HIGH PERFORMANCE UNSTRUCTURED SPMM COMPUTATION USING TENSOR CORES

Patrik Okanovic¹, Grzegorz Kwasniewski¹, Paolo Sylos Labini², Maciej Besta¹, Flavio Vella³, Torsten Hoefler¹

¹ ETH Zurich
² Free University of Bozen-Bolzano
³ University of Trento

NEGF SSE $\Sigma[G(E + \hbar\omega, k_z - q_z) D(\omega, q_z)](E, k_z)$

Ideal for hardware!

...All done?...

NECE SSE $\Sigma[C(E + \hbar\omega, k_z - q_z) D(\omega, q_z)](E, k_z)$

Hardware requirement: **Dense matrices**

...but... we do have solutions... right?

- cuSPARSE
- hipSPARSE

cuSPARSE [1]: Up to 73,350 (73 thousand!) times slower than the achievable peak!

[1] cuSPARSE v12.0 vs CUBLAS c12.0 on dense matrices, NVIDIA A100

Hardware exists! Sparse Tensor Cores

Sparsity requirements: 2:4 EVERY four elements EXACTLY two nonzeros

Dedicated solutions exist!

- DASP [2]
- Magicube [3]
- VENOM [4]
- cuSPARSEILt [5]

...

Lacking performance: At least 200x slower than the peak Narrow applicability: Only machine learning, "dense" sparse matrices (up to 80-90% sparsity)

SMaT: (S)parse (Ma)trix Matrix (T)ensor Core-accelerate

Performance Model

The second

Performance Model

$$T_{tot} = T_e \cdot n_e + T_{init}$$

🤹 cscs ETH zürich

Performance Model

$$T_{tot} = T_e \cdot n_e + T_{init}$$

The state of the s

🔆 cscs ETH zürich

Performance Model

$$T_{tot} = T_e \cdot n_e + T_{init}$$

AND A DECK OF A DECK

🗞 cscs 🛛 ETH zürich

Performance Model

$$T_{tot} = T_e \cdot n_e + T_{init}$$

all of the second second second

🗞 cscs 🛛 ETH zürich

Performance Model

$$T_{tot} = T_e \cdot n_e + T_{init}$$

Alter States and

🎨 cscs 🛛 🖅 🕂 zürich

Performance Model

$$T_{tot} = T_e \cdot n_e + T_{init}$$

the second

Performance Model

$$T_{tot} = T_e \cdot n_e + T_{init}$$

Number of columns in dense matrix N = 8

Low-level kernel optimizations are more important than high-level preprocessing!

Optimal matrix permutation: up to 2.5x reduction in number of blocks (across Suitesparse matrices)

Performance improvement: naïve CSR vs CBT up to 22x speedup

Evaluation

State-of-the-art benchmark:

▶ @spcl

🕤 @spcl eth

Large, widely-used repository of sparse matrices from real-world applications

Motivation:

1. Remove nondeterminism and isolate performance-critical aspects:

- Asynchronous, pipelined loads
- Compute efficiency (tensor cores)
- Stress test on "dense" sparse matrices

2. Unstructured sparsity kernels on structured sparsity matrices: *e.g., HPCG*

SuiteSparse Collection

Domain	Name	Size	nnz,	Sparsity
optimization	mip1	66K×66K	10.4M	99.76%
quantum chem.	conf5_4-8x8	49K×49K	1.9M	99.92%
2D/3D mesh	cant	$62K \times 62K$	4M	99.89%
weighted graph	pdb1HYS	36K×36K	4.3M	99.67%
fluid dynamics	rma10	46.8K×46.8K	2.3M	99.89%
2D/3D mesh	cop20k_A	121K×121K	2.6M	99.98%
2D/3D mesh	consph	83K×83K	6M	99.91%
structural	shipsec1	$140 \text{K} \times 140 \text{K}$	7.8M	99.96%
circuit simulation	dc2	116K×116K	766K	99.99%

Synthetic Band Matrices

Measure the dependence on the number of blocks and isolate the randomness of the sparse matrix structure

16,384 x 16,384

At what sparsity threshold a sparse library can outperform a highlyoptimized dense library?

Synthetic Matrices

16,384 x 16,384

Ħ

X

The second

Measure the dependence on the number of blocks and isolate the randomness of the sparse matrix structure

16,384 x 16,384

At what sparsity threshold a sparse library can outperform a highlyoptimized dense library?

25

SMaT is better on average 7.71× (geometric mean) than the respective baselines

UNDERSTANDING performance

More of SPCL's research:

OPTIMIZING performance 🏀 cscs 🛛 🖅 🕂 zürich ***SPCL Preprocessing reordering BCSR (block size 2x2) 01234567 rowPtr 01234567 rowPtr # blocks: 7 # blocks: C = AB13 # zeros stored: В # zeros 4 col Each TC tile of C is stored: assigned to a different warp 13/7 = 1.85 28 Oloidle Olaloio biciolo lewx sttfguvhl0 by warp #6 Many blocks are almost empty ne best reduction in the block coun

Scscs ETH zürich

Custom CUDA kernel Execution Carbon Cuber Cube

m

... or <u>spcl.ethz.ch</u>

DELIVERING performance

