
spcl.inf.ethz.ch

@spcl_eth

TIZIANO DE MATTEIS, JOHANNES DE FINE LICHT, JAKUB BERÁNEK, TORSTEN HOEFLER

Streaming Message Interface: High-Performance Distributed
Memory Programming on Reconfigurable Hardware

spcl.inf.ethz.ch

@spcl_eth

Modern high performance FPGAs and
High-Level Synthesis (HLS) tools are

attractive for HPC

2

Reconfigurable Hardware is a viable option to
overcome architectural von-Neumann

bottleneck

spcl.inf.ethz.ch

@spcl_eth

3

Communication is typically handled either by
going through the host machine or by streaming

across fixed device-to-device connections

We propose Streaming Messages:

 a distributed memory programming model for FPGAs that unifies
message passing and hardware programming with HLS

 SMI, an HLS communication interface specification for programming
streaming messages github.com/spcl/smi

Distributed Memory Programming on
Reconfigurable Hardware is needed to scale

to multi-node

spcl.inf.ethz.ch

@spcl_eth

4

Existing communication models: Message Passing

FPGA 0

APP

FPGA 1

APP

FPGA 2

APP

FPGA 3

APP Transport
Layer

Transport
Layer

Transport
Layer

Transport
Layer

a
b
c
d

#pragma pipeline
for (int i = 0; i < N; i++)

buffer[i] = compute(data[i]);
SendMessage(buffer, N, my_rank + 2);

With Message Passing, ranks use local buffers to send and receive information

Flexible: End-points are specified dynamically

Bad match for HLS programming model:
• relies on bulk transfers
• (potentially dynamically sized) buffers

required to store messages

Manuel Saldaña et al. “MPI As a Programming Model for High-Performance Reconfigurable Computers”. ACM Transactions on Reconfigurable Technology System, 2010
Nariman Eskandari et al. “A Modular Heterogeneous Stack for Deploying FPGAs and CPUs in the Data Center”. In FPGA, 2019

spcl.inf.ethz.ch

@spcl_eth

Data is streamed across inter-FPGA connections in a pipelined fashion

5

Existing communication models: Streaming

FPGA 0

APP

FPGA 1

APP

FPGA 2

APP

FPGA 3

APP

// Channel fixed in the architecture
#pragma pipeline
for (int i = 0; i < N; i++)

stream.Push(compute(data[i]));

d

Communication model fits the HLS programming
model

Inflexible, the user must:
 construct the exact path between end-points
 handle all the forwarding logic

cba

Rom Dimond et al. “Accelerating largescale HPC Applications using FPGAs”. IEEE Symposium on Computer Arithmetic, 2011
Kentaro Sano et al. “4. Multi-FPGA accelerator for scalable stencil computation with constant memory bandwidth”. IEEE Transactions on Parallel and Distributed Systems, 2014

spcl.inf.ethz.ch

@spcl_eth

Traditional, buffered messages are replaced with pipeline-friendly transient channels

6

Our proposal: Streaming Messages

FPGA 0

APP

FPGA 1

APP

FPGA 2

APP

FPGA 3

APP Transport
Layer

Transport
Layer

Transport
Layer

Transport
Layer

Channel channel(N, my_rank + 2, 0); // Dynamic target
#pragma pipeline
for (int i = 0; i < N; i++)

channel.Push(compute(data[i]));

dcba

Combines the best of both worlds:
 Channels are transiently established, as ranks

are specified dynamically
 Data is pushed to the channel during

processing in a pipelined fashion

Key facts:
 Each channel is identified by a port, used to

implements an hardware streaming interface
 All channels can operate in parallel
 Ranks can be programmed either in a SPMD or

MPMD fashion

spcl.inf.ethz.ch

@spcl_eth

A communication interface for HLS programs that exposes primitives for both point-to-point and collective communications

7

Streaming Message Interface

Point-to-Point channels are unidirectional FIFO queues used to send a message between two endpoints:

void Rank0(const int N, /* ...args... */) {

SMI_Channel chs = SMI_Open_send_channel(// Send to

N, SMI_INT, 1, 0, SMI_COMM_WORLD); // rank 1

#pragma pipeline // Pipelined loop

for (int i = 0; i < N; i++) {

int data = /* create or load interesting data */;

SMI_Push(&chs, &data);

} }

void Rank1(const int N, /* ...args... */) {

SMI_Channel chr = SMI_Open_recv_channel(// Receive from

N, SMI_INT, 0, 0, SMI_COMM_WORLD); // from rank 0

#pragma pipeline // Pipelined loop

for (int i = 0; i < N; i++) {

int data;

SMI_Pop(&chr, &data);

// ...do something useful with data...

} }

spcl.inf.ethz.ch

@spcl_eth

A communication interface for HLS programs that exposes primitives for both point-to-point and collective communications

8

Streaming Message Interface

Point-to-Point channels are unidirectional FIFO queues used to send a message between two endpoints:

void Rank0(const int N, /* ...args... */) {

SMI_Channel chs1 = SMI_Open_send_channel(N, SMI_INT, 1, 0, SMI_COMM_WORLD); // Send to rank 1

SMI_Channel chs2 = SMI_Open_send_channel(N, SMI_FLOAT, 2, 1, SMI_COMM_WORLD); // Send to rank 2

#pragma pipeline // Pipelined loop

for (int i = 0; i < N; i++) {

int i_data = /* create or load interesting data */;

float f_data = /* create or load interesting data */;

SMI_Push(&chs, &i_data);

SMI_Push(&chs2, &f_data);

} }

Communication is programmed in the same way data
is normally streamed between intra-FPGA modules

Data elements are sent in order

Calls can be pipelined in single clock cycle

spcl.inf.ethz.ch

@spcl_eth

Collective channels are used to implement collective communications. SMI defines Bcast, Reduce, Scatter
and Gather

9

Streaming Message Interface

void App(int N, int root, SMI_Comm comm, /* ... */) {

SMI_BChannel chan = SMI_Open_bcast_channel(

N, SMI_FLOAT, 0, root, comm);

int my_rank = SMI_Comm_rank(comm);

#pragma pipeline // Pipelined loop

for (int i = 0; i < N; i++) {

int data;

if (my_rank == root)

data = /* create or load interesting data */;

SMI_Bcast(&chan, &data);

// ...do something useful with data...

} }

 If the caller is the root, it will push data
towards other ranks

 otherwise it will pop data elements from
network

SMI allows multiple collective communications
of the same type to execute in parallel

spcl.inf.ethz.ch

@spcl_eth

SMI channels are characterized by an asynchronicity degree K ≥ 0:
the sender can run ahead of the receiver by up to K elements

10

Buffering and Communication mode

Point-to-Point Communication modes: Eager (if N ≤ K) and Rendez-vous (otherwise)

Collectives: we can not rely on flow control alone. Example: Gather

R0 Ri Ri+1

To ensure correctness, the implementations need to synchronize ranks, depending on the used collective

For Gather, the root communicates to each rank when it is ready to receive

Ri RjK

SMI_GatherChannel chan = SMI_Open_gather_channel(

N, SMI_FLOAT, 0, root, comm);

#pragma pipeline // Pipelined loop

for (int i = 0; i < N; i++) {

int data;

if (my_rank != root)

data = /* create or load interesting data */;

SMI_Gather(&chan, &data); // Data is streamed

if (my_rank == root) // ...do something useful with data...

}

spcl.inf.ethz.ch

@spcl_eth

We implemented a proof-of-concept HLS-based implementation (targeting Intel FPGA)

11

Reference Implementation

Port numbers declared in Open_channel primitives
are used to lay down the hardware

SMI implementation organized in two main components

Messages packaged in network packets, forwarded using packet switching on dedicated intra-FPGA connections

32 Bytes

spcl.inf.ethz.ch

@spcl_eth

Each CK has a dynamically loaded routing table that
is used to forward data accordingly

12

Reference implementation

If the network topology or number of rank change, we just
need to rebuild the routing tables, not the entire bitstream

Collectives are implemented using Support Kernels:

APPL

BCAST

CKS CKR

SKBCAST

Each FPGA net. connection is managed by a pair of
Communication Kernels (CK)

spcl.inf.ethz.ch

@spcl_eth

13

Development Workflow

1. The Code Generator parses the user devices code and creates the SMI communication logic

2. The generated and user codes are synthesized. For SPMD program, only one instance of the bitstream is generated

3. A Routes Generator creates the routing tables (user can change the routes w/o recompiling the bitstream)

4. The user host program takes routing table and bitstream, and uses generated host header to start all SMI components

spcl.inf.ethz.ch

@spcl_eth

14

Evaluation

Testbed: 8 Nallatech 520N boards (Stratix 10), each with 4x 40Gbit/s QSFP, host attached using PCI-E 8x

FPGA0

FPGA1

FPGA2

FPGA3

FPGA4

FPGA5

FPGA6

FPGA7

We wish to thank the Paderborn Center for Parallel Computing (PC2) for granting access, support, maintenance, and upgrades on their Noctua multi-FPGAs system.

Evaluation over different topologies simply by changing the topology file

The FPGAs are organized in 4 host nodes, interconnected with an Intel Omni-Path 100Gbit/s network

FPGA0:port0 – FPGA1:port2
FPGA0:port1 – FPGA2:port4
FPGA0:port2 – FPGA1:port0
FPGA0:port4 – FPGA6:port1
…

2D-Torus.json

FPGA0:port2 – FPGA1:port0
FPGA1:port1 – FPGA3:port4
FPGA3:port0 – FPGA2:port2
FPGA2:port1 – FPGA4:port4
…

Bus.json

spcl.inf.ethz.ch

@spcl_eth

15

Microbenchmarks

Latency (usec) – P2P

Bandwidth – P2PResource Utilization

spcl.inf.ethz.ch

@spcl_eth

16

Microbenchmarks
Broadcast

Reduce

Resource Utilization

spcl.inf.ethz.ch

@spcl_eth

GESUMMV: MPMD program over two ranks

17

Applications

SPMD: spatially tiled 2D Jacobi stencil (same bitstream for all the ranks)

spcl.inf.ethz.ch

@spcl_eth

18

Summary

