
1/6/2025 1

HIGH PERFORMANCE UNSTRUCTURED
SPMM COMPUTATION USING TENSOR
CORES
Patrik Okanovic1, Grzegorz Kwasniewski1, Paolo Sylos Labini2, Maciej Besta1,
Flavio Vella3, Torsten Hoefler1

1 ETH Zurich
2 Free University of Bozen-Bolzano
3 University of Trento

@spcl_eth

@spcl

spcl.ethz.ch

2

Credit: NASA Credit: Brookhaven National Laboratory

Credit: Aktis Hydraulics

Credit: 3Blue1Brown
2

Communication Lower Bound in Convolution Accelerators, Chen et al.

A Data-Centric Approach to Extreme-Scale Ab initio Dissipative Quantum Transport
Simulations, Ziogas et al.

Enabling Simulation at the Fifth Rung of DFT: Large Scale RPA Calculations with Excellent Time
to Solution, Del Ben et al.

Extreme Scale Plasma Turbulence Simulations on Top
Supercomputers Worldwide, Tang et al.

= ×

= ×

= ×

@spcl_eth

@spcl

spcl.ethz.ch

33

Communication Lower Bound in Convolution Accelerators, Chen et al.

A Data-Centric Approach to Extreme-Scale Ab initio Dissipative Quantum Transport
Simulations, Ziogas et al.

Enabling Simulation at the Fifth Rung of DFT: Large Scale RPA Calculations with Excellent Time
to Solution, Del Ben et al.

Extreme Scale Plasma Turbulence Simulations on Top
Supercomputers Worldwide, Tang et al.

= ×

= ×

= ×

Ideal for hardware!

…All done?...

@spcl_eth

@spcl

spcl.ethz.ch

44

Communication Lower Bound in Convolution Accelerators, Chen et al.

A Data-Centric Approach to Extreme-Scale Ab initio Dissipative Quantum Transport
Simulations, Ziogas et al.

Enabling Simulation at the Fifth Rung of DFT: Large Scale RPA Calculations with Excellent Time
to Solution, Del Ben et al.

Extreme Scale Plasma Turbulence Simulations on Top
Supercomputers Worldwide, Tang et al.

= ×

= ×

= ×
= ×

=

×

= ×

@spcl_eth

@spcl

spcl.ethz.ch

55

Communication Lower Bound in Convolution Accelerators, Chen et al.

A Data-Centric Approach to Extreme-Scale Ab initio Dissipative Quantum Transport
Simulations, Ziogas et al.

Enabling Simulation at the Fifth Rung of DFT: Large Scale RPA Calculations with Excellent Time
to Solution, Del Ben et al.

Extreme Scale Plasma Turbulence Simulations on Top
Supercomputers Worldwide, Tang et al.= ×

=

×

= ×

Hardware requirement:
Dense matrices

Problems to solve:
Large, sparse data

structures

= ×

@spcl_eth

@spcl

spcl.ethz.ch

6

…but… we do have solutions… right?

Libraries exist!
- cuSPARSE
- hipSPARSE

cuSPARSE [1]:
Up to 73,350

(73 thousand!)
times slower than the

achievable peak!

Hardware exists!
- Sparse Tensor Cores

Sparsity requirements:
2:4

EVERY four elements
EXACTLY two nonzeros

Dedicated solutions exist!
• DASP [2]
• Magicube [3]
• VENOM [4]
• cuSPARSElLt [5]
• …

Lacking performance:
At least 200x slower than the

peak
Narrow applicability:

Only machine learning,
“dense” sparse matrices (up

to 80-90% sparsity)

[1] cuSPARSE v12.0 vs CUBLAS c12.0 on dense matrices, NVIDIA A100
[2] Y. Lu and W. Liu, “Dasp: Specific dense matrix multiply-accumulate units accelerated general sparse matrix-vector multiplication,” in Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2023, pp. 1–14.
[3] S. Li, K. Osawa, and T. Hoefler, “Efficient quantized sparse matrix operations on tensor cores,” ser. SC ’22. IEEE Press, 2022.
[4] R. L. Castro, A. Ivanov, D. Andrade, T. Ben-Nun, B. B. Fraguela, and T. Hoefler, “Venom: A vectorized n: M format for unleashing the power of sparse tensor cores,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2023, pp. 1–14.
[5] Nvidia, “cusparselt documentation,” https://docs.nvidia.com/cuda/ cusparselt, 2024.

@spcl_eth

@spcl

spcl.ethz.ch

7

SMaT: (S)parse (Ma)trix Matrix (T)ensor Core-accelerate

Execution

Preprocessing

d e
w x

s t u v
f g h 0

i j k l
p q 0 r

m n 0 o
0 a b c𝐴

𝐵

𝐶

𝐶 = 𝐴𝐵
“bottom-up” 2D parallel

Each TC tile of C is
assigned to a

different warp

E.g.:
executed

 by warp #6

m n 0 o
0 a b c

Per-warp sequential schedule
(warp 6)

Warp-level empty
tiles skipped

First blocks are
processed

Next blocks
are async.

loaded
double-

buffering Using tensor
cores for

each MMA

Row permutation A’ = PA

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

0 1 3 5

0 2 4 0 6 4 6

d e w x s t f g

rowPtr

col

val

7

u v h 0

blocks: 7
zeros stored:

4
improvement:

13/7 = 1.85

d e
w x

s t u v
f g h 0

i j k l
p q 0 r

m n 0 o
0 a b c

7
0
3
4
6
5
2
1

P

O
pt

im
iz

at
io

n
s

R
e

sh
u

ff
lin

g

Results
SuiteSparse synthetic

Setup:
- SuiteSparse
- nnz from 766K to 10M
- Various non-zero distributions

Custom CUDA kernel

bandwidth b

BCSR (block size 2x2)

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

d e

w x
s t u v

f g h
i j k l

p q r
m n o

a b c0 0
0 0 0 0

0 0
0 00 0

0 0

0 0
0 0

0 0
0 0 0 0

0

0

0
0

0 3 7 10

0 4 6 0 2 4 6 0

0 0 d e 0 a 0 0

rowPtr

col

val

…

13

b c 0 0

blocks:
13

zeros
stored:

28

Sparse matrix Input CSR format

d e

w x
s t u v

f g h
i j k l

p q r
m n o

b ca

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

0 3 5 8

6 7 0 1 2 3 4

b c d e f g h

rowPtr

col

val

…

…

…

𝐴

a

5

Input

SMaT

A100 hardware peak

% sparsity in a synthetic band matrix

7.34x faster than the
second-best (DASP)

125x faster than
cuSPARSE

MEASURED PERORMANCE IN GFLOP/S
R

u
n

n
in

g
o

n
 A

1
0

0

Setup:
- Load balanced
- Non-zero blocks are dense
- No reordering needed
- Test internal data structure

Arbitrary
unstructured

sparsity

Creating
BCSR

format

Hardware-
oriented internal
representation

Minimize memory
footprint

AND
Maximize compute

efficiency

Faster than
cuBLAS for

sparsity 78%

Only 2.3x slower
than cuBLAS

1724x times faster
than cuSPARSE

At MINIMUM 7x
faster than second

best (DASP)

SmaT is FAST.
But why?

Hardware-
friendly format?

Efficient
preprocessing?

Low-level
optimizations?

@spcl_eth

@spcl

spcl.ethz.ch

8

Performance Model

𝑇𝑡𝑜𝑡 = 𝑇𝑒 · 𝑛𝑒 + 𝑇𝑖𝑛𝑖𝑡

Total runtime
of the kernel

Any startup,
initialization, cache

warm-up

Number of dense blocks in
the BCSR format

Compute time per
the BCSR block

Preprocessing:
Reducing the

number of blocks

Implementation
optimizations:

Reducing the time
per block

@spcl_eth

@spcl

spcl.ethz.ch

9

Performance Model
𝑇𝑡𝑜𝑡 = 𝑇𝑒 · 𝑛𝑒 + 𝑇𝑖𝑛𝑖𝑡

𝜇
𝑠

10

100

1,000

, , , , , ,

×

𝑁 = 8

@spcl_eth

@spcl

spcl.ethz.ch

10

Performance Model
𝑇𝑡𝑜𝑡 = 𝑇𝑒 · 𝑛𝑒 + 𝑇𝑖𝑛𝑖𝑡

𝑁 = 8
𝜇

𝑠

10

100

1,000

, , , , , ,

naïve CSR

model
measurements×

×

@spcl_eth

@spcl

spcl.ethz.ch

11

Performance Model
𝑇𝑡𝑜𝑡 = 𝑇𝑒 · 𝑛𝑒 + 𝑇𝑖𝑛𝑖𝑡

𝑁 = 8
𝜇

𝑠

10

100

1,000

, , , , , ,

B: BCSR schedule optimization
Up to 2x improvement vs naive

model
measurements×

naïve CSR

×

@spcl_eth

@spcl

spcl.ethz.ch

12

Performance Model
𝑇𝑡𝑜𝑡 = 𝑇𝑒 · 𝑛𝑒 + 𝑇𝑖𝑛𝑖𝑡

𝑁 = 8
𝜇

𝑠

10

100

1,000

, , , , , ,

T: TC API calls
Up to 12x improvement vs naive

model
measurements×

B: BCSR schedule optimization
Up to 2x improvement vs naive

naïve CSR

×

@spcl_eth

@spcl

spcl.ethz.ch

13

Performance Model
𝑇𝑡𝑜𝑡 = 𝑇𝑒 · 𝑛𝑒 + 𝑇𝑖𝑛𝑖𝑡

𝑁 = 8
𝜇

𝑠

10

100

1,000

, , , , , ,

T: TC API calls
Up to 12x improvement vs naive

BT: BCSR and TC API calls
Up to 20x improvement vs naive

model
measurements×

B: BCSR schedule optimization
Up to 2x improvement vs naive

naïve CSR

×

@spcl_eth

@spcl

spcl.ethz.ch

14

Performance Model
𝑇𝑡𝑜𝑡 = 𝑇𝑒 · 𝑛𝑒 + 𝑇𝑖𝑛𝑖𝑡

𝑁 = 8
𝜇

𝑠

10

100

1,000

, , , , , ,

T: TC API calls
Up to 12x improvement vs naive

BT: BCSR and TC API calls
Up to 20x improvement vs naive

CBT: B, T and Cooperative shared memory loads
Up to 22x improvement vs naive

model
measurements×

B: BCSR schedule optimization
Up to 2x improvement vs naive

naïve CSR

×

@spcl_eth

@spcl

spcl.ethz.ch

15

Performance Model
𝑇𝑡𝑜𝑡 = 𝑇𝑒 · 𝑛𝑒 + 𝑇𝑖𝑛𝑖𝑡

𝑁 = 8
𝜇

𝑠

10

100

1,000

, , , , , ,

T: TC API calls
Up to 12x improvement vs naive

BT: BCSR and TC API calls
Up to 20x improvement vs naive

CBT: B, T and Cooperative shared memory loads
Up to 22x improvement vs naive

model
measurements×

B: BCSR schedule optimization
Up to 2x improvement vs naive

naïve CSR

×

Low-level kernel optimizations are more important than high-level preprocessing!

Optimal matrix permutation: up to 2.5x reduction in number of blocks (across Suitesparse matrices)

Performance improvement: naïve CSR vs CBT up to 22x speedup

@spcl_eth

@spcl

spcl.ethz.ch

Synthetic Band Matrices

16

Evaluation

SuiteSparse Collection

×State-of-the-art benchmark:
Large, widely-used repository of sparse
matrices from real-world applications

Motivation:
1. Remove nondeterminism and isolate
performance-critical aspects:
• Asynchronous, pipelined loads
• Compute efficiency (tensor cores)
• Stress test on “dense” sparse matrices
2. Unstructured sparsity kernels on
structured sparsity matrices: e.g., HPCG

@spcl_eth

@spcl

spcl.ethz.ch

17

Preprocessing reordering

[6] P. S. Labini, M. Bernaschi, W. Nutt, F. Silvestri, and F. Vella, “Blocking sparse matrices to leverage dense-specific multiplication,” in 2022 IEEE/ACM Workshop on Irregular Applications: Architectures and Algorithms (IA3), 2022, pp. 19–24.

Row permutation A’ = PA

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

0 1 3 5

0 2 4 0 6 4 6

d e w x s t f g

rowPtr

col

val

7

u v h 0

blocks: 7
zeros stored:

4
improvement:

13/7 = 1.85

d e
w x

s t u v
f g h 0

i j k l
p q 0 r

m n 0 o
0 a b c

7
0
3
4
6
5
2
1

P

R
es

h
u

ff
lin

g

BCSR (block size 2x2)

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

d e

w x
s t u v

f g h
i j k l

p q r
m n o

a b c0 0
0 0 0 0

0 0
0 00 0

0 0

0 0
0 0

0 0
0 0 0 0

0

0

0
0

0 3 7 10

0 4 6 0 2 4 6 0

0 0 d e 0 a 0 0

rowPtr

col

val

…

13

b c 0 0

blocks:
13

zeros
stored:

28

Many blocks are almost empty!
Sylos Labini’s algorithm [6] provided
the best reduction in the block count

• Max-pooling-based bit masking
• Row clustering based on

Jaccard distance

DISCLAIMER:
The preprocessing time is not included in the

performance measurements
• Creating BCSR format:

➢ Less that 1% of the runtime
➢ Fair comparison: related works also measure only

compute time

@spcl_eth

@spcl

spcl.ethz.ch

18

Preprocessing reordering

3d e

w x
s t u v

f g h
i j k l

p q r
m n o

a b c0 0
0 0 0 0

0 0
0 00 0

0 0

0 0
0 0

0 0
0 0 0 0

0

0

0
0

Original input

#BCSR blocks per row

4

3

3

d e
w x

s t u v
f g h 0

i j k l
p q 0 r

m n 0 o
0 a b c

1

Row permutation

#BCSR blocks per row

2

2

2

1

Row + column permutation

#BCSR blocks per row

2

2

3

d e
w x

s tu v
f gh 0

i j k l
p q 0 r

m n0 o
0 ab c

0
0

0
00

1

2

3

4

Smaller average
#blocks/row:

 less work
 smaller memory footprint

Greater variance:
worse load balancing

Arithmetic mean = 3.25

0

1

2

3

4

0

1

2

3

4

@spcl_eth

@spcl

spcl.ethz.ch

19

Preprocessing reordering

LOG SCALELINEAR SCALE

 1.8x fewer blocks
 8.4x smaller standard deviation

 99.994% sparsity
 Coefficient of variation: 10.9

2.5x fewer blocks
3x smaller standard deviation

original row + columnrow

Distribution of the #BCSR blocks per row

#B
C

SR
 b

lo
ck

s
p

er
 r

o
w

@spcl_eth

@spcl

spcl.ethz.ch

20

Preprocessing reordering

SMaT

LOG SCALELINEAR SCALE

original row + columnrow

1.8x fewer blocks
8.4x smaller standard deviation

99.994% sparsity
Coefficient of variation: 10.9

2.5x fewer blocks
3x smaller standard deviation

High performance:
- Small variation (good load

balance)
- High number of blocks

(more compute bound)

Low performance:
- High variation (work

imbalance)
- Low number of blocks

(latency bound)

original

@spcl_eth

@spcl

spcl.ethz.ch

SMaT

21

Preprocessing reordering
LOG SCALELINEAR SCALE

original row + columnrow

MagicubeDASPcuSPARSE

@spcl_eth

@spcl

spcl.ethz.ch

22

Synthetic Matrices
×

(all zeros) (dense)

10−2

10−1

100

101

103

A100 hardware peak

Measure the dependence on the number
of blocks and isolate the randomness of

the sparse matrix structure
16,384 x 16,384

At what sparsity threshold a
sparse library can

outperform a highly-
optimized dense library?

𝑁 = 8

@spcl_eth

@spcl

spcl.ethz.ch

23

Synthetic Matrices
×

Faster than cuBLAS
for sparsity 78%

Only 2.3x slower
than cuBLAS

cuBLAS 33x slower
than hardware peak

At MINIMUM 7x faster than
second best (DASP)

1724x times faster
than cuSPARSE

(all zeros) (dense)

𝑁 = 8

SMaT

A100 hardware peak

10−2

10−1

100

101

103

Measure the dependence on the number
of blocks and isolate the randomness of

the sparse matrix structure
16,384 x 16,384

At what sparsity threshold a
sparse library can

outperform a highly-
optimized dense library?

@spcl_eth

@spcl

spcl.ethz.ch

24

Synthetic Matrices
×

Measure the dependence on the number
of blocks and isolate the randomness of

the sparse matrix structure
16,384 x 16,384

At what sparsity threshold a
sparse library can

outperform a highly-
optimized dense library?

𝑁 = 128

A100 hardware peak

10−2

10−1

100

101

103

@spcl_eth

@spcl

spcl.ethz.ch

25

Synthetic Matrices
×

Measure the dependence on the number
of blocks and isolate the randomness of

the sparse matrix structure
16,384 x 16,384

At what sparsity threshold a
sparse library can

outperform a highly-
optimized dense library?

15x slower than
cuBLAS

cuBLAS 2x slower than
hardware peak

At MINIMUM 5.3x faster than
second best (Magicube)

2445x times faster
than cuSPARSE

𝑁 = 128

SMaT

A100 hardware peak

10−2

10−1

100

101

103 Faster than cuBLAS
for sparsity 96%

@spcl_eth

@spcl

spcl.ethz.ch

26

SuiteSparse performance comparison

7.34x faster than the second-best (DASP) .

Performance
in GFLOP/s

Magicube: 1.8
cuSPARSE: 3.9
DASP: 69.1
SMaT: 2.5

125x faster than cuSPARSE .

SMaT is better on average 7.71× (geometric mean) than the respective baselines

Importance of
good

preprocessing

Ill-suited for SMaT’s execution
model with static 2D parallel

schedule

2.60× faster (up to
7.34×)

16.32× faster
(up to 125.48×)

10.78× faster
(up to 51.23×)

@spcl_eth

@spcl

spcl.ethz.ch

DELIVERING performance

UNDERSTANDING performance

27

More of SPCL’s research:

… or spcl.ethz.ch

210+ Talksyoutube.com/@spcl

twitter.com/spcl_eth 1.6K+ Followers

github.com/spcl 5.6K+ Stars

OPTIMIZING performance

spcl.inf.ethz.ch

	Default Section
	Slide 1: High Performance Unstructured SpMM Computation Using Tensor Cores
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: …but… we do have solutions… right?
	Slide 7: SMaT: (S)parse (Ma)trix Matrix (T)ensor Core-accelerate
	Slide 8: Performance Model
	Slide 9: Performance Model
	Slide 10: Performance Model
	Slide 11: Performance Model
	Slide 12: Performance Model
	Slide 13: Performance Model
	Slide 14: Performance Model
	Slide 15: Performance Model
	Slide 16: Evaluation
	Slide 17: Preprocessing reordering
	Slide 18: Preprocessing reordering
	Slide 19: Preprocessing reordering
	Slide 20: Preprocessing reordering
	Slide 21: Preprocessing reordering
	Slide 22: Synthetic Matrices
	Slide 23: Synthetic Matrices
	Slide 24: Synthetic Matrices
	Slide 25: Synthetic Matrices
	Slide 26: SuiteSparse performance comparison
	Slide 27

