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ABSTRACT
Efficient Reduce and AllReduce communication collectives are a

critical cornerstone of high-performance computing (HPC) appli-

cations. We present the first systematic investigation of Reduce

and AllReduce on the Cerebras Wafer-Scale Engine (WSE). This ar-

chitecture has been shown to achieve unprecedented performance

both for machine learning workloads and other computational prob-

lems like FFT. We introduce a performance model to estimate the

execution time of algorithms on the WSE and validate our predic-

tions experimentally for a wide range of input sizes. In addition to

existing implementations, we design and implement several new

algorithms specifically tailored to the architecture. Moreover, we

establish a lower bound for the runtime of a Reduce operation on

the WSE. Based on our model, we automatically generate code

that achieves near-optimal performance across the whole range

of input sizes. Experiments demonstrate that our new Reduce and

AllReduce algorithms outperform the current vendor solution by

up to 3.27×. Additionally, our model predicts performance with less

than 4% error. The proposed communication collectives increase the

range of HPC applications that can benefit from the high through-

put of the WSE. Our model-driven methodology demonstrates a

disciplined approach that can lead the way to further algorithmic

advancements on wafer-scale architectures.

1 INTRODUCTION
1.1 Motivation
Communication collectives are essential in numerous distributed

applications [3, 37]. Consequently, their efficient implementation is

crucial to achieve high communication performance. Among these,

Reduce and AllReduce are the collectives most frequently utilized

in typical HPC workloads [10, 33]. Specifically, these operations are

critical in GEMV and GEMM kernels for fields like deep learning [5,

9, 38, 50, 54], bioinformatics [41, 49], and physics simulations [6, 36].

These heterogeneous applications demand a variety of input shapes.

The Cerebras WSE represents a groundbreaking architecture

designed specifically to expedite machine learning workloads. Tra-

ditional architectures such as CPUs and GPUs use shared DRAM

memories, which can lead to long access latencies. Instead, theWSE
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features hundreds of thousands of processing elements (PE), each

equipped with a local fast static random-access memory (SRAM),

thereby enabling single-cycle access latencies. These PEs communi-

cate via an on-wafer 2D mesh network that supports multicasting,

which influences communication efficiency and patterns, setting it

apart from contemporary distributed systems that typically utilize

low diameter networks [4, 13, 29, 30]. The architecture of the WSE

delivers high throughput for machine learning training [14, 35, 50]

and various other HPC applications [36, 39, 52, 59]. However, max-

imizing performance on this architecture necessitates tailoring

communication patterns to its unique characteristics. This need

motivates our investigation of Reduce and AllReduce on the WSE.

1.2 Limitations of state-of-the-art
Current wafer-scale Reduce and AllReduce implementations are

primarily optimized for extreme vector sizes. This means they are

suboptimal for the intermediate and variable vector lengths typ-

ical in HPC applications. Furthermore, certain implementations

like ring, though efficient in conventional systems, underperform

on specialized hardware like the WSE. Existing approaches for

wafer-scale algorithms employ ad-hoc theoretical modeling on a

per-problem basis [39] or depend solely on experimental valida-

tion [25, 36, 44, 52], leading to time-consuming trial-and-error or

suboptimal performance. The results from traditional distributed

memory computing models like the 𝛼 − 𝛽 model [7] do not consider

features such as pipelining and multicasting, which are essential in

the wafer-scale setting. Therein we identify the gap for a model-

driven approach to optimizing communication collectives.

1.3 Key Insights and Contributions
This work presents a robust methodology for designing, analyzing,

and implementing algorithms tailored to architectures similar to

the WSE. The specific contributions are:

(1) Model.We propose a novel model-driven approach. Our per-

formance model accurately predicts execution times on the

Cerebras WSE, providing a significant improvement over trial-

and-error and ad-hoc methods. Our experiments confirm the

model’s accuracy in predicting execution times, accurately char-

acterizing the relative strengths of each approach.

(2) Algorithms. We illustrate the effective use of this model by

characterizing the performance trade-offs of Broadcast, Reduce,

and AllReduce algorithms. For Broadcast, our analysis shows
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(d) Two-Phase†
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(e) Auto-Gen†

Figure 1: Optimality ratios of 1D Reduce algorithms, where 1.0 is optimal. (†) our contribution.

that multicast support means that a simple flooding approach is

optimal. We introduce a new (All)Reduce algorithm tailored to

the architecture, whichwe call Two-Phase. Previous Reduce and

AllReduce excel only within narrow ranges of input size. Two-

Phase is the only approach that performs well for a wide range

of vector lengths. In particular, on 512 × 512 PEs, Two-Phase is

up to 3.32× and 2.56× faster than the current vendor solution

for Reduce and AllReduce, respectively. We adapt classic ring

AllReduce algorithm and asses its performance on the Cere-

bras WSE. Our model-driven approach enables a comparison

of ring’s performance against a direct Reduce-then-Broadcast

method. Interestingly, the direct approach frequently outper-

forms the classical algorithm not designed with the Cerebras

WSE’s particular hardware features, such as multicast, in mind.

(3) AutomaticallyGeneratedCollectives Furthermore, we demon-

strate how our model-driven approach facilitates the automatic

generation of code for Reduce, significantly enhancing effi-

ciency. This novel automatically-generated (Auto-Gen) algo-

rithm not only streamlines the optimization of complex kernels

but also presents a less time-consuming alternative to man-

ual tuning. Our experiments show that the Auto-Gen Reduce

consistently matches or exceeds the performance of the best

manual implementations across various input sizes.

(4) Lower Bound Additionally, our model is instrumental in es-

tablishing robust lower bounds for the runtime of Reduce. As

summarized in Figure 1, we prove that for the 1D case, our

Auto-Gen Reduce is at most 1.4× away from optimal across

all input sizes. Two-Phase gives the best optimality ratio of

the manual algorithms, being at most 2.4× away from optimal.

In contrast, previous algorithms are all up to 5.9× away from

optimal for some input size.

(5) ImplementationWe implement the proposed communication

collectives for the second generation WSE, the Cerebras CS-2.

1.4 Experimental Methodology
We perform an extensive evaluation of our collectives on the CS-2

device. The benchmarks consider a row of PEs as well as a 2D grid of

PEs. High precision measurements are of crucial importance when

measuring short durations. Common problems with time measure-

ments for distributed architectures [23, 60] need to be addressed.

We propose a solution to synchronizing the clock between PEs and

establishing a common start time. Each benchmark is evaluated 5

times with negligible standard deviation (< 4%). The small number

of evaluations suffice because the CS-2 exhibits small runtime vari-

ance. Because execution of a thread cannot be preempted, the PE

programs exhibit deterministic, state-machine like behavior which

can be modeled with a cycle-accurate fabric simulator. The only no-

table deviation between the fabric simulator and the physical chip

is overheating, which can cause a PE to insert no-ops to prevent

wafer cracking. The source code is available on GitHub
1
.

1.5 Limitations of the Proposed Approach
Although we demonstrate that our lower bounds are near-optimal

in a 1D row or column of PEs, for a 2D grid of PEs the optimality gap

remains large. This is in part due to the lack of a strong lower bound

for the 2D case. In turn, our model suggests further improvements

are possible for the general 2D case.

2 BACKGROUND
2.1 Communication Collectives
TheMessage Passing Interface (MPI) standard [19, 37] defines seman-

tics for collective operations in systems with distributed memory.

MPI collectives have been extensively studied and optimized for

a variety of network topologies [7, 22, 27, 28, 46, 51, 53]. In a Re-

duce, initially each PE holds a vector of equal length. The goal is

to compute the sum of the vector and store it at a designated root

PE. We consider the sum over the vector, although any associative

operation may be used interchangeably. In an AllReduce, the result

must be stored in every PE. Many patterns and techniques have

been developed for Reduce and AllReduce [26, 40, 42, 43] offering

different tradeoffs.

The ring algorithm is a bandwidth optimal AllReduce [1, 21], but

it is mostly used to reduce large vectors or when running on a few

nodes, since it performs a number of steps equal to the number of

nodes minus one. Another notable example is the butterfly pattern

[42], which relies on recursive halving and doubling to reduce the

number of steps compared to the ring algorithm.

Although some algorithms have been optimized for torus [11,

26, 47] or mesh networks [32], the specific features of Cerebras CS-

2, like hardware support for multicast and pipelining require the

design of novel algorithms that can fully exploit those capabilities.

Some AllReduce implementations exploit the network hardware

support for multicast [31] or in-network compute capabilities to

perform vector aggregation in the network switches [12, 18].

2.2 Wafer-Scale Engine
The Cerebras CS-2 [24, 25, 34] consists of around 750,000 processing

elements (PEs) structured in a 2D grid. See Figure 2 for an overview

1
https://github.com/spcl/spatial-collectives
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Figure 2: PE 0 sends a wavelet to the neighbouring PE 1 on the
blue color. The router connected to PE 1 forwards the wavelet
to the right and sends it up the ramp towards PE 1. This
demonstrates themulticasting capability of the network.

of the hardware architecture. Each PE consists of a router connected

to a processor with 48KB of dedicated SRAMmemory. In each cycle,

a PE can read up to 128 bits from memory and write up to 64 bits.

It can also execute up to 8 16-bit operations per cycle. The router

manages 5 bidirectional links: 4 between the neighboring routers

and a ramp link connected to the processor. A link has a bandwidth

of 32 bits/cycle in each direction. Data is sent in 32-bit packets called

wavelets. A wavelet can travel any link in a single cycle, but it takes

𝑇𝑅 cycles betweenwhen it enters the router andwhen an instruction

can be issued by the processor using that wavelet and similarly

between after a send instruction completes and when the resulting

wavelet enters the router. 𝑇𝑅 is a small value, which Tramm et

al. [52] say to be around 7. We found it to equal 2 by inspection of

the cycle-accurate simulator, which models ideal conditions.

Routing. Each wavelet is assigned a color, which determines its

routing. When a router receives a wavelet, it selects in which di-

rections to forward the wavelet based on the current configuration

for the color the wavelet arrived from. Routers support multicast,

which allows them to duplicate a wavelet and send it in multiple

directions at no additional cost. If a wavelet arrives at a router from

some direction from which the router is currently not accepting

wavelets, it stalls until the routing configuration changes accord-

ingly. If two wavelets arrive at a router on the same color in the

same cycle, the behaviour is undefined. For each color, a router

stores up to four routing configurations. Initially, one of those is

active. Control wavelets allow cycling through those configura-

tions. For more flexibility, a teardown wavelet on a color allows

re-configuration from scratch. A normal wavelet can also advance

the routing configuration to receive from a different direction. See

Figure 3 for an example on how routing configuration changes in

order to receive vectors from two different PEs.

Dataflow. The Cerebras chip has a dataflow architecture [55].

Tasks can be activated by wavelets of a specific color that arrive at a

PE. This means that the order of tasks may differ depending on the

order in which the wavelets arrive. Tasks may also be activated at

compile time or by other tasks. Most of the operations are described

using Data Structure Descriptors (DSDs), a way to describe certain

vectorized operations. DSDs represent some part of memory or a

sequence of incoming or outgoing wavelets. By using DSDs, we can

simplify repeated operations down to a single hardware instruction.

0 1 2 3

𝑡

0 1 2 3

𝑡 ′
0 1 2 3

𝑡 ′ + 1

Figure 3: Synchronization on theWSE occurs through routing
configurations. In cycle 𝑡 , router 1 is configured to forward
the blue wavelets it gets from PE 1 towards PE 0. As a result,
the red wavelets from PE 3 stall at router 2. At cycle 𝑡 ′, the
last element of the vector from PE 1 arrives at the router 1.
This triggers a change in routing configuration, such that in
cycle 𝑡 ′ + 1 the red wavelets are propagated towards PE 0.

Table 1: Summary of our Performance Model.

Symbol Description

𝐸 Energy is the total number of hops the network

needs to route wavelets for. I.e., every wavelet 𝑚

that travels 𝐸𝑚 hops increments the energy by 𝐸𝑚 .

𝐿 Distance is the largest number of hops a wavelet

has to travel.

𝐷 Depth is the longest sequence of PEs that perform

operations that depend on each other’s output.

𝐶 Contention is the largest number of wavelets a PE

sends/receives.

𝑁 Number of links being used overall

𝑇𝑅 Ramp latency from a processor to its router

𝑃 Number of PEs

𝐵 Vector length in wavelets

3 PERFORMANCE MODEL
To effectively design algorithms, it is paramount to be guided by a

performancemodel. An ideal performancemodel should be accurate

and straightforward to evaluate, facilitating quick design iterations

without extensive implementation and measurement.

We base our performance model on the spatial computer model,

which provides a general framework for assessing algorithm per-

formance in a disaggregated on-chip setting [17]. For cycle-level

predictions, we parameterize themodel to the properties of theWSE.

The model isolates the individual contributions to the application

performance. Then, the individual contributions are aggregated

into a runtime estimate. This approach allows us to identify and

name the bottlenecks of a given algorithm and simplifies the analy-

sis. Table 1 explains the the individual cost terms that contribute to

the model, namely depth, distance, contention, and energy.

Intuitively, a high depth means that the computation is highly

sequential. A large distance means a higher communication latency.

A high contention means that wavelets might stall at the contended

PE. Lastly, a high energy indicates that the network might become

congested. By reducing all these contributing costs, we can obtain

a high-performance algorithm.

We synthesize the spatial cost metrics into an estimate for the

cycle count for the WSE. Receiving and sending a wavelet costs 2𝑇𝑅
cycles to go down and up the ramp. Additionally, it costs 1 cycle to

3
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store the received element. Hence, the number of cycles increases

by (2𝑇𝑅 + 1) times the depth 𝐷 . Note that on the WSE-2,𝑇𝑅 is about

2 cycles on average. Moreover, a wavelet needs at least 𝐿 cycles

to travel the distance 𝐿. Next, observe that with a bandwidth of

1 element per link per cycle, using 𝑁 links it takes at least 𝐸/𝑁
cycles to route a communication pattern with energy 𝐸. Finally,

when a PE experiences contention 𝐶 , it takes at least 𝐶 cycles to

receive those elements. We observe that when PEs experience high

contention relative to the congestion in the network, the system

approaches the behavior of a pipeline, where in each of the𝐶 cycles

one element arrives at each PE. In this case, the congestion and

latency in the network becomes negligible, as the system will stall

at the contended PE.

Synthesizing these observations, we propose the following esti-

mate 𝑇 for the number of cycles on a grid using 𝑁 links:

𝑇 = max

(
𝐶,

𝐸

𝑁
+ 𝐿

)
+ (2𝑇𝑅 + 1)𝐷 . (1)

Note that the number of links being used should be determined

based on the algorithm at hand. For example, if only the links in

one direction are used, those should be used for estimating the

contribution of energy to the number of cycles.

Equippedwith a performancemodel, we now dive into the design

and analysis communication collectives. We begin with the 1D case

where we are operating on a part of a row or column of the device.

This case is important in its own right for applications such as

GEMV [50]. In Section 7, we consider the general 2D case.

4 1D BROADCAST
A broadcast is a simple, yet ubiquitous communication collective

which can be used to build an AllReduce from a Reduce. A crucial

feature of the WSE is the multicast support. It greatly simplifies

operations where all PEs end up with the same data. We show with

our model that this allows us to perform a broadcast with the same

runtime as sending a message.

4.1 Message
The simplest communication primitive is sending a vector of length

𝐵 to some PE. Consider a setting where we are sending a vector

from the rightmost to the leftmost PE in the row.

The depth when sending a message is 1, the distance is 𝑃 − 1,

the energy 𝐵(𝑃 − 1), and the contention is 𝐵. The number of links

is 𝑃 − 1. Hence, we conclude:

𝑇Message = 𝐵 + 𝑃 + 2𝑇𝑅

Note that this cost is optimal for sending such a message as there

is no benefit of using the links that point towards the sender, there

is no benefit in using other PEs, and so there is a single path.

4.2 Flooding Broadcast
We consider a broadcast where the root is the rightmost PE. It

is implemented by sending a message from the rightmost to the

leftmost PE. Each router is configured such that it duplicates the

message and sends it to the corresponding processor as well as in

the direction of the leftmost PE. See Figure 4 for an illustration. We

model the runtime as:

0 1 2 3

𝑡

ab

c

0 1 2 3

𝑡 + 1

abc

d a

0 1 2 3

𝑡 + 2

abcd

e ab

Figure 4: Broadcast for 3 consecutive cycles. This example
showcases both pipelining and multicasting.

Lemma 4.1. 𝑇Bcast = 𝐵 + 𝑃 + 2𝑇𝑅 = 𝑇Message

Proof. The depth of the broadcast is 1, the distance is 𝑃 − 1, the

energy 𝐵(𝑃 − 1), and the contention is 𝐵. Since the messages are

sent only towards the root, the number of links is 𝑃 − 1. □

Because broadcasting sends the message to each PE, the optimal-

ity of flooding follows from the lower bound on messaging.

5 1D REDUCE
Guided by our performance model, we analyze the tradeoffs of

different Reduce patterns. In this section, we will focus on reduction

to the leftmost PE in a single row of PEs. We show how to generalize

these ideas to the full 2D grid in Section 7. We first discuss two

patterns which have already been introduced in previous works.

We then introduce two of our own patterns.

5.1 Star Reduce
If we minimize the depth, we get the following algorithm: every PE

sends its vector directly to the root. See Figure 5a for an illustration.

This pattern has been used as part of a stencil computation algo-

rithm for the CS-1 [44]. We can model its performance as follows:

Lemma 5.1. 𝑇Star ≤ max

(
𝐵(𝑃 − 1), 𝑃

2
𝐵 + 𝑃 − 1

)
+ 2𝑇𝑅 + 1

Proof. The depth is 1, because messages go from each PE to the

root directly. The distance is 𝑃 − 1, because the message from PE 𝑃

to PE 1 needs 𝑃 − 1 hops. Each PE sends 𝐵 messages to PE 1. Each

message from PE 𝑖 will need 𝑖 − 1 hops, which leads to 𝐵
𝑃 (𝑃−1)

2

energy. The contention is 𝐵(𝑃 − 1) at PE 1. □

We can actually find here a better performance prediction than

our model would suggest. For the case 𝐵 = 1, the direct upper

bound predicts that the energy plus distance term would dominate.

However, a closer look reveals that actually there is no congestion

in the network in this case. Instead, the communication forms a

perfect pipeline. Hence, the runtime is still 𝑃 − 1, rather than
3𝑃
2
− 1.

We conclude that

𝑇Star = 𝐵(𝑃 − 1) + 2𝑇𝑅 + 1 .

From the model, we expect this pattern to perform well when

reducing a scalar, i.e., 𝐵 = 1. In this case, the runtime approaches

the distance lower bound 𝑃 − 1.

5.2 Chain Reduce
A lot of distributed applications require reduction of longer vectors,

where Star-Reduce would be very inefficient. We could use the

chain pattern for that, which is currently implemented as part of

the existing collectives library [58] and used in Cerebras’ matrix

multiplication algorithm [50]. Every PE sends its vector to its left

4
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Figure 5: Routing configurations for 1D Reduce schemes.
Each row shows a configuration. When a PE has sent all its
data, it switches to the next configuration. Observe that every
path is set up to process a vector of elements in a pipeline.
However, if a router is not ready yet to forward data because
its PE is still in a previous configuration, this will stall the
preceding PE. In this way, the operation is loosely synchro-
nized between configurations.

neighbor, forming a chain as shown in Figure 5b. The operation is

pipelined, i.e., when a PE is receiving wavelets it is also sending

out the already processed ones. We will later show that this pattern

is optimal for very large vectors.

The pattern uses two colors. Every PE receives on the red color

and sends them out on the blue color. Routing decisions cannot

depend on where a wavelet came from. If we had only one color, we

would need to treat the wavelets coming from the RAMP differently

than the ones coming from the EAST (see also Figure 2).

Lemma 5.2. 𝑇Chain = 𝐵 + (2𝑇𝑅 + 2) (𝑃 − 1)

Proof. The depth is 𝑃 − 1, because PE 𝑖 can only start sending

messages after it receives them from PE 𝑖 + 1. The distance is 𝑃 − 1

as it is the number of hops from PE 𝑃 to PE 1. Each PE (𝑖 + 1) sends
𝐵 messages to PE 𝑖 . This requires 1 hop per message, which leads

to (𝑃 − 1)𝐵 energy. Every PE receives 𝐵 messages from its right

neighbouring PE, which results in 𝐵 contention. □

The Chain-Reduce shines for vector lengths 𝐵 ≫ 𝑇𝑅𝑃 , when its

runtime approaches the contention lower bound 𝐵.

5.3 Tree Reduce
The main issue with the Chain Reduce is that the runtime increases

linearly with the number of PEs. Therefore, we propose a binary tree

reduction pattern. We assume in our description that the number of

PEs is a power of two. This assumption can be easily removed. The

reduction proceeds in log 𝑃 rounds. Initially, all PEs are active. In

every round, every second active PE sends a message containing its

partial result to the previous active PE and then becomes inactive.

This way, we halve the number of active PEs in every round until

the root holds the result. See Figure 5c for an illustration.

Note that the router configuration changes during the execution,

is achieved using control wavelets. An active PE that is sending

wavelets has a router configuration to receive from the RAMP and

propagate to the WEST. Then, when it has sent everything out and

becomes inactive, it switches the configuration to receive from the

EAST and propagate to the WEST.

Lemma 5.3.

𝑇Tree = max

(
𝐵 log

2
𝑃,

𝐵 · 𝑃
2(𝑃 − 1) log2 𝑃 + 𝑃 − 1

)
+ (2𝑇𝑅 + 1) log

2
𝑃

Proof. For a Tree-Reduce on 𝑃 processors, where 𝑃 is a power

of two, the depth is log
2
𝑃 because we halve the number of active

PEs each round. The distance is 𝑃 − 1. In the 𝑖-th round, we have

𝑃
2
𝑖−1 active PEs. Half of those send 𝐵 wavelets that travel a distance

of 2
𝑖−1

. The energy round 𝑖 is therefore 𝑃𝐵
2
𝑖 2

𝑖−1 = 𝑃𝐵
2
. Because we

have a total of log
2
𝑃 rounds, the energy is

𝐵
2
𝑃 log

2
𝑃 . The root will

receive𝐵messages in each roundwhich leads to𝐵 log
2
𝑃 contention.

□

The tree pattern overcomes the large depth of the Chain Reduce.

However, it comes at the cost of a significantly increased contention.

This becomes an issue for large vector lengths.

5.4 Two Phase Reduce
We introduce an approach that combines the beneficial aspects

of the Tree and the Chain pattern, namely low depth and low

contention. The algorithm is parameterized by the group size 𝑆 and

has two phases. In the first phase, we perform Chain-Reduce in

groups of 𝑆 consecutive PEs. Only the leftmost PE in each group

participate in the second phase. In that phase, we perform Chain-

Reduce on the remaining

⌈
𝑃
𝑆

⌉
PEs. It is important that we assign

the groups from the end, i.e., starting from 𝑝𝑃−1. See Figure 5d for

an illustration of the approach. A choice of 𝑆 =
√
𝑃 reduces the

depth and energy costs. Hence, we use this choice of 𝑆 throughout.

Lemma 5.4. When 𝑃 = 𝑆2, we have:

𝑇TwoPhase ≤ max

(
2𝐵, 2𝐵 − 2

𝐵
√
𝑃
+ 𝑃

)
+ (2

√
𝑃 − 2) · (2𝑇𝑅 + 1)

Proof. The depth is 𝑆 − 1 +
⌈
𝑃
𝑆

⌉
− 1. Executing chain reduce on

𝑆 PEs has depth 𝑆 − 1. In the second phase, we have

⌈
𝑃
𝑆

⌉
PEs left,

which again requires

⌈
𝑃
𝑆

⌉
− 1 depth with chain reduce. The energy

of the first phase equals ⌈𝑃
𝑆
⌉ times that of a chain pattern on 𝑆 PEs,

that is, (𝑆 − 1)𝐵⌈𝑃
𝑆
⌉ energy. In the second phase, we have ⌈𝑃

𝑆
⌉ − 1

vectors of length 𝐵 that travel 𝑆 hops. This totals 𝑆𝐵(⌈𝑃
𝑆
⌉−1) energy.

When 𝑆 = 𝑃2, the energy of each phase simplifies to 𝑃𝐵−𝐵
√
𝑃 . The

result follows since there are at most 𝑃 links active.

□

We observe that the two phase pattern has a contention that is

only a factor 2 worse than the chain reduce, while vastly reducing

the depth from 𝑃 − 1 to 2

√
𝑃 . Hence, we expect it to perform well

for intermediate ranges of vector sizes.

5.5 Auto-Gen Reduce
Our model reveals that none of the existing algorithms provide

a consistent performance throughput the whole range of vector

lengths 𝐵 and number of PEs 𝑃 . In this section, we provide a method

that achieves good performance across the board.
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Figure 6: Reduction tree labelled in pre-order and the corre-
sponding Auto-Gen Reduce routing configuration.

This Reduce algorithm generates a different reduction tree for

a given set of input sizes and PE counts. We call this algorithm

the Auto-Gen algorithm, because it traverses an automatically gen-

erated reduction tree in pre-order. Each tree stored in pre-order

represents some reduce execution. In such an execution, each ver-

tex, representing a unique PE, receives messages from its children

in-order. During the execution, each PE can send messages only to

one other PE. Moreover, we do not allow for overlapping commu-

nication edges. This means that if PE 3 is sending messages to PE 0,

then PE 4 can send messages to neither PE 1 or PE 2. See Figure 6 for

an illustration. Note that this general approach generalizes every

algorithm we have presented so far. For example, a Star reduce is

represented by a star graph and a Chain reduce by a path. Hence, by

finding the optimal tree, we can guarantee to match or outperform

those fixed algorithms.

Let 𝐸Auto-Gen (𝑃, 𝐵, 𝐷,𝐶) be the minimum energy of Auto-Gen

reduce with 𝑃 PEs, 𝐵 vector length, 𝐷 depth and contention 𝐶 . We

can calculate it recursively as:

min

𝑖
𝐸Auto-Gen (𝑖, 𝐵, 𝐷,𝐶 − 1) + 𝐸Auto-Gen (𝑃 − 𝑖, 𝐵, 𝐷 − 1,𝐶) + 𝑖

The root PE needs to receive at least one message. Let the last

message it receives be from PE 𝑖 + 1. When it receives that message,

it needs to already have the sum of 𝑖 PEs. This needs to be done with

contention at most 𝐶 − 1, since it will receive one more message.

The message sent from PE 𝑖 + 1 needs to have the value of reduce

on 𝑃 − 𝑖 rightmost PEs. This can be done with depth at most 𝐷 − 1,

because it is followed by sending a message. We can now calculate

𝑇Auto-Gen (𝑃, 𝐵) as:

min

(𝐷,𝐶 )
max

(
𝐶,

𝐸Auto-Gen (𝑃, 𝐵, 𝐷,𝐶)
𝑃 − 1

+ 𝑃 − 1

)
+ 𝐷 (2𝑇𝑅 + 1)

We add 𝑃 − 1, because the message from the rightmost PE needs

𝑃 − 1 hops. We divide the energy by 𝑃 − 1, because we assume that

messages are sent towards the root.

To generate the code for the Auto-Gen reduce, we first compute

the best pre-order tree via backtracking. We can compute this opti-

mal tree in 𝑂 (𝑃4) by finding the lowest energy tree according to

the formula for 𝑇Auto-Gen. Based on the tree we compute the rout-

ing configuration for each PE. This includes the colors on which

the wavelets are sent and received. We need to compute whether

a PE should be sending a control wavelet in order to update the

routing configuration of the receiver. We implement Auto-Gen by

providing a python program which computes the optimal tree and

generates the code with the routing and PE code.

5.6 Lower Bound
We present a lower bound on the cost of 1D Reduce for a broad

class of algorithms in our model. The idea is to bound the energy

required for a given depth recursively. We can then find the best

algorithm by considering every possible depth and summing all

cost terms. We assume that PEs send messages in the direction of

the root. However, we allow for a PE to send one wavelet to PE 𝑖

and another to PE 𝑗 .

Let𝑇★(𝑃, 𝐵) be the minimum time it takes to Reduce a vector of

length 𝐵 between 𝑃 consecutive PEs. Let 𝐸★(𝑃, 𝐵, 𝐷) be the mini-

mum energy needed for this reduction using depth at most 𝐷 .

Lemma 5.5.

𝐸★(𝑃, 1, 𝐷) ≥ min

0<𝑖<𝑃
𝐸★(𝑖, 1, 𝐷) +𝐸★(𝑃−𝑖, 1, 𝐷−1) +min(𝑖, 𝑃−𝑖+1)

Proof. In order to decompose the energy term, we consider

a generalized problem, where the distance between the 𝑗-th and

𝑗 + 1-th PE is some integer 𝑠 𝑗 ≥ 1. Then, 𝐸★(𝑖, 1, 𝐷, 𝑆) denotes the
energy to perform an optimal reduce on 𝑖 PEs with depth at most

𝐷 where 𝑆 denote the sum of the distances 𝑠 𝑗 . Note that 𝑆 = 𝑖 − 1 if

and only if all PEs are neighbouring. Let now 𝑆 = 𝑖 − 1+𝑘 , we want
to show that 𝐸★(𝑖, 1, 𝐷, 𝑆) ≥ 𝐸★(𝑖, 1, 𝐷, 𝑖 − 1) + 𝑘 = 𝐸★(𝑖, 1, 𝐷) + 𝑘 .

To see that the first inequality holds, consider the pattern used in

𝐸★(𝑖, 1, 𝐷, 𝑆). If we made all PEs neighbouring, i.e., decreased the

total distance by 𝑘 , the energy would need to decrease by at least 𝑘 .

This is because each link in the reduce (in the direction of the root)

needs to be used at least once. By decreasing the sum of distances

by 𝑘 we are shortening the links by a total of 𝑘 . Since each of such

link was used at least once, they contribute at least 𝑘 to the energy.

The second equality holds because when all PEs are neighbouring

we are in the usual cost setting.

Now, we are ready to derive the main recursion of the lemma.

Let the last message received by the root contain a partial sum of

𝑃 − 𝑖 PEs for some 𝑖 . Since this is the last message, the root must

already have a partial sum of 𝑖 PEs. To reduce 𝑖 PEs with depth 𝐷 ,

we need at least 𝐸★(𝑖, 1, 𝐷) energy. The reduction of 𝑃 − 𝑖 PEs needs
to be done with depth at most 𝐷 −1, which needs 𝐸★(𝑃 − 𝑖, 1, 𝐷 −1)
energy. Let 𝑆3 be the energy of the last message. Then, for some

total distances 𝑆1 and 𝑆2 we have:

𝐸★(𝑃, 1, 𝐷) = 𝐸★(𝑖, 1, 𝐷, 𝑆1) + 𝐸★(𝑃 − 𝑖, 1, 𝐷 − 1, 𝑆2) + 𝑆3 .

Using our previous observation, we get

𝐸★(𝑃, 1, 𝐷) ≥ 𝐸★(𝑖, 1, 𝐷) +𝐸★(𝑃 −𝑖, 1, 𝐷−1) +𝑆1+𝑆2+𝑆3− (𝑃 −1) .

It remains to bound 𝑆1 + 𝑆2 + 𝑆3. Let 𝑥1,1 and 𝑥1,2 be the leftmost

and rightmost PEs in the first reduction, respectively. Define 𝑥2,1
and 𝑥2,2 similarly for the second reduction. Observe that:

𝑆1 + 𝑆2 + 𝑆3 = (𝑥1,2 − 1) + (𝑥2,2 − 𝑥2,1) + 𝑥2,1

We know that 𝑥1,2 ≥ 𝑖 and 𝑥2,2 ≥ 𝑃 − 𝑖 + 1. We know that either

𝑥1,2 = 𝑃 or 𝑥2,2 = 𝑃 . Hence, we conclude that

𝑆1 + 𝑆2 + 𝑆3 = 𝑃 − 1 +min(𝑖, 𝑃 − 𝑖 + 1) .

□

We can compute the energy for reducing a scalar on 𝑃 PEs with

depth at most 𝐷 in 𝑂 (𝑃2) with a dynamic programming approach.

We use this result to bound the optimal runtime 𝑇★
:

6
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𝑇★(𝑃, 𝐵) ≥ min

𝐷

𝐸★(𝑃, 𝐵, 𝐷)
𝑃 − 1

+ 𝑃 − 1 + 𝐷 (2𝑇𝑅 + 1)

≥ min

𝐷
𝐵
𝐸★(𝑃, 1, 𝐷)

𝑃 − 1

+ 𝑃 − 1 + 𝐷 (2𝑇𝑅 + 1)

The first inequality follows because we can omit contention

when calculating the lower bound. The second inequality follows

because the energy to Reduce a vector of length 𝐵 needs to be at

least 𝐵 times the energy to Reduce a scalar. Solving the dynamic

program takes 𝑂 (𝑃3) time.

5.7 Comparison
We run the predictions of the Auto-Gen reduce and compare them

against the lower bound and the fixed patterns. Figure 1 compares

each pattern against the lower bound. Star-Reduce is effective at

𝐵 = 1, Tree-Reduce is effective for slightly larger 𝐵, and Chain

Reduce excels for large 𝐵. Finally, the Two-phase pattern is effective

for intermediate vector sizes, that is when 𝑃 ≈ 𝐵. We can see that

each pattern outside of its ideal range is often at least 3x worse

than the best one. The Two-Phase pattern performs quite well

throughout the whole range, although it is up to 2.4x away from

the lower bound. Our Auto-Gen reduce strictly dominates all other

patterns and is at most 1.4x away from our lower bound.

6 1D ALLREDUCE
We now consider different AllReduce patterns and analyze them

using our performance model. We focus on AllReduce in a single

row or column, but show in Section 7 how to generalize those ideas

to the whole 2D grid.

6.1 Reduce-then-Broadcast
We first consider a Reduce-then-Broadcast implementation of AllRe-

duce. Let us assume that we use a reduction pattern Reduce. The

total predicted runtime is simply

𝑇Naive = 𝑇Reduce +𝑇Bcast .

Note that this naive implementation could be further optimized

by choosing an optimal root to reduce to. We could choose it based

on our performance model. This is done in optimized stencil imple-

mentations [25], in which they first reduce to the middle PE and

broadcast from there.

6.2 Ring AllReduce
The main issue with a Reduce-then-Broadcast approach is that the

root receives the whole vector and then sends it out, which has a

runtime of at least 2𝐵 because of contention. This is suboptimal for

larger vector lengths.

To address this problem, we consider the ring AllReduce [1,

21] pattern. Because the network is a mesh and not a torus, we

cannot have a ring in which a PE communicates with its nearest left

and right neighbours. Instead, we propose two different mappings,

which as we show result in the same predicted performance. The

simplest way to map a ring is to to have each PE receive from its left

neighbour and send to its right neighbour. Since the rightmost PE

does not have a right neighbour, it sends a message to the leftmost

PE in the row. See Figure 7a for an illustration. A problem with

0 1 2 3 4 5

(a) simple

0 1 2 3 4 5

(b) distance preserving

Figure 7: Different ring pattern implementations.

this design could be that the longest link is a bottleneck. We can

also map a ring such that a PE will be communicating with PEs at

a distance of at most two. See Figure 7b for an illustration. Notice

that in both patterns we are utilizing bidirectional links.

The ring AllReduce first performs 𝑃 − 1 rounds of reduce-scatter,

after which each PE has a
𝐵
𝑃
elements of the final vector. It then

executes 𝑃 − 1 rounds of allgather, after which each PE has the final

vector. Let us assume that 𝐵 is divisible by 𝑃 . In each round a PE

sends a vector of length
𝐵
𝑃
and receives a vector of length

𝐵
𝑃
.

Lemma 6.1.

𝑇Ring =
2(𝑃 − 1)𝐵

𝑃
+ 4𝑃 − 6 + 2(𝑃 − 1) (2𝑇𝑅 + 1)

Proof. We analyse the two mappings together. The depth is

2(𝑃 − 1), because each round depends on the previous one. In the

first 𝑃 −1 rounds a wavelet traverses the whole ring minus one link.

Since the ring maps 2(𝑃 − 1) links and we have two rounds, we get

a distance of 2 · (2𝑃 − 3). In each round of the algorithm, we have
𝐵
𝑃

wavelets travelling over each link. Since we have 2(𝑃 − 1) links and
2(𝑃 − 1) rounds, the energy is 2(𝑃 − 1) · 2(𝑃−1)𝐵

𝑃
. The contention

is
2(𝑃−1)

𝑃
. Notice that in this case, the number of links is 2(𝑃 − 1)

instead of 𝑃 − 1, because we are using bidirectional links. □

6.3 Comparison
Analytically, just like for reduce, we can determine the best choice

of algorithm for a given 𝐵 and 𝑃 . We plot the result in the heatmap

Figure 8. It shows which algorithm the model predicts to perform

best for a given combination of vector size 𝐵 and PE count 𝑃 . As we

could expect, different Reduce-then-Broadcast AllReduce patterns

perform best for the same parameters as the underlying Reduce

does. However, there is a part where the Chain+Broadcast is outper-

formed by the ring pattern. This is when the runtime is dominated

by the contention due to a large vector length.

7 2D COLLECTIVES
We discuss how to design collectives in a 2D setting. One problem

we encounter is that the CS-2 has only one port from the processor

to the router. This means we cannot e.g. send one packet on the

y-axis and another on the x-axis each cycle. We would need to

alternate between them each cycle. This means that in contrast

to other works on AllReduce [11] where usually multiple ports

per dimension are considered, we benefit less from the 2D setting.

However, we still show how certain collectives, such as broadcast

greatly benefit from this setting. In this section we assume that

dimensions of the PE grid are𝑀 × 𝑁 = 𝑃 .

7.1 2D Broadcast
Let us first analyse a broadcast where the root has position (0, 0).
A 2D broadcast can be implemented by performing 1D broadcast

7
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Figure 9: 2D Reduce patterns.

on the x-axis and multicasting to perform it simultaneously on the

y-axis. We get the following bound:

Lemma 7.1. 𝑇2D Broadcast = 𝐵 +𝑀 + 𝑁 − 2 + 2𝑇𝑅 + 1

Proof. The depth is 1. The distance is𝑀 +𝑁 − 2. The energy is

𝐵(𝑃 − 1) with 𝑃 − 1 links used. The contention is 𝐵. □

This means that if we had 𝑃 processes in a

√
𝑃 ×

√
𝑃 grid, the

broadcast would take 2

√
𝑃 + 2𝑇𝑅 − 1+𝐵. This is much more efficient

compared to the row broadcast on 𝑃 processes. Specifically, we see

that there is a lot to benefit from the 2D setting.

7.2 X-Y Reduce
The simplest approach to performing 2D reduce, would be utiliz-

ing our existing 1D implementations. We can perform reduce on

the x-axis followed by reduce on the y-axis. See Figure 9a for an

illustration. Then, the predicted runtime is going to be:

𝑇Reduce X +𝑇Reduce Y

7.3 Snake Reduce
One problem with the previous approach is that the root PE will

receive the vector at least twice, which is sub-optimal for 𝐵 ≫ 𝑃 .

We know that in the 1D setting, the chain pattern performs best in

this case. We therefore propose to map the chain implementation in

a snake-like pattern. See Figure Figure 9b for an illustration. Notice

that this way the runtime is going to be the same as 𝑇chain.

7.4 2D Allreduce
The simplest approach is executing AllReduce on the x-axis fol-

lowed by AllReduce on the y-axis. Then, the predicted runtime

is:

𝑇allreduce x +𝑇allreduce y
By performing AllReduce on the x-axis and y-axis, we are es-

sentially going to be broadcasting twice, which is very bandwidth

inefficient. Remember that we have a very efficient broadcast im-

plementation. To improve the 2D AllReduce, we could perform first

a 2D Reduce and then a 2D broadcast. The runtime is:

𝑇Allreduce = 𝑇2D Reduce +𝑇2D Broadcast

7.5 Lower Bound
We provide a simple lower bound for the general 2D Reduce. Let

𝑇★(𝑀, 𝑁 ) be the time of an optimal Reduce on an 𝑃 = 𝑀 × 𝑁 grid

of PEs.

Lemma 7.2. 𝑇★(𝑀, 𝑁 ) ≥ max

(
𝐵, 𝐵

8
+𝑀 + 𝑁 − 1

)
+ 2𝑇𝑅 + 1

Proof. The contention is at least 𝐵 because if the root receives

less than 𝐵 values there is no way to construct the result. Similarly,

the energy is at least 𝑃𝐸 because every PE has to send a value for

each of the entries in the vector. There are at most 8𝑃 bidirectional

links in a 2D grid of 𝑃 PEs. The distance is at least𝑀 + 𝑁 − 1 (from

the bottom-right PE to the top-left PE). Finally, the depth is trivially

at least 1. The result follows by combining the terms. □

When comparing with the lower bound, we see that for 𝐵 ≫ 𝑃 ,

the snake Reduce is optimal. When the vector length 𝐵 does not

dominate the number of PEs 𝑃 , there is room for improvement.

7.6 Discussion
Analytically, we can determine the best choice of algorithm for a

given 𝐵 and 𝑃 . We plot the resulting heatmap in Figure 10, where

we show which algorithm we predict to perform best for a given

combination of vector size 𝐵 and PE count 𝑃 . As expected, the

results are very similar to what we observed in the 1D setting.

However, here the bandwidth-limited area is occupied by the ring

AllReduce in 1D is replaced by the snake pattern in 2D.

8 EXPERIMENTS
We evaluate the performance of different collectives for a row of

PEs as well as a square grid of PEs. For each of the collective, we

perform two types of experiments. All data types are 32-bit floating

point numbers. In the first experiment type, we fix the number

of PEs 𝑃 to be the maximum row length or grid size that is still a

power of two and vary the vector length 𝐵. A large grid size caters

to the fact that HPC applications need to utilize most of the PEs to

achieve the best performance. The second experiment type fixes

the vector length 𝐵 to 256 values (1 KB) and varies the number of

PEs in a row or grid. This allows us to see how performance and

our predictions are impacted by the number of PEs.

8.1 Benchmarking
All benchmarks are on a CS-2 running at 850 MHz with 40GB of

on-chip SRAM. We run each benchmark 5 times and plot the mean

8
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StarX-Y Two Phase

StarX-Y Star

StarX-Y Chain

Figure 10: Speedup of 2D AllReduce algorithm over the X-Y
Chain, which is used by the vendor. The regions indicate
which of the proposed algorithms is the best fixed algorithm
for the given combination of vector length and PE count.

runtime. The observed standard deviation is negligible (< 4%) [20].

Five measurements is enough because the CS-2 is mostly deter-

ministic unlike traditional architectures. There is no caching and

memory access time is deterministic. The time to travel between

the routers is also always 1 cycle. One source of non-determinism is

that PEs may insert no-ops to regulate thermal stress of the wafer.

Additionally, although the cores all run at around 850 MHz, they

are truly independent cores, with independent clocks. For these rea-

sons we still see some deviation from the mean. The performance

will also depend the specific CS-2 chip. If there are any defects, a

proprietary process will route around them.

8.2 Implementation.
We implement all algorithms with the newest version of the Cere-

bras SDK 1.0 [48] and runtime. For our Auto-Gen reduce, we com-

pute the necessary parameters in Python. Based on that we generate

the source code for each PE. Note that we provide our own (equiv-

alent) implementation of Chain Reduce instead of the one provided

in the SDK. A library call would cause reconfiguration of the routers

which would yield artificially slow results.

When implementing collectives for the CS-2 it is important to

limit the number of colors as there are only 24 of them. Our 1D im-

plementations utilize up to 3 colors, while the 2D implementations

use up to 5. When using our collectives, the rest of the colors would

be available to the application. The routing for the CS-2 is requires

avoiding race conditions. Having two wavelets arrive at a router

on the same color in the same cycle leads to undefined behaviour.

To avoid this, we configure the routers such that at a given cycle

they accept wavelets only from a single direction. We do this using

control wavelets which alter the routing configuration at runtime.

8.3 Time Measurements
Time measurements in distributed systems have been extensively

studied [23, 60] and pose challenges, such as lack of a shared clock. A

proper measurement methodology is particularly important for the

sub-microsecond runtimes we observe. For broadcast, the method-

ology is easier because the computation starts from a single root,

which synchronizes the start time. However, for Reduce we need to

synchronize the clocks and ensure that each processor starts at the

same time. For all measurements, we start by performing a Reduce

to the PE at position (0, 0). This constitutes a barrier and ensures

that all processes have no other ongoing computations.

To measure 1D broadcast performance, we use a ping-pong like

approach. We execute a broadcast from the leftmost PE, then from

the rightmost PE. We repeat this procedure 𝑘 times and report the

end clock time - start clock time at the leftmost PE divided by 2𝑘 .

For Reduce and AllReduce we need a different approach, because

the execution might start at multiple PEs. Hence, we need to ensure

that all PEs start execution at the same time. We perform several

calibration runs until a synchronized clock tells us that all PEs start

at roughly the same time. The calibration adjusts a so-called wait

parameter 𝛼 until the condition is satisfied. Initially, 𝛼 = 1.

First, the PE at position (0, 0) performs a broadcast that triggers

each PE at position (𝑖, 𝑗) to sample its local reference clock, called

𝑇𝑅 (𝑖, 𝑗). Now, each PE (𝑖, 𝑗) executes 𝛼 (𝑀 + 𝑁 − 𝑖 − 𝑗) writes to an

empty memory location. After that, each PE samples the start clock

𝑇𝑆 (𝑖, 𝑗), performs the collective and samples the end clock 𝑇𝐸 (𝑖, 𝑗).
For each PE we calibrate the start and end clock as follows:

𝑇𝑆 (𝑖, 𝑗)′ = 𝑇𝑆 (𝑖, 𝑗) − (𝑇𝑅 (𝑖, 𝑗) + (𝑖 + 𝑗 + 2))
𝑇𝐸 (𝑖, 𝑗)′ = 𝑇𝐸 (𝑖, 𝑗) − (𝑇𝑅 (𝑖, 𝑗) + (𝑖 + 𝑗 + 2))

This accounts for the difference in time when a PE samples the

reference clock, which is 𝑖 + 𝑗 +2 for a PE at position (𝑖, 𝑗) as we use
a broadcast to initiate the sampling. We adjust the wait parameter

𝛼 and repeat the calibration until the difference in calibrated start

times max𝑖, 𝑗 𝑇𝑆 (𝑖, 𝑗)′ −min𝑖, 𝑗 𝑇𝑆 (𝑖, 𝑗)′ is small enough. We obtain

a start difference below 57 cycles for 1D and 129 cycles for 2D

Then, the final measurement is max𝑖, 𝑗 𝑇𝐸 (𝑖, 𝑗)′ − min𝑖, 𝑗 𝑇𝑆 (𝑖, 𝑗)′.
This methodology ensures accurate measurements in the wafer-

scale setting. In an ideal system 𝛼 = 1 would make all PEs start at

the same time since each write takes 1 cycle. However, in order to

prevent the PE from overheating, the machine will start inserting

no-ops, which we need to adjust for.

8.4 1D Broadcast
Scaling Vector Length. Figure 11a shows the broadcast results
for 512 PEs and increasing vector length. As expected, for small

vector lengths the runtime is dominated by the distance. Hence,

the runtime only grows slowly with the vector length. For vector

lengths larger than 512 bytes, the runtime grows roughly linearly

with the vector length. The model matches the predictions closely,

with a relative error of at most 21%.

Scaling PE count. Figure 12a shows the results for fixed vector

length of 1 KB and increasing number of PEs. Our model predicts

the correct trend, with a large initial runtime that accounts for

sending the message (contention or energy term) and a gradually

increasing contribution of the distance term. The relative error of

the prediction is 8%-21%.
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Figure 12: Benchmarks for fixed vector length of 1 KB and increasing number of PEs.

8.5 1D Reduce
Scaling Vector Length. We evaluate Reduce for 512 PEs with

increasing vector length in Figure 11b. As predicted, among the

fixed implementations, low depth patterns like the tree excel for

small vector lengths, while those with greater depth, like the chain

pattern, show inferior performance. With increasing vector lengths,

energy and contention begin to outweigh depth in impact, resulting

in the Two-Phase pattern outperforming others. Finally, for the

largest vectors, the contention dominates the runtime and the chain

pattern performs best.

The only exception to the above mentioned predictions is the star

pattern. It performs worse than predicted in this scenario. This is

likely because of the overhead associated when a PE starts receiving

from another PE. Because the star pattern receives elements from

all PEs, this is much more pronounced than for other implemen-

tations, especially for large number of PEs. Except for scalars, our

experiments and model both suggest that other low-depth patters,

such as Tree or our Two-Phase algorithm, are faster.

Overall, our Auto-Gen Reduce is the fastest pattern except when

reducing a scalar. There, it is slower by at most 110 cycles. It outper-

forms the chain pattern, based on the current library implementa-

tion, by up to 3.16x. This further confirms the choice of our model

as a tool for automatic performance tuning.

With mean relative error per pattern ranging from 12% to 35%,

the general performance trends are well captured by our model.

When choosing two different patterns, our model is able to very

accurately predict which of the two performs best for the given

vector length and number of PEs. In the cases where it mispredicts,

the difference is at most 114 cycles. This means that, even if the

model’s predictions are not perfect, the chosen algorithm remains

highly competitive and close to the best possible performance.

Scaling PE count. Additionally, we evaluate the Reduce opera-
tion for a fixed vector length of 1 KB across an increasing number

of PEs, as illustrated in Figure 12b. Our model correctly predicts

that initially the chain pattern performs best because with very few

PEs, contention has a larger impact than the depth. With increas-

ing number of PEs, the depth becomes more significant, and, as

expected, the two phase pattern performs better.

Just as for the results with the fixed number of PEs, we see that

our Auto-Gen Reduce implementation is the fastest throughout.

Two-Phase offers similar performance as Auto-Gen for 64 or more

PEs. Interestingly, predictions for the star pattern have high accu-

racy, with a 10% minimum relative error. This is likely because the

runtime is dominated by the vector length rather than the number

of PEs in this case. Overall, our model predicts performance trends

accurately, with a mean relative error between 13% and 28%.
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Figure 13: 2D Reduce and AllReduce benchmarks.

8.6 1D AllReduce
Scaling Vector Length.We evaluate AllReduce for 512 PEs and

increasing vector length, see Figure 11c. As expected, for the reduce-

then-broadcast AllReduce implementations the runtime increases

by the cost of performing a broadcast with respect to the corre-

sponding Reduce variant.We can draw the same insights as from the

Reduce results, e.g., how the optimal pattern changes based on the

vector length. Our Auto-Gen AllReduce gains a 2.47x improvement

over the chain-then-broadcast approach, which the current library

is based on. Additionally, just like for Reduce, our model accurately

predicts performance trends and which pattern will perform best.

We also plotted predicted performance for ring pattern. We have

already observed that our model accurately predicts which algo-

rithm performs best. Even accounting for a 15% prediction error,

the largest observed overall, the ring algorithm is never be the best

choice. Hence, we refrain from providing an implementation. This

underscores the utility of our model is saving engineering effort

on sub-optimal and unpromising approaches. Moreover, we see

that algorithms designed for the traditional distributed memory

setting do not translate well into the wafer-scale setting, where it

is important to leverage multicasting and pipelining.

Scaling PE count. Moreover, we evaluate AllReduce for a fixed

vector length of 1 KB and increasing number of PEs, see Figure 12c.

Again, for the reduce-then-broadcast implementations, we observe

similar results as for Reduce. We see that for 4 PEs, the predicted

ring performance is a bit better than the chain AllReduce. How-

ever, the expected performance gain is not significant. For numbers

of PEs larger than 8, we see that the reduce-then-broadcast im-

plementations would perform significantly better than the ring,

outperforming it by possibly even 1.4x. This further shows how

powerful the multicast feature for the CS-2 is.

8.7 2D Collectives
Scaling Vector Length. We also evaluate our implementations

on the full chip of 512 × 512 PEs and increasing vector length. For

Reduce, the results can be found in Figure 13a. The performance

trends are as predicted. They are similar to to 1D setting. Our X-Y

Auto-Gen Reduce outperforms the X-Y Chain by up to 3.27×.
The predictions for the snake pattern are at most 10% off. As

expected, it performs very poorly. This is because of its linear depth

in the number of PEs, which is over 200’000 for this experiment.

Interestingly, these results indicate that 𝑇𝑅 = 2 on average. Any

other choice of 𝑇𝑅 would lead to significantly worse predictions.

Moreover, we have a relative error that is very similar to what

we were seeing for 1D. The predictions are slightly worse because

when we execute X-Y Reduce, after reducing on the X-axis, we need

to load some values into registers which adds additional overhead.

Again, our model is able to predict very well which pattern will

perform best for a given vector length.

Figure 13b shows the 2D AllReduce results for fixed number

of PEs and increasing vector length. The relative error of our pre-

dictions remains almost the same. Moreover, our X-Y Auto-Gen

AllReduce implementation outperforms the X-Y Auto-Gen AllRe-

duce implementation by up to 2.54×.
Scaling PE count. Just like for 1D benchmarks, we measure

performance for fixed vector length and increasing 2D grid of PEs

from 4 × 4 to 512 × 512. The results can be found in Figure 13c. As

expected, when we have few PEs and we are bandwidth bound, the

Snake pattern performs best. Then as the number of PEs grows, the

X-Y Chain and finally the X-Y Two Phase pattern are best.

Our X-Y Auto-Gen reduce once again achieves good overall

performance across the board. The only exception is for 4 × 4 PEs,

where the Snake is better. This demonstrates that generating code

based on our model works well both in the 1D and 2D setting.

9 RELATEDWORK
9.1 Reduce on the WSE
Orenes-Vera et al. [39] introduced and implemented a wafer-scale

3D FFT algorithm. The main communication bottleneck in their

implementation is an all-to-all collective. They model the commu-

nication time by considering the most heavily congested link in the

network. While the all-to-all is limited by congestion, our research

demonstrates that, for the case of reduce and AllReduce, accurately

modeling performance necessitates considering depth and distance,

in addition to congestion factors.

Rocki et al. [44] designed a wafer-scale SpMV stencil. It involves
an AllReduce operation at its core. They use a variant of a 2D

Star AllReduce with two PEs accumulating all the results and then

broadcasting them. As our evaluation shows, such an approach
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is only efficient for small vector lengths because it creates large

contention at the PEs that aggregate the vectors.

Hall et al. [50] designed a matrix-multiplication kernel as part of

their neural network training stack. They utilize there the chain

pattern to perform column-reduction, which as we have shown, is

the best when the vector length is much larger than the number of

PEs. They also perform row-reduce to specific PE by mapping the

chain pattern onto a ring like in Figure 7b.

9.2 Distributed Models of Computation
The 𝛼 − 𝛽 model of parallel computation [7] considers the latency

and bandwidth requirements of distributed programs. Specifically,

sending a message of length𝑚 costs 𝛼 +𝑚𝛽 . Unlike our model, all

processors are assumed to be at the same distance to each other –

the cost is independent of sender and receiver. More general mod-

els [56], such as LogGP [51] share the same limitations. This means

that those models are unable to capture the aspects of distance and

energy. These are essential for accurately estimating performance

in the spatial wafer-scale setting.

The spatial computer model [2, 17] introduced an asymp-

totic model that considers energy, depth, and distance. However,

it assumes that the bandwidth of the PE is of the same order of

magnitude as its local memory. This does not correspond to our

practical setting, where the local SRAM memory is a several thou-

sand times larger than the bandwidth from and to the PE. This

difference in the model leads to a lack of pipelining in spatial com-

puter algorithms. As we have seen, pipelining is necessary to obtain

the best performance for very large vector lengths. To address is-

sues arising from unequal bandwidth and memory, we introduced

the contention term into the model. It reflects that PE-bandwidth

is a scarce resource on the device.

9.3 Developments in Accelerator Architectures
The Versal ACAP [16] is a Course-Grained Reconfigurable Array

(CGRA) [8] that contains both programmable FPGA fabric and

software programmable accelerators. These accelerators consist of

8 × 50 tiles with 48KB of local memory connected via a mesh net-

work [45, 57], similarly to theWSE.While the programming models

differ, one can observe much of the same distance-dependent per-

formance characteristics [45]. Therefore, our model could provide

a useful basis for algorithmic design on the Versal ACAP.

The SambaNova Reconfigurable Dataflow Unit (DFU) [15] is a

CGRA machine learning accelerator. In contrast to the WSE, it is

not based on general-purpose cores. Instead, a large grid of tiny

hardware units are reconfigured to perform the given operation in

a pipelined dataflow. Note that the problem of mapping operations,

such as communication collectives, onto a grid of compute elements

is a shared problem. Hence, there could be insights and tangible

benefits of our work that carry over to the DFU.

10 CONCLUSION
We provided the first in-depth exploration of communication collec-

tives on the Cerebras WSE. We introduced and analyzed different

collective algorithms which outperform previous algorithms by

up to 3.27×. Given the widespread use of these collectives in HPC

applications, our improvements promise to significantly boost com-

putational efficiency in various scientific fields.

To achieve those improvements, we introduced a streamlined

model to design algorithms for the hardware. We demonstrated

that this model accurately predicts performance on the WSE. While

previous works focused on communication for specific problems

on the Cerebras WSE, our approach is the first to enable systematic

analysis of any program on this hardware.

Our findings demonstrate that achieving optimal performance

on the WSE is contingent upon automatic code generation. Manual

optimizations for the WSE, hindered by the complexity of hardware

features like routing, are both tedious and challenging. Our newly

introduced model significantly advances the creation of effective

code generators by enabling accurate performance prediction. Uti-

lizing our model-driven approach, we generate code that achieves

near-optimal performance across a broad spectrum of input sizes.

This marks the first time such an approach has been successfully

adapted for a wafer-scale processor.

Overall, our work enhances the performance of communication

collectives and provides valuable insights into optimizing wafer-

scale programs for emerging architectures like the Cerebras WSE.

The accurate theoretical framework for modeling algorithms sig-

nificantly advances our understanding of the hardware and its

limitations. Hence, our study represents a significant advancement

in unlocking the full potential of this emerging architecture and

boosting the efficiency of HPC applications.
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