoods)

Bit packing: use $\lceil\log n\rceil$ bits for one vertex label

Modern bitwise operations

K× Key method (offsets)

Succinct bit vectors:

understand state-of-the-art
designs and use
the best ones
in a given context

\mathcal{O}	ID	Asymptotic size [bits]	Exact size [bits]	select or $\mathcal{O}[v]$
Pointer array	ptr W	$O(W n)$	$W(n+1)$	$O(1)$
Plain [44]	bvPL	$O\left(\frac{W m}{B}\right)$	$\frac{2 W m}{B}$	$O(1)$
Interleaved [44]	bvIL	$O\left(\frac{W m}{B}+\frac{W m}{L}\right)$	$2 W m\left(\frac{1}{B}+\frac{64}{L}\right)$	$O\left(\log \frac{W m}{B}\right)$
Entropy based [31, 78]	bvEN	$O\left(\frac{W m}{B} \log \frac{W m}{B}\right)$	$\approx \log \left(\frac{2 W m}{B}\right)$	$O\left(\log \frac{W m}{B}\right)$
Sparse [76]	bvSD	$O\left(n+n \log \frac{W m}{B n}\right)$	$\approx n\left(2+\log \frac{2 W m}{B n}\right)$	$O(1)$
B-tree based [1]	bvBT	$O\left(\frac{W m}{B}\right)$	$\approx 1.1 \cdot \frac{2 W m}{B}$	$O(\log n)$
Gap-compressed [1]	bvGC	$O\left(\frac{W m}{B} \log \frac{W m}{B n}\right)$	$\approx 1.3 \cdot \frac{2 W m}{B} \log \frac{2 W m}{B n}$	$O(\log n)$

* Key method (vertex labels)

Bit packing: use $\lceil\log n\rceil$ bits for one vertex label

Modern bitwise operations

* Key method (neighborhoods)

Recursive partitioning: use representations that assume more about graph structure to enable better bounds

K× Key method (offsets)

Succinct bit vectors:

understand state-of-the-art
designs and use
the best ones
in a given context

\mathcal{O}	ID	Asymptotic size [bits]	Exact size [bits]	select or $\mathcal{O}[v]$
Pointer array	ptrW	$O(W n)$	$W(n+1)$	$O(1)$
Plain [44]	bvPL	$O\left(\frac{W m}{B}\right)$	$\frac{2 W m}{B}$	$O(1)$
Interleaved [44]	bvIL	$O\left(\frac{W m}{B}+\frac{W m}{L}\right)$	$2 W m\left(\frac{1}{B}+\frac{64}{L}\right)$	$O\left(\log \frac{W m}{B}\right)$
Entropy based [31, 78]	bvEN	$O\left(\frac{W m}{B} \log \frac{W m}{B}\right)$	$\approx \log \left(\frac{2 W m}{B}\right)$	$O\left(\log \frac{W m}{B}\right)$
Sparse [76]	bvSD	$O\left(n+n \log \frac{W m}{B n}\right)$	$\approx n\left(2+\log \frac{2 W m}{B n}\right)$	$O(1)$
B-tree based [1]	bvBT	$O\left(\frac{W m}{B}\right)$	$\approx 1.1 \cdot \frac{2 W m}{B}$	$O(\log n)$
Gap-compressed [1]	bvGC	$O\left(\frac{W m}{B} \log \frac{W m}{B n}\right)$	$\approx 1.3 \cdot \frac{2 W m}{B} \log \frac{2 W m}{B n}$	$O(\log n)$

* Key method (vertex labels)

Bit packing: use $\lceil\log n\rceil$ bits for one vertex label

Modern bitwise operations

K Key method (neighborhoods)

Recursive partitioning: use representations that assume more about graph structure to enable better bounds

C++ templates
to reduce overheads in performance-critical kernels

K× Key method (offsets)

Succinct bit vectors:

understand state-of-the-art
designs and use
the best ones
in a given context

\mathcal{O}	ID	Asymptotic size [bits]	Exact size [bits]	select or $\mathcal{O}[v]$
Pointer array	ptrW	$O(W n)$	$W(n+1)$	$O(1)$
Plain [44]	bvPL	$O\left(\frac{W m}{B}\right)$	$\frac{2 W m}{B}$	$O(1)$
Interleaved [44]	bvIL	$O\left(\frac{W m}{B}+\frac{W m}{L}\right)$	$2 W m\left(\frac{1}{B}+\frac{64}{L}\right)$	$O\left(\log \frac{W m}{B}\right)$
Entropy based [31, 78]	bvEN	$O\left(\frac{W m}{B} \log \frac{W m}{B}\right)$	$\approx \log \left(\frac{2 W m}{B}\right)$	$O\left(\log \frac{W m}{B}\right)$
Sparse [76]	bvSD	$O\left(n+n \log \frac{W m}{B n}\right)$	$\approx n\left(2+\log \frac{2 W m}{B n}\right)$	$O(1)$
B-tree based [1]	bvBT	$O\left(\frac{W m}{B}\right)$	$\approx 1.1 \cdot \frac{2 W m}{B}$	$O(\log n)$
Gap-compressed [1]	bvGC	$O\left(\frac{W m}{B} \log \frac{W m}{B n}\right)$	$\approx 1.3 \cdot \frac{2 W m}{B} \log \frac{2 W m}{B n}$	$O(\log n)$

[^0]: Symbols
 n : \#vertices,
 m : \#edges,
 d_{v} : degree of vertex v,
 N_{v} : neighbors (adj. array) of
 vertex v,
 $\widehat{N_{v}}$: maximum among N_{v}

