
Protocols for Fully Offloaded Collective Operations

on Accelerated Network Adapters

Timo Schneider, Torsten Hoefler

ETH Zurich

Dept. of Computer Science

Universitätstr. 6

8092 Zurich, Switzerland

Email: {timos,htor}@inf.ethz.ch

Ryan E. Grant, Brian Barrett, Ron Brightwell

Sandia National Laboratories*

P.O. Box 5800, MS-1110

Albuquerque, NM 87185-1110

Email: {regrant, bwbarre, rbbrigh}@sandia.gov

Abstract—With each successive generation, network adapters
for high-performance networks are becoming more powerful and
feature rich. High-performance NICs can now provide support
for performing complex group communication operations on the
NIC without any host CPU involvement. Several “offloading
interfaces” have been designed with the collective communications
goal being the complete offloading of arbitrary communication
patterns. In this work, we analyze the offloading model offered
in the Portals 4 specification in detail. We perform a theoretical
analysis based on abstract communication graphs and show
several protocols for implementing offloaded communication

schedules. Based on our analysis, we propose and implement
an extension to the portals 4 specification that enables offloading
any communication pattern completely to the NIC. Our measure-
ments with several advanced communication algorithms confirm
that the enhancements provide good overlap and asynchronous
progress in practical settings. Altogether, we demonstrate a
complete and simple scheme for implementing arbitrary offloaded
communication algorithms and hardware. Our protocols can act
as a blueprint for the development of communication hardware
as well as middleware while optimizing the whole communication
stack.

I. MOTIVATION

Moore’s law is still going strong despite the end of fre-
quency and Dennard scaling. CPU and chip vendors have man-
aged to maintain Moore’s law by going broad, i.e., duplicate
functional units (e.g., cores or vector units) and/or add new
functionality to chips. Thus, several microprocessor vendors
began extending core functionalities of chips. For example,
functionalities that were traditionally in a north bridge, such
as a memory controller, are now commonly included in main
CPUs. Similarly, networking chips have become more power-
ful and are to be integrated into next-generation CPUs.

The growing number of cores per network endpoint in-
creases the requirements for the network and memory inter-
faces. Modern multi-core CPUs already scale the number of
memory controllers with the cores, similarly, network inter-
faces may follow. High-performance networks provide much
more complex functionality than memory controllers. Thus,
it seems reasonable to devote some silicon to performing
advanced functions.

*Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy’s Na-
tional Nuclear Security Administration under contract DE-AC04-94AL85000.

The most important parameters of today’s networks are
latency, bandwidth, and message-rate. Therefore, modern net-
works are highly tuned to provide high performance for these
metrics. However, many algorithms from scientific computing
and other fields, such as databases, operating systems, and fi-
nancial computations, use advanced communication algorithms
over sets of processes. These are often called “collective com-
munications” in high-performance computing (HPC) and they
are important to many types of applications. Their increased
complexity over standard point-to-point communications and
participation of multiple processes make them important to
overall communication performance, as well as a prime target
for efforts to enhance network performance.

Several network interfaces such as Quadrics, Myrinet, and
Mellanox ConnectX2 include hardware that can support the
execution of collective operations directly on the network
interface without involving the (relatively distant) CPU. This
also allows the CPU to perform other tasks asynchronously
instead of serving network interrupts. Current networks are
limited to specific hardware and MPI operations. A more
flexible solution that can support arbitrary communication
topologies would lessen these existing limitations.

In this work, we aim to generalize the collective communi-
cation problem to describe interfaces and protocols for acceler-
ated network offloading. We generalize collective algorithms
to arbitrarily complex communication topologies or overlay
networks. We use several existing designs to derive protocols
and an interface extension to an existing “network offload”
mechanism to enable full offload (acceleration) of arbitrary
communication algorithms.

Fully offloading communication algorithms provides sev-
eral benefits: (1) it directly reduces latency by avoiding inter-
action with the main CPU and thus speeds up applications;
(2) it reduces the power consumption of a system by saving
data transfers between different domains (NIC, CPU); (3) it
enables the CPU to perform computations without interruption
to serve communications, and (4) it reduces the influence of
small performance variations (“System noise” [1]) to large-
scale applications.

Accelerated network interfaces are relevant for off-chip
as well as on-chip communications. Off-chip communications
often suffer from higher latencies that can be reduced by
handling communication algorithms in the network interface.

Such additional latencies can be up to 500 ns while network
transfers only take 800 ns. Indeed, Underwood et al. demon-
strated a 30% latency improvement due to communication
offload [2]. It’s less obvious for on-chip networks since they
are not suffering from the latency issue and the data is always
close, however, very simple cores can suffer significantly
from pipeline stalls and network interrupts. Thus, a simple
communication offload engine can be very useful in such a
situation as well.

As discussed before, current interfaces are either limited
to certain hardware configurations or to communication algo-
rithms. The most flexible interface is the Portals 4 specifi-
cation [3] that offers so called “triggered operations” which
can be used to perform several actions when messages arrive.
This allows one to implement a basic set of algorithms [1], [2].
However, the current interface is limited and does not allow full
offload. Thus, we discuss the limits of this approach, propose
several protocols to enable as much offloading as possible,
and discuss a simple extension that will enable full offloading
capabilities.

To summarize, the key contributions of our work are:

• We discuss several practical issues such as schedule
reuse and cross-matching and provide protocols to
enable an implementation of our approach.

• We demonstrate our implementation using a Portals 4
reference implementation with a rich set of collective
algorithms that can all be run without intervention of
the CPU.

• We show how to design an interface that enables
full offload for arbitrary communication schedules
enabling the implementation of accelerated overlay
networks with arbitrary topologies

Our discussions provide new insights into the requirements
of communication algorithms and our interfaces (extended
Portals 4) and protocols can directly be used by hardware
designers to develop a generic network offload infrastructure.

We first start with a discussion of necessary semantics to
implement communication algorithms followed by a discussion
of Portals 4. We then demonstrate protocols to implement fully
offloaded communication algorithms over Portals 4 and we
raise several issues. We then provide a proposed extension
to Portals 4 to better support offloading arbitrary collective
communication schedules. In our experimental evaluation, we
demonstrate the usefulness of our approach in practice and
conclude with a discussion and outlook.

II. COMMUNICATION SCHEDULES AS DEPENDENCY

GRAPHS

Message Passing Interface (MPI) [4] libraries implement
collective operations as communication algorithms and are
thus a good example for our discussion. In such libraries,
e.g., MPICH [5] or Open MPI [6], collective operations are
commonly built on top of point-to-point communications. Each
collective implementation is a piece of (most often C) code that
calls basic point-to-point or RDMA communication primitives.
An example of such an implementation is given in Listing 1. In
this simple barrier implementation each non-root node signals

its arrival at the barrier by sending a zero-length message to
the root and then waits for another zero length message from
the root which signals the end of the barrier. The wait step is
implemented using a blocking receive operation.

The root process uses non-blocking communication since it
sends and receives multiple messages. Non-blocking commu-
nication primitives allow the parallel processing of messages
in this case. The root explicitly waits for communication steps
to finish using the wait all() function.

/*All non-root send & receive zero-length message.*/

if (rank > 0) {

send(NULL, 0, MPI_BYTE, 0, i, ...);

recv(NULL, 0, MPI_BYTE, 0, MPI_ANY_SOURCE, ...);

}

/*The root collects and broadcasts the messages.*/

else {

for (i = 1; i < size; ++i) {

irecv(NULL,0,MPI_BYTE,MPI_ANY_SOURCE,...,&(reqs[i]));

}

wait_all(size-1, reqs+1, MPI_STATUSES_IGNORE);

for (i = 1; i < size; ++i) {

err = isend(NULL, 0, MPI_BYTE, i,...,&(reqs[i]));

}

wait_all(size-1, reqs+1, MPI_STATUSES_IGNORE);

}

Listing 1. Open MPI Barrier implementation for small communicators

This way of implementing collective operations is well
suited for a host CPU centric message passing framework.
However, it is rather difficult to use such an implementation
for offloading the collective execution to a co-processor. As
the collective is implemented in C, the co-processor itself
would have to be able to execute (compiled) C code. The code
above is also hard to understand because dependencies between
send and receive operations are expressed in two different
ways. In the non-root case the receive cannot start before the
blocking send is completed. This is not explicitly stated, it is
a result of the control flow in the program. In the root case
the dependencies are made explicit using wait all().

This makes it hard to reason about properties of collectives
implemented in such a way. It is not clear if the implicit
dependency in the non-root case is a side-effect of the control
flow or necessary for the communication.

Hoefler et al. [7] describe the idea of expressing collective
operations as a dependency graph between simple networking
primitives, such as send and receive in a system called cDAG.
They also included the possibility to specify transformations
on process-local data.

A. Semantics of cDAG

In the following we will describe the semantics of cDAG,
a communication framework based on those ideas.

Communication patterns are expressed as a graph G =
(V,E). The vertices V of this graph are send and receive
operations as well as arithmetic operations on local data, the
edges of this graph are dependencies. An edge e = (u, v)
between two operations, u and v, means that the operation v
must not start before the operation u has completed.

A send operation s is defined as a tuple includ-
ing buffer, length, source, destination, and matching tag:

(sbuf , slen, ssrc, sdst, stag), the definition of a receive is like-
wise (rbuf , rlen, rsrc, rdst, rtag). The complete communica-
tion algorithm is finished as soon as all vertices are completed.
We define the completion of sends and receives as follows:

A send is completed as soon as it is guaranteed that
modifications of the memory range mem[sbuf , sbuf + slen] at
rank ssrc do not change the contents of the message delivered
to the remote rank. Likewise, a receive is completed as soon as
the memory range mem[rbuf , rbuf + rlen] contains the value
delivered by the matching send. That is, any load from that
address range (in a send or by the host CPU) will result in
reading the new values.

Messages can have tags to identify different channels.
Receives only “match” with sends that have identical tags as
specified in the receive (a special wildcard tag is available).
In the following we will describe the matching semantics of
cDAG: If a send operation s is started (which means that the
cDAG schedule execution was started and for all edges (x, s) ∈
E, x has completed), it is added to the set of outstanding
sends. Similar, when a receive is started, it is added to the set
of outstanding receives. The (partial) order in which elements
are added to the outstanding sends and receives set is defined
by the happens-before relation introduced by the dependencies,
as well as matches. If the outstanding sends set contains an el-
ement s and the outstanding receives set contains an element r
with sdst = rdst∧ssrc = rsrc∧stag = rtag∧slen = rlen those
two elements match, both are removed from the outstanding
sends and outstanding receives set, before other vertices are
added. When two operations s and r match we show this,
where needed, by drawing a “matching edge” (dashed arrows
in Figure 1). Edges introduced by deterministic matches imply
a similar happens-before relationship than dependency edges:
if there exists a matching edge (s, r) the receive operation
r can not finish before s is started (whereas, if it were a
dependency-edge, r could not start before s was finished).

Since the happens-before relation introduced by dependen-
cies is only partial, it is possible to construct cDAG graphs
which contain multiple possibilities to match sends to receives,
such as shown in Figure 1. In such a case it is undefined which
send will be matched to which receive.

Fig. 1. Non-deterministic matching example: The cDAG semantics do not
define which send matches which receive

There are no dependencies (neither a directed edge, nor a
path) between the two sends, therefore the scheduler is free to
start them in any order and thus allow both matchings shown.
If a cDAG schedule contains non-determinism, the user has to
ensure that all possible matchings are correct.

To perform collective communication with cDAG, a cDAG
graph has to be assembled first, by adding operations and
dependencies between them. Graph assembly is process-local.
When the cDAG graph is complete it has to be compiled in

a collective call. This enables the runtime to perform opti-
mizations on the graph or change its internal representation.
A compiled graph can then be executed as a non-blocking
collective operation. To test for completion, the user can use
a non-blocking test-function or a blocking wait-function.

With those semantics all communication patterns that can
be expressed in the message passing paradigm can be captured.

B. Collective Operations in cDAG

The cDAG abstraction allows the implementation of col-
lective operations in a convenient manner. We implemented
several variants of the collectives defined by the MPI standard
in the libNBC library [8]. Originally libNBC implemented col-
lective operations in a round-based fashion, all communication
operation in a round had to be finished before the next round
could start. We changed its internal scheduler to utilize cDAG
graphs to enable a higher degree of flexibility in expressing
dependencies between communication operations. We are now
able to link against different cDAG backends, i.e., for MPI,
Cray DMAPP [9], or Portals 4, as presented in this paper.
Table I shows all of the variants of collectives that have been
implemented.

The variants listed in Table I have not been implemented
in code, unlike what a typical MPI implementation would
do. Instead we leveraged the graph-based nature of cDAG to
define a dataflow graph (which defines which data item has
to be communicated from where to where) and a topology
graph (which defines which communication topology, i.e., a
binomial tree or a ring) the dataflow graph should be mapped
onto. The created cDAG schedule then combines both graphs.
This allows us to provide many variants for each collective
communication function; for example the “Tree” variant is
able to be used with k-ary as well as with k-nomial trees,
for different values of k, by changing a single parameter in
a function call. This vast set of varieties could be used for
auto-tuning collectives during run-time in the future.

III. A CASE STUDY: PORTALS 4

We now discuss how to use triggered operations to im-
plement full offloading of arbitrary communication patterns
that have been specified in cDAG. These operations start
when a counter reaches a predefined threshold. The supported
operations are: PtlPut, PtlGet, PtlAtomic, PtlFetchAtomic,
PtlSwap, PtlCTInc, and PtlCTSet.

Portals supports both matching and non-matching com-
munication mechanisms. The matching interface offers much
greater flexibility in target side message handling, at the cost
of message reduced processing rate. In this text we will only
consider the matching interface because matching is needed
to offload complex communication schedules. Without it one
can not differentiate between different messages without host
CPU involvement. Before data can be sent or received over
Portals, the network interface has to be initialized, but we will
not concern ourselves with the initialization process here.

If we want to send data from one node to another, we have
to set up a memory-descriptor data structure. This contains

Collective Implemented Variants

MPI Broadcast Pipelined k-ary and k-nomial Tree, Pipelined Linear, round-optimal

MPI Scatter Pipelined k-ary and k-nomial Tree, Pipelined Linear

MPI Gather Pipelined k-ary and k-nomial Tree, Pipelined Linear

MPI Allgather Ring, Butterfly, Pairwise Exchange, Dissemination, Broadcast after Gather

MPI Barrier Butterfly, Pairwise Exchange, Dissemination, Broadcast after Reduce

MPI Alltoall Pairwise Exchange

MPI Reduce Pipelined k-ary and k-nomial Tree, Pipelined Linear

MPI Reduce scatter Pairwise Exchange, Scatter after Reduce

MPI Allreduce Butterfly, Dissemination, Broadcast after Reduce

MPI Scan Pipelined Linear

MPI Exscan Pipelined Linear

TABLE I. COLLECTIVES IMPLEMENTED IN LIBNBC USING THE CDAG ABSTRACTION

information about the start and length of the described buffer.
We can also choose to let Portals count events associated
with this memory region, for example how many times this
buffer has been sent. If we want to do such counting, the
counter handle is also included in the memory descriptor data
structure. The counter itself is set up with PtlCTAlloc. After
the memory descriptor is set up, it is registered with Portals
with the PtlMDBind. A more detailed code snippet is shown
in Listing 2.

ptl_md_t send_md;

ptl_handle_me_t send_md_handle;

send_md.start = &one;

send_md.length = sizeof(uint64_t);

send_md.options = PTL_MD_EVENT_CT_SEND;

send_md.eq_handle = PTL_EQ_NONE;

PtlCTAlloc(ni_logical, &send_md.ct_handle);

PtlMDBind(ni_logical, &send_md, &send_md_handle);

PtlPut(send_md_handle, 0, sizeof(uint64_t), PTL_NO_ACK_REQ,

peer, logical_pt_index, 1, 0, NULL, 0);

PtlCTWait(recv_value_me.ct_handle, 1, &ce);

Listing 2. Sending data with Portals

After we set up the memory descriptor we can pass it to a
remote process using PtlPut. The last line in this Listing shows
one way of utilizing the counter that we set up: PtlCTWait
will block until the specified counter reaches a given value.
But simply waiting for the counter to reach a specified value
does not help us to offload a more complicated communication
pattern. Therefore Portals also offers a way to trigger new
operations, based on counting events.

To receive data we have to set up a match list entry. The
match list entry contains information on the source of the
incoming message and how to handle it. We can also specify
from which rank we expect a message and from which user.
Further, we can specify 64 match bits, which are masked by
the same amount of ignore bits. In the previous example we set
the value of the match bits to 1. We can receive this message
as follows:

recv_value_me.start = &will_be_one;

recv_value_me.length = sizeof(uint64_t);

PtlCTAlloc(ni_logical, &recv_value_me.ct_handle);

recv_value_me.uid = PTL_UID_ANY;

recv_value_me.match_id.rank = PTL_RANK_ANY;

recv_value_me.match_bits = 1;

recv_value_me.ignore_bits = ˜1;

recv_value_me.options = PTL_ME_OP_PUT | PTL_ME_EVENT_CT_COMM

| PTL_ME_EVENT_COMM_DISABLE;

PtlMEAppend(ni_logical, 0, &recv_value_me, PTL_PRIORITY_LIST

, NULL, &recv_value_me_handle);

Listing 3. Receiving data with Portals

First, we specify where the message should be stored and
how long it is. Then we allocate another counter, which we will
use to count the Put commands that wrote to that buffer. We
will accept messages from any rank and any user. Furthermore
one can specify a 64 bit wide “tag” the message must have to
match to this match list entry with the match bits field. The
ignore bits field specifies which bit of the 64 match bits should
be ignored for matching. After the match entry is complete
we pass it to Portals with the PtlMEAppend function. This
function inserts the match list entry at the end of the match
list. If a message does not match any match list entry, it is
dropped by the receiver.

Fig. 2. Simplified overview of the trigger mechanism in Portals: A match list
entry and memory descriptors can increment a counter upon certain events.
Triggered operations can be set up to be executed when a counter reaches a
predefined threshold. In our drawings we use stars to symbolize the trigger
event caused by reaching the threshold value.

In Figure 2 we show an overview of the components
involved in Portals triggered operations. We have to create
memory descriptors and match list entries to send and receive
data. Memory descriptors can be associated with a counter
which can count the number of sends (put), reply events
(get), acknowledgments, or the number of send/received bytes.
Match list entries can also be associated with a counter and
they are capable of counting the number of matched put, get
and atomic operations (or the number of affected bytes). The
counters are associated with triggered operations (put, get,
atomic, counter-increment, and counter-set) which are executed
when the counter reaches a certain threshold. The thresholds
can be set for each triggered operation independently. Note that
this does not reflect all data structures and constructs actually
used by Portals, it shows only those relevant to triggered
operations and the matching interface.

In both examples we did not use the offload features that
Portals offers. With Portals we can make the hardware react to
incoming messages without involving the host CPU. The way
this is done is shown in Figure 3.

Fig. 3. Triggered response to a message: After the relevant data structures are
set up (c.f., Fig 2) the m1 matches a match list entry at the receiver, this match
increments a counter, which triggers the execution of a PtlTriggeredPut. The
numbers identify the different trigger events.

As shown in the previous code listings we have to set
up the memory descriptors for sending and the match entries
for receiving on each process. For both processes we add
a counter to the matching entry to count the number of
matched messages. On process 1 we use this counter in a
PtlTriggeredPut operation, which executes a PtlPut as soon
as the specified counter reaches a certain threshold. After these
preparations, we need to synchronize the processes to ensure
that process 0 will not send m1 before process 1 has posted
the corresponding match entry. After we send m1 from process
0, we can perform a blocking wait on the counter attached to
process 0’s matching entry with the PtlCTWait function. Note
that we do not have to give the control to Portals again after the
initialization on process 1 to make the ping-pong work. Portals
triggered operations provide full asynchronous progress, so we
do not need periodic calls to a test-function like in MPI (see
[10] on progressing non-offloaded communication) to ensure
progress.

Portals does not allow triggered changes to the entries
in the match list or in the memory descriptor list. However,
it is possible to define whether a matching entry should be
persistent or match only once.

IV. FULLY ASYNCHRONOUS COLLECTIVES

We now discuss how triggered operations can be used
to implement a cDAG interpreter. We will show how we
use common protocols that have been used for CPU-driven
applications in the context of full offloading of arbitrary
communications to the network interface.

The point-to-point protocol design is important for cDAG-
over-Portals because, unlike MPI, Portals does not buffer
messages. On the other hand it does not require an exchange of
information (i.e., pre-calculated destination addresses) between
sender and receiver before any data can be sent like RDMA, as
Portals supports message matching. In this section we explain
the options for implementing cDAG semantics over Portals.

Of course we can always emulate buffering semantics
by providing shadow buffers (buffers that are allocated by

the runtime in the compile phase) on the receiver for each
message that we will receive in the execution phase. This
approach requires additional memory and messages have to
be copied from the shadow buffers to the user buffers at
the receiver. The advantage of such an approach is that this
protocol does not need any control messages and does not send
data needlessly. Therefore such an eager protocol should be
used for small messages, where the buffering does not cause
too much overhead.

If we do not buffer unexpected messages we have to
guarantee that the sender does not overwrite the message by
receiving into the same buffer again before the message was
matched by the receiver. Ensuring this kind of synchronization
will always require additional messages. An overview of how
point-to-point messaging can be implemented is shown in
Figure 4.

Fig. 4. Hierarchy of point-to-point protocols: The eager protocol ensures
reliable delivery by storing all incoming messages at the receiver, dequeuing
them when a matching receive is posted. The rendezvous protocol ensures that
the receiver already posted the receive. A third option is to resend messages
until they are acknowledged by the receiver.

Buffering at the sender with a rendezvous protocol can
be done in two ways: Either the sender initiates the message
transfer, by sending a message header to the receiver, and the
receiver buffers those (small) message fragments and replies
when he is ready to receive the message (or used a RDMA Get
operation to receive it). We call this sender-initiated transfer.
Another approach is for the receiver to signal when he has the
receive buffer for a specific message available, upon receiving
such a signal the sender replies with the message data. We
call this approach receiver-initiated. For messages below a
certain threshold length, it is often more efficient to copy
them to a temporary buffer at the receiver, until the receive
buffer is ready. This avoids synchronization but needs more
buffer space. This approach is called “eager protocol”. The
third approach is to transmit a message and wait for an
acknowledgment from the receiver. If this acknowledgment is
not received before a timeout, the message is retransmitted.
Such a protocol is rarely used in high-performance networks
because it wastes bandwidth and increases the latency because
a late receiver always has to wait until the next timeout elapses
at the sender.

A. Fully offloaded Rendezvous Protocols

By combining/chaining counters we can execute arbitrary
sequences of put/get operations. However, we can not influence
if/to which match list entry a message matches asynchronously.
In [14], Barrett et al. propose a ”triggered rendezvous proto-
col”, however, the decision if a message is an expected or
unexpected message can not be made without host CPU in-
volvement. In Figure 3 in their paper they use a PtlMEAppend
call to differentiate between the two, in the text they write
“If the message is expected, the first part of the message
is delivered directly into the receive buffer, otherwise it is
delivered into bounce buffers”. This differentiation is done by
the aforementioned PtlMEAppend call. Since Portals offers no
triggerable functions to modify the match list, it is impossible
to implement a sender-initiated rendezvous protocol (where
the receiver has to decide if a message goes to the receive-
or a bounce-buffer) with Portals if we demand that the state-
change of a receive from “not-posted” to “posted” should be
done without host involvement.

Without host CPU involvement, the only way we can
change the status of a receive from non-posted to posted
is by incrementing a counter, this in turn can trigger puts,
gets or other counters to be incremented. So a possibility
for implementing a truly asynchronous rendezvous protocol,
where the state-change of a message is done without host CPU
involvement, is to have a separate memory space on each node,
which collects the state of all receive operations for which the
node is a possible sender. A local state-change from non-posted
to posted receive would then trigger a send to this table. Each
entry in this table belongs to a separate match list entry, which
in turn triggers the send of the message. The problem with this
is that it only works with pre-matched messages, because we
have to know for each receive which remote send it matches
to!

The pre-matching of messages removes all non-
determinism from the cDAG schedules and the pre-matching
itself costs time. This is acceptable for collectives that are
executed repeatedly (with the same buffer arguments, so that
the underlying cDAG schedule they are translated to stays
the same). We analyzed the overhead of dynamic matching
in [15].

Corollary: We conclude that, to support the offload of
arbitrary communication topologies, the accelerator should
be able to change the match list, otherwise pre-matching of
messages is required.

B. Offloaded Rendezvous Protocol with pre-matched Messages

In the following we describe how a rendezvous protocol,
which does not involve the host CPU, can be expressed using
triggered operations if we assume pre-matched messages. The
basic idea is to trigger the sending of a ready-to-receive-flag at
the receiver, which uses tags to match a specific matching entry
at the sender, where it triggers the send of the actual message.
Figure 5 shows the flow of messages in this protocol.

Each of the n send/receive operations in the local schedule
has a unique id ∈ (0...n − 1). For each of the operations
we allocate one byte of local memory. This byte is called
the “status-flag” of the corresponding operation. The addresses

Fig. 5. Rendezvous protocol used to express pre-matched cDAG graphs with
Portals triggered operations

for each receive status flag are communicated to the matching
send.

For each receive there is an enabled-counter which is
incremented once when an operation the receive depends on is
finished. For each receive there is also a triggered put operation
which is triggered at a threshold of indeg(id), the number of
incoming edges (or direct dependencies) of the receive oper-
ation in the cDAG graph. The triggered put sends a message
to the sender which matches a match list entry which makes
sure that the message gets received into the status-flag of the
corresponding receive. We use the match bits to differentiate
between those control messages and messages carrying user
data. The matching match list entry will increment the counter
for the send. Each send has a triggered put operation set up,
which is triggered at a threshold of indeg(id)+1 and will send
the user data to the receiver, where it is matched by a match
list entry which causes the enabled-counter of each dependent
operation of the receive to be incremented by one, since the
receive is now finished.

Figure 5 gives an example of how a portion of a cDAG
schedule can be translated into Portals triggered operations.
Note that this protocol requires synchronization across all
participating processes to perform the pre-matching as well
as to ensure that all match list entries are posted before
any process sends its first message. Since the MPI standard
mandates that “all calls [to non-blocking collectives] are local
and return immediately, irrespective of the status of other
processes” a non-blocking barrier has to be used in order
to be MPI compliant. The setup of this non-blocking barrier
can be done during the creation of each communicator or
group. Upon completion of this non-blocking barrier, the initial
sends and receives (which do not have incoming dependencies

in the initial cDAG schedule) are triggered. Note that if an
implementation wants to allow n outstanding non-blocking
collectives it has to prepare n such non-blocking barriers.

For all protocols described in this work, the tag space has
to be used to ensure three different things:

• To discriminate between the different types of control
messages (ready-to-send, ready-to-receive, actual data
messages, etc.). A small number of bits is sufficient
for this task.

• To discriminate between simultaneously outstanding
schedules. Since all schedules are started collectively
we can maintain local free-lists of schedule-tags.

• To support tags in cDAG operations itself. If a cDAG
operation uses ANY TAG in a receive we mask out
this part of the match bits.

C. Offloaded Rendezvous Protocol without pre-matched Mes-
sages

For a fully offloaded rendezvous protocol, which does not
require pre-matched messages we need some way of manip-
ulating the match list with triggered operations. Probably the
simplest operation of such a kind is PtlTriggeredMEAppend
together with a triggered version of PtlMEUnlink. This is not
yet a part of the released Portals API, but we implemented it
as a possible extension to make it more versatile.

We use this proposed functionality in the rendezvous
protocol shown in Figure 6.

Fig. 6. Rendezvous protocol used to translate cDAG to Portals triggered
operations without pre-matching of messages.

When a send is activated (all nodes at the tails of incoming
edges in the communication DAG are finished) a match list
entry for a “ready-to-receive” (RTR) message is appended to
the match list (via PtlTriggeredMEAppend). The message
types are discriminated by using two bits of the (64 bit)
tag space. The trigger that “enables” the send operation also
triggers a put operation of a “ready-to-send” (RTS) message
to the peer. The match list entry for the RTR message triggers
a put of the actual data. The fact that the receiver sends the
RTR message before the data is transferred ensures that the
receiver has posted a match list entry for the data.

On the receiver side we append a match list entry for the
RTS together with the match list entry for the actual data we
expect in this receive. We count the matches on the RTS match
list entry and if we detect a match of an RTS we send a new
RTR message, in case the receiver dropped the previous one.
Each match list entry is set up to match only once.

D. Offloaded Eager Protocol

For small messages the latency added by the synchroniza-
tion step of the rendezvous protocol is high compared to the
latency of the actual data transfer. Furthermore, if a node
only receives a small number of such small messages, the
available memory at the node is enough to allow buffering such
messages. For this reason most available MPI implementations,
such as MPICH and Open MPI, use a threshold value (often
around 4 KB message size) to decide which messages should
be sent using an eager protocol, and which messages should be
sent using a rendezvous protocol. With the semantics provided
by Portals 4 triggered operations it is possible to implement a
fully offloaded eager protocol.

Fig. 7. Eager protocol used to execute pre-matched cDAG schedules using
Portals triggered operations

For each small message receive operation r we allocate
a shadow buffer of the size r.size. For each message that

should be received over the course of the schedule execution
there have to be two match list entries. The first entry is used
only once and is deleted from the match list upon its first use.
This entry matches an incoming message and places it in the
appropriate shadow buffer. This match increments a counter to
save the information that this message was already delivered.
If the receive for this message is posted, the same counter is
incremented again. So the second time this counter is increased
we know that a) the message was received and b) that the
corresponding receive has been posted. Therefore we can now
copy that message from the shadow buffer into the user buffer.
Only after the message has been copied we can resolve the
outgoing dependencies of the receive, because the following
operations might work on the data in the user buffer. Figure 7
shows how a portion of a cDAG schedule can be executed
using Portals triggered operations, using an eager protocol.
Figure 8 shows the automata which is applied to each vertex
of the cDAG graph to translate its semantics into Portals API
calls.

Fig. 8. Automata used to perform cDAG to Portals translation for the eager
protocol

Unfortunately, Portals does not provide triggered opera-
tions to copy data from one memory descriptor to another.
However, we can work around this problem by triggering a
put to ourselves and having the second match list entry we
mentioned before match only such self-sent puts.

V. EXPERIMENTAL EVALUATION

The benchmarks in this section have been carried out
on the Teller system at Sandia National Laboratories. Teller
is a 104 node cluster of single socket AMD Llano Fusion
processors. Each processor includes both a quad core 2.9 Ghz
K10 (piledriver) processor and a 400 core 600 Mhz Radeon
HD 6550D. For these experiments only the K10 processor was
utilized. Each node has 16 GB of DDR3-1600 Mhz memory
and nodes are connected via Qlogic QDR InfiniBand.

Currently no available network adapter supports Portals 4
triggered operations in hardware. However, the Portals 4.0 ref-

erence implementation [16] allows for the emulation of Portals
specification compliant hardware. It supports the use of two
different transports: OFED compatible network interfaces (i.e.,
InfiniBand, iWARP), and UDP. As Portals network interfaces
provide for offloaded communication, the software reference
implementation utilizes a progression thread spawned from
each compute process. The progression thread polls the rel-
evant event queue (an OFED EQ for IB and socket for UDP),
and handles the reception of data and any subsequent triggered
operations without the need for interaction with the compute
thread. We are currently exploring alternative methods to
provide progression without requiring a progress thread per
every compute process.

We use the NBCBench [8] benchmark tool to compare the
overlap of an implementation of a broadcast performed with
cDAG-over-Portals with the one performed by cDAG-over-
MPI, and we compare the non-overlappable part of the latency
of the broadcast using our Portals implementation, as well as
MPICH. Please note that the idea behind cDAG is not only to
provide MPI collectives, but also to enable the formulation
of any collective operation. We use MPI collectives for a
comparison because they are some of the most well tuned
complex communication operations available.

Fig. 9. Overlap for a Broadcast operation, performed with a cDAG interpreter
which uses MPI as transport layer

NBCBench uses a work-loop, which is calibrated at the be-
ginning of the benchmark, so that it takes the same time as the
communication. To determine the overlap, the compute-loop is
started after the (non-blocking) communication operation. By
comparing the difference in execution time of the work-loop
and the communication when run together compared to the
not overlapped variant we can calculate which fraction of the
communication is overlappable. A detailed description of this
method can be found in [10].

In our first experiment, we compare the implementation of
a broadcast in libNBC when using cDAG-over-MPI implemen-
tation, to a variant which uses cDAG-over-Portals, so only the
low-level implementation of communication differs, both use
the same communication topology for the broadcast. For this
benchmark no manual progression, i.e., by repeatedly calling
a test function, is performed. This is a realistic benchmark

for scientific codes, which often overlap communication with
library calls, for example to the BLAS library. Inside of such
a library progression of the communication is not performed,
therefore our benchmark tests for true asynchronous progres-
sion. However, it is possible to achieve some overlap even
with communication libraries that do not offer asynchronous
progression, since they can overlap the first “round” of com-
munication operations when the collective operation is started.
This is what we observe in Figure 9. For small node-counts the
MPI based variant of cDAG is able to get reasonable overlap,
since the tested broadcast operation only needs a small number
of rounds in this case. This decreases with larger node counts.
In the case of Portals we observe the opposite. Due to the
relatively high non-overlappable overhead of setting up all the
counters, memory descriptors, match list entries, etc. for the
collective operation the overlap is negligible for small node
counts.

In Figure 10 we compare the non-overlapped part of the
latency of broadcasts of different three different sizes imple-
mented with cDAG-over-Portals to MPICH. While MPICH
outperforms our Portals implementation for small data sizes
(which is not surprising, since the software emulated Portals
has a higher latency due to the emulation layer), Portals
outperforms MPICH for large data sizes due to higher overlap.

Fig. 10. Absolute time of the non-overlappable part of Broadcast operation
performed using cDAG-over-Portals, compared to MPI

VI. RELATED WORK

There has been much previous work on the topic of
optimizing collective operations, for example [17]–[20]. When
deciding which communication schemes to use for our cDAG
collective implementation, we were guided by this body of
work. Hardware acceleration of collective communication op-
eration has been considered by many, the NEC Earth Simulator
for example contained a hardware barrier implementation,
however research has also been done to investigate if collective
offload was possible in a more flexible manner, without a
dedicated network. A lot of such work had been done by
modifying the firmware of Myrinet NICs [21], [22]. Also
the Quadrics Elan NIC was designed to run user code on
the network processor and has been used to offload specific
collective communication functions [23]. Some of the concepts

used in Elan are very similar to the newest Portals API, for
example Elan provided event functions which work similarly
to Portals triggered operations.

The newest generation of InfiniBand [24] adapters from
Mellanox provide the Collective Offload Resource Engine,
CORE-Direct [25]. This adds a management queue to the
standard InfiniBand queue pair. This management queue allows
to delay certain operations until others are finished, and there-
fore to express dependencies between operations. Researchers
reported positive results when implementing single collectives
such as barrier and broadcast with this technology [26], [27].
To the best of our knowledge no one has attempted to show that
the primitives offered by CORE-Direct are powerful enough
to offload any communication schedule, or shown its limits.
In [28] the authors define “building-blocks” for collectives, pat-
terns such as 1-to-n send, or receive-and-replicate. With cDAG
we provide a more fine-grained and complete abstraction than
those patterns.

Offloading collectives is well suited to support non-
blocking collectives, which are now a part of the MPI-3.0
standard [4], but have been in use before that, e.g., in the
reference implementation libNBC [8]. The biggest problem
when implementing non-blocking collectives without hardware
acceleration is that one can not provide asynchronous pro-
gression easily [10] . This can be solved by spawning an
extra thread which repeatedly progresses the communication
by calling a test function (the approach used by the Portals
4 reference implementation) or forcing the user to split the
computation used to overlap the collective in small chunks, so
that the test function can be called between them (the approach
taken by libNBC). Another option is to offload the collective
into the OS, which can directly respond to network interrupts.
This has been done in [29], [30], which ensures system wide
asynchronous progress for non-blocking operations. However,
in contrast to triggered operations it still leverages the host
CPU to process incoming messages.

Collective offload with Portals 4 [3] has been shown for
two versions of MPI Allreduce in [2] and MPI Barrier and
MPI Broadcast in [1]. In [14] the authors showed how to
implement a rendezvous protocol with triggered operations.
However, unlike the protocols described in this paper, this
protocol can not be used to completely offload collective
operations, as it requires the host CPU to make calls to Portals
each time a receive is posted, where, for complete collective
offload, the posting of a receive has to be done purely with
triggered operations.

VII. DISCUSSION

By attempting to design an abstract framework to offload
arbitrary communication topologies we gained the following
insights which should be taken into account by designers of
network offload APIs, if their goal is to allow full offload of
arbitrary communication topologies.

1.) The offload engine has to be able to dynamically
(based on the completion status of previous send and receive
operations) change the way incoming messages are handled
(i.e., to which receive they are matched).

2.) Dynamic matching can be avoided, if messages are
pre-matched, so that each message matches to exactly one

receive, however, such pre-matching requires synchronization,
which make this approach impractical in certain scenarios.
For example, implementing MPI-3 nonblocking collectives, as
the MPI standard defines that neither calls to non-blocking
collective functions, nor calls to the MPI Test function are
allowed to block.

3.) The offload engine has to provide a tag-space big
enough for the tag-space which should be exported to the user
and to discriminate between different collectives, as well as
different instances of the same collective.

VIII. CONCLUSIONS

In this work we demonstrated how arbitrarily complex
communication functions can be translated into a small set
of offload-primitives by expressing them as a communication
graph. We used the Portals 4.0 API as an example of such
primitives. This approach proved to be valuable because it
allows one to reason about the expressiveness of the offload
primitives, and enables the building of complicated collective
communication schedules based on a small set of protocols.
By showing that certain protocols can not be implemented
with the current Portals 4.0 API we were able to propose and
implement a useful addition to this interface. We demonstrate
that it is possible to achieve a high overlap using triggered
operations, even with an emulated version of Portals where all
operations are carried out on the host CPU.

REFERENCES

[1] K. Hemmert, B. Barrett, and K. Underwood, “Using triggered opera-
tions to offload collective communication operations,” Recent Advances

in the Message Passing Interface, pp. 249–256, 2010.

[2] K. Underwood, J. Coffman, R. Larsen, K. Hemmert, B. Barrett,
R. Brightwell, and M. Levenhagen, “Enabling flexible collective com-
munication offload with triggered operations,” in High Performance

Interconnects (HOTI), 2011 IEEE 19th Annual Symposium on. IEEE,
2011, pp. 35–42.

[3] Barrett, B.W. and Brightwell, R. and Hemmert, S. and Pedretti, K. and
Wheeler K. and Underwood, K.D. and Reisen, R. and Maccabe, A.B.,
and Hudson, T., The Portals 4.0 network programming interface, Sandia
National Laboratories, November 2012, technical Report SAND2012-
10087.

[4] MPI Forum, “MPI: A Message-Passing Interface Standard. Version 3.0,”
September 2012.

[5] W. Gropp, “Mpich2: A new start for mpi implementations,” Recent

Advances in Parallel Virtual Machine and Message Passing Interface,
pp. 37–42, 2002.

[6] R. Graham, T. Woodall, and J. Squyres, “Open mpi: A flexible high
performance mpi,” Parallel Processing and Applied Mathematics, pp.
228–239, 2006.

[7] T. Hoefler, C. Siebert, and A. Lumsdaine, “Group operation assembly
language - a flexible way to express collective communication,” in
ICPP-2009 - The 38th International Conference on Parallel Processing.
IEEE, Sep. 2009.

[8] T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementation and per-
formance analysis of non-blocking collective operations for mpi,” in
Proceedings of the 2007 International Conference on High Performance

Computing, Networking, Storage and Analysis, SC07. IEEE Computer
Society/ACM, Nov. 2007.

[9] T. Hoefler and T. Schneider, “Optimization Principles for Collective
Neighborhood Communications,” Nov. 2012, accepted at SC12.

[10] T. Hoefler and A. Lumsdaine, “Message progression in parallel com-
puting - to thread or not to thread?” in Proceedings of the 2008 IEEE
International Conference on Cluster Computing. IEEE Computer
Society, Oct. 2008.

[11] S. Pakin, “Receiver-initiated message passing over rdma networks,”
in Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE

International Symposium on. IEEE, 2008, pp. 1–12.

[12] V. G. Cerf and R. E. Icahn, “A protocol for packet network intercommu-
nication,” ACM SIGCOMM Computer Communication Review, vol. 35,
no. 2, pp. 71–82, 2005.

[13] J. Liu, J. Wu, and D. K. Panda, “High performance rdma-based
mpi implementation over infiniband,” International Journal of Parallel

Programming, vol. 32, no. 3, pp. 167–198, 2004.

[14] B. Barrett, R. Brightwell, K. Hemmert, K. Wheeler, and K. Underwood,
“Using triggered operations to offload rendezvous messages,” Recent

Advances in the Message Passing Interface, pp. 120–129, 2011.

[15] T. Hoefler and T. Schneider, “Runtime Detection and Optimization
of Collective Communication Patterns,” Sep. 2012, accepted at PACT
2012.

[16] Portals Development Team, “Portals 4.0 reference implemem,” available
at: http://code.google.com/p/portals4/ (Mar. 2013).

[17] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in mpich,” International Journal of High

Performance Computing Applications, vol. 19, no. 1, p. 49, 2005.

[18] S. Sur, U. Bondhugula, A. Mamidala, H. Jin, and D. Panda, “High
performance rdma based all-to-all broadcast for infiniband clusters,”
High Performance Computing–HiPC 2005, pp. 148–157, 2005.

[19] J. Träff and A. Ripke, “Optimal broadcast for fully connected networks,”
High Performance Computing and Communications, pp. 45–56, 2005.

[20] J. Bruck, C. T. Ho, S. Kipnis, E. Upfal, and D. Weathersby, “Efficient
algorithms for all-to-all communications in multiport message-passing
systems,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 8, no. 11, pp. 1143–1156, 2002.

[21] D. Buntinas, D. Panda, and P. Sadayappan, “Fast nic-based barrier
over myrinet/gm,” in Parallel and Distributed Processing Symposium.,

Proceedings 15th International. IEEE, 2001, pp. 8–pp.

[22] D. Buntinas, D. Panda, J. Duato, and P. Sadayappan, “Broadcast/-
multicast over myrinet using nic-assisted multidestination messages,”
Network-Based Parallel Computing. Communication, Architecture, and

Applications, pp. 115–129, 2000.

[23] D. Roweth and A. Pittman, “Optimised global reduction on qsnet¡ sup¿
ii¡/sup¿,” in High Performance Interconnects, 2005. Proceedings. 13th

Symposium on. IEEE, 2005, pp. 23–28.

[24] I. T. Association, InfiniBand Architecture Specification: Release 1.0.
InfiniBand Trade Association, 2000.

[25] R. Graham, S. Poole, P. Shamis, G. Bloch, N. Bloch, H. Chapman,
M. Kagan, A. Shahar, I. Rabinovitz, and G. Shainer, “Connectx-2
infiniband management queues: First investigation of the new support
for network offloaded collective operations,” in Proceedings of the 2010

10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing. IEEE Computer Society, 2010, pp. 53–62.

[26] R. L. Graham, S. Poole, P. Shamis, G. Bloch, N. Bloch, H. Chapman,
M. Kagan, A. Shahar, I. Rabinovitz, and G. Shainer, “Overlapping com-
putation and communication: Barrier algorithms and connectx-2 core-
direct capabilities,” in Parallel & Distributed Processing, Workshops

and Phd Forum (IPDPSW), 2010 IEEE International Symposium on,
2010, pp. 1–8.

[27] M. G. Venkata, R. L. Graham, J. S. Ladd, P. Shamis, I. Rabi-
novitz, V. Filipov, and G. Shainer, “Connectx-2 core-direct enabled
asynchronous broadcast collective communications,” in Parallel and

Distributed Processing Workshops and Phd Forum (IPDPSW), 2011

IEEE International Symposium on, 2011, pp. 781–787.

[28] H. Subramoni, K. Kandalla, S. Sur, and D. K. Panda, “Design and eval-
uation of generalized collective communication primitives with overlap
using connectx-2 offload engine,” in 2010 18th IEEE Symposium on

High Performance Interconnects, 2010, pp. 40–49.

[29] A. Nomura and Y. Ishikawa, “Design of kernel-level asynchronous
collective communication,” Recent Advances in the Message Passing

Interface, pp. 92–101, 2010.

[30] T. Schneider, S. Eckelmann, T. Hoefler, and W. Rehm, “Kernel-based
offload of collective operations - implementation, evaluation and lessons
learned,” in Euro-Par (2), ser. Lecture Notes in Computer Science,
E. Jeannot, R. Namyst, and J. Roman, Eds., vol. 6853. Springer,
2011, pp. 264–275.

