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Communication Lower Bound in Convolution Accelerators, Chen et al.

A Data-Centric Approach to Extreme-Scale Ab initio Dissipative Quantum Transport 
Simulations, Ziogas et al.

Enabling Simulation at the Fifth Rung of DFT: Large Scale RPA Calculations with Excellent Time 
to Solution, Del Ben et al.

Extreme Scale Plasma Turbulence Simulations on Top 
Supercomputers Worldwide, Tang et al.
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= ×

Ideal for hardware!

…All done?...
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Communication Lower Bound in Convolution Accelerators, Chen et al.

A Data-Centric Approach to Extreme-Scale Ab initio Dissipative Quantum Transport 
Simulations, Ziogas et al.

Enabling Simulation at the Fifth Rung of DFT: Large Scale RPA Calculations with Excellent Time 
to Solution, Del Ben et al.

Extreme Scale Plasma Turbulence Simulations on Top 
Supercomputers Worldwide, Tang et al.= ×

=

×

= ×

Hardware requirement:
Dense matrices

Problems to solve:
Large, sparse data 

structures

= ×
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…but… we do have solutions… right?

Libraries exist!
- cuSPARSE
- hipSPARSE

cuSPARSE [1]:
Up to 73,350

(73 thousand!)
times slower than the 

achievable peak!

Hardware exists!
- Sparse Tensor Cores

Sparsity requirements:
2:4 

EVERY four elements
EXACTLY two nonzeros

Dedicated solutions exist!
• DASP [2]
• Magicube [3]
• VENOM [4]
• cuSPARSElLt [5]
• …

Lacking performance:
At least 200x slower than the 

peak
Narrow applicability:

Only machine learning,
“dense” sparse matrices (up 

to 80-90% sparsity) 

[1] cuSPARSE v12.0 vs CUBLAS c12.0 on dense matrices, NVIDIA A100
[2] Y. Lu and W. Liu, “Dasp: Specific dense matrix multiply-accumulate units accelerated general sparse matrix-vector multiplication,” in Proceedings of the International Conference for High Performance Computing, 
Networking, Storage and Analysis, 2023, pp. 1–14.
[3] S. Li, K. Osawa, and T. Hoefler, “Efficient quantized sparse matrix operations on tensor cores,” ser. SC ’22. IEEE Press, 2022.
[4] R. L. Castro, A. Ivanov, D. Andrade, T. Ben-Nun, B. B. Fraguela, and T. Hoefler, “Venom: A vectorized n: M format for unleashing the power of sparse tensor cores,” in Proceedings of the International Conference for 
High Performance Computing, Networking, Storage and Analysis, 2023, pp. 1–14.
[5] Nvidia, “cusparselt documentation,” https://docs.nvidia.com/cuda/ cusparselt, 2024. 
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SMaT: (S)parse (Ma)trix Matrix (T)ensor Core-accelerate

Execution

Preprocessing
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Results
SuiteSparse synthetic

Setup:
- SuiteSparse
- nnz from 766K to 10M
- Various non-zero distributions

Custom CUDA kernel
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Input

SMaT

A100 hardware peak

% sparsity in a synthetic band matrix

7.34x faster than the 
second-best (DASP)

125x faster than 
cuSPARSE

MEASURED PERORMANCE IN GFLOP/S
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Setup:
- Load balanced
- Non-zero blocks are dense
- No reordering needed
- Test internal data structure

Arbitrary 
unstructured 

sparsity

Creating 
BCSR 

format

Hardware-
oriented internal 
representation

Minimize memory 
footprint 

AND
Maximize compute 

efficiency

Faster than 
cuBLAS for 

sparsity 78%

Only 2.3x slower 
than cuBLAS

1724x times faster 
than cuSPARSE

At MINIMUM 7x 
faster than second 

best (DASP)

SmaT is FAST.
But why?

Hardware-
friendly format?

Efficient 
preprocessing?

Low-level 
optimizations?
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Performance Model

𝑇𝑡𝑜𝑡 = 𝑇𝑒 · 𝑛𝑒 + 𝑇𝑖𝑛𝑖𝑡

Total runtime 
of the kernel

Any startup, 
initialization, cache 

warm-up

Number of dense blocks in 
the BCSR format

Compute time per 
the BCSR block

Preprocessing:
Reducing the 

number of blocks

Implementation 
optimizations:

Reducing the time 
per block
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Performance Model
𝑇𝑡𝑜𝑡 = 𝑇𝑒 · 𝑛𝑒 + 𝑇𝑖𝑛𝑖𝑡
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Performance Model
𝑇𝑡𝑜𝑡 = 𝑇𝑒 · 𝑛𝑒 + 𝑇𝑖𝑛𝑖𝑡
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Performance Model
𝑇𝑡𝑜𝑡 = 𝑇𝑒 · 𝑛𝑒 + 𝑇𝑖𝑛𝑖𝑡

𝑁 = 8
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B: BCSR schedule optimization
Up to 2x improvement vs naive

model
measurements×

naïve CSR

×
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Performance Model
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Performance Model
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naïve CSR

×
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Performance Model
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Up to 12x improvement vs naive

BT: BCSR and TC API calls
Up to 20x improvement vs naive

CBT:  B, T and Cooperative shared memory loads
Up to 22x improvement vs naive

model
measurements×

B: BCSR schedule optimization
Up to 2x improvement vs naive

naïve CSR

×
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Performance Model
𝑇𝑡𝑜𝑡 = 𝑇𝑒 · 𝑛𝑒 + 𝑇𝑖𝑛𝑖𝑡

𝑁 = 8
𝜇

𝑠

10

100

1,000

, , , , , ,

T: TC API calls
Up to 12x improvement vs naive

BT: BCSR and TC API calls
Up to 20x improvement vs naive

CBT:  B, T and Cooperative shared memory loads
Up to 22x improvement vs naive

model
measurements×

B: BCSR schedule optimization
Up to 2x improvement vs naive

naïve CSR

×

Low-level kernel optimizations are more important than high-level preprocessing!

Optimal matrix permutation: up to 2.5x reduction in number of blocks (across Suitesparse matrices) 

Performance improvement: naïve CSR vs CBT up to 22x speedup
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Evaluation

SuiteSparse Collection

×State-of-the-art benchmark:
Large, widely-used repository of sparse 
matrices from real-world applications

Motivation: 
1. Remove nondeterminism and isolate   
performance-critical aspects:
• Asynchronous, pipelined loads
• Compute efficiency (tensor cores)
• Stress test on “dense” sparse matrices
2. Unstructured sparsity kernels on 
structured sparsity matrices: e.g., HPCG
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Preprocessing reordering

[6] P. S. Labini, M. Bernaschi, W. Nutt, F. Silvestri, and F. Vella, “Blocking sparse matrices to leverage dense-specific multiplication,” in 2022 IEEE/ACM Workshop on Irregular Applications: Architectures and Algorithms (IA3), 2022, pp. 19–24.
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# zeros 
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Many blocks are almost empty!
Sylos Labini’s algorithm [6]  provided 
the best reduction in the block count

• Max-pooling-based bit masking
• Row clustering based on 

Jaccard distance

DISCLAIMER:
The preprocessing time is not included in the 

performance measurements
• Creating BCSR format: 

➢ Less that 1% of the runtime
➢ Fair comparison: related works also measure only 

compute time
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Preprocessing reordering
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Preprocessing reordering

LOG SCALELINEAR SCALE

      1.8x fewer blocks 
      8.4x smaller standard deviation

   99.994% sparsity
   Coefficient of variation: 10.9

2.5x fewer blocks 
3x smaller standard deviation

original row + columnrow

Distribution of the #BCSR blocks per row
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Preprocessing reordering

SMaT

LOG SCALELINEAR SCALE

original row + columnrow

1.8x fewer blocks 
8.4x smaller standard deviation

99.994% sparsity
Coefficient of variation: 10.9

2.5x fewer blocks 
3x smaller standard deviation

High performance:
- Small variation (good load 

balance)
- High number of blocks 

(more compute bound)

Low performance:
- High variation (work 

imbalance)
- Low number of blocks 

(latency bound)

original
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Preprocessing reordering
LOG SCALELINEAR SCALE

original row + columnrow

MagicubeDASPcuSPARSE
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Synthetic Matrices
×

(all zeros) (dense)

10−2

10−1

100

101

103

A100 hardware peak

Measure the dependence on the number 
of blocks and isolate the randomness of 

the sparse matrix structure
16,384 x 16,384

At what sparsity threshold a 
sparse library can 

outperform a highly-
optimized dense library?

𝑁 = 8
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Synthetic Matrices
×

Faster than cuBLAS 
for sparsity 78%

Only 2.3x slower 
than cuBLAS

cuBLAS 33x slower 
than hardware peak

At MINIMUM 7x faster than 
second best (DASP)

1724x times faster 
than cuSPARSE

(all zeros) (dense)

𝑁 = 8

SMaT

A100 hardware peak

10−2

10−1

100

101

103

Measure the dependence on the number 
of blocks and isolate the randomness of 

the sparse matrix structure
16,384 x 16,384

At what sparsity threshold a 
sparse library can 

outperform a highly-
optimized dense library?
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Synthetic Matrices
×

Measure the dependence on the number 
of blocks and isolate the randomness of 

the sparse matrix structure
16,384 x 16,384

At what sparsity threshold a 
sparse library can 

outperform a highly-
optimized dense library?

𝑁 = 128

A100 hardware peak

10−2

10−1

100
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Synthetic Matrices
×

Measure the dependence on the number 
of blocks and isolate the randomness of 

the sparse matrix structure
16,384 x 16,384

At what sparsity threshold a 
sparse library can 

outperform a highly-
optimized dense library?

15x slower than 
cuBLAS

cuBLAS 2x slower than 
hardware peak

At MINIMUM 5.3x faster than 
second best (Magicube)

2445x times faster 
than cuSPARSE

𝑁 = 128

SMaT

A100 hardware peak

10−2

10−1

100

101

103 Faster than cuBLAS 
for sparsity 96%



@spcl_eth

@spcl

spcl.ethz.ch

26

SuiteSparse performance comparison

7.34x faster than the second-best (DASP)  .   

Performance 
in GFLOP/s

Magicube: 1.8 
cuSPARSE: 3.9
DASP:  69.1
SMaT: 2.5

125x faster than cuSPARSE   .

SMaT is better on average 7.71× (geometric mean) than the respective baselines

Importance of 
good 

preprocessing

Ill-suited for SMaT’s execution 
model with static 2D parallel 

schedule

2.60× faster (up to 
7.34×)

16.32× faster 
(up to 125.48×)

10.78× faster 
(up to 51.23×)
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More of SPCL’s research:

… or spcl.ethz.ch

210+ Talksyoutube.com/@spcl

twitter.com/spcl_eth 1.6K+ Followers

github.com/spcl 5.6K+ Stars

OPTIMIZING performance

spcl.inf.ethz.ch
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