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Vector search: problem definition
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Search engines

Recommender systems

Generative AI

Vector search in modern AI applications
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Exact nearest neighbor search is hard to afford
linearly scan the whole dataset
full-precision dataset vectors

People use approximate search in practice

Quality metric: recall
the fraction of the true nearest neighbors retrieved by the ANNS

Approximate nearest neighbor search (ANNS)
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Inverted-file (IVF) index
prune the search space

Product quantization (PQ)
quantize database vectors
speedup distance computation

IVF-PQ for large-scale ANNS
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Inverted-file (IVF) index

Goal: prune the search space to avoid brute-force scan
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Training: cluster database vectors into IVF lists

Inverted-file (IVF) index
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Inverted-file (IVF) index

Searching: scan only a subset of IVF lists
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Inverted-file (IVF) index

Searching: scan only a subset of IVF lists
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Product quantization (PQ): training

Goal: quantize the vectors to a few bytes of PQ-codes
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Product quantization (PQ): training

Step 1: divide database vectors into m sub-vectors

m sub-spaces
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Product quantization (PQ): training

Step 2: run clustering on each sub-vector space, each with M=256 centroids
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Product quantization (PQ): training

Step 3: approximate each sub-vector by closest centroid ID
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Product quantization (PQ): searching

Step 1: construct a distance lookup table
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Product quantization (PQ): searching

Step 2: compute distances to database vectors by distance lookups
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Product quantization (PQ): searching

Step 2: compute distances to database vectors by distance lookups
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Putting them together: IVF-PQ
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Putting them together: IVF-PQ
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How to build a specialized hardware
accelerator for IVF-PQ-based vector search?
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Complexities in designing IVF-PQ accelerators

Accelerator design involves:

Inter-stage heterogeneity

Intra-stage heterogeneity

Resource allocation
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Should identify the bottleneck stage first
But there are many parameters in IVF-PQ…
nlist: the number of clusters in the index
nprobe: the number of clusters to visit per search
K:  the number of results to return per query
…

All these parameters can change bottlenecks dramatically!

Complexities in designing IVF-PQ accelerators
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K: the number of results to return per query

The effect of K on performance bottlenecks
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Dataset

What is the need in a deployment scenario?

???

Recall

Optimal hardware design?

According algorithm parameters?

Ready-to-use accelerator?
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1. Consider various algorithm parameters

2. Consider various valid hardware designs 

3. Model the performance of each combination

4. Choose the most performant combination

5. Generate the respective hardware on FPGA

FANNS: co-design hardware and algorithm
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FANNS: co-design hardware and algorithm
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Given user-provided dataset, try various IVF-PQ parameters
Explore the relationship between parameters and recall

FANNS: the algorithm side
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For each stage, build the hardware processing elements (PE)

If there are multiple valid designs, build multiple types of PEs

Model the resource consumption per type of PE

Model the performance per type of PE

FANNS: the hardware side
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Combine hardware building blocks of all six stages

An accelerator is valid if it fits on the FPGA

Get all valid accelerator designs
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We have data on both algorithm and hardware sides:
Algorithm: the parameter set to achieve the recall goal

Hardware: the performance model of a single PE

Putting them together: the search performance of each
parameter-hardware combination

Search performance prediction
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End-to-end generation of the optimal accelerator
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The designs differ across user requirements

baseline

FANNS
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The designs differ across user requirements
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The designs differ across user requirements
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Hardware
CPU: Intel(R) Xeon(R) Platinum 8259CL (14 nm), 16vCPU, 64GB
GPU: NVIDIA V100 (12 nm), 16 GB
FPGA:AMD Alveo U55c (16 nm), 16 GB

Software
Faiss: the most popular library for PQ-based ANN search
Vitis HLS: for FPGA accelerator development

Datasets
SIFT: 128-dimensional, 100 million vectors
Deep: 96-dimensional, 100 million vectors

Evaluation
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Throughput speedups over CPU and FPGA baselines

Up to 20.79x and 29.98x speedup over the FPGA/CPU baselines

The generated accelerators achieve >90% of the predicted performance

FA
N
N
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FP
G
A
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Current-generation GPUs are much more powerful than FPGAs
two orders of magnitude higher flop/s
one order of magnitude higher bandwidth

GPUs outperform FANNS in throughput (5.3~22.0x)

Throughput comparison to GPU baselines
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GPUs have shown high variance in terms on latency (long tails)
In scale-out settings, the latency is limited by the slowest run

FANNS versus GPUs in latency
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The shifting bottlenecks is problematic for ASIC designs

Algorithm-level improvements to mitigate the problem?
Scan many PQ codes are essential to achieve high recall
But index scan can be treated as ANN search instead

Hybrid architecture:
CPU for fast index traversal 

ASIC for scanning quantized DB vectors and collecting K results

Future ASIC designs? 
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Vector search is the core of many AI applications including LLMs

The IVF-PQ algorithm have multiple stages and shifting bottlenecks

FANNS: design-space exploration by hardware-algorithm co-design
Given a recall target on a dataset
Use a performance-model to guide accelerator design

Use a code-generator to make the design transparent to users

Up to 20.79x and 29.98x speedup over the FPGA/CPU baselines

Conclusion



Backup slides
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PQ on two-dimensional vectors
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Bottleneck shifts with different nprobe

nprobe = number of clusters to scan
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Bottleneck shifts with different nlist
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Bottleneck shifts with different K

K = number of results to return
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Bottleneck shifts with different K

K = number of results to return
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Choices in design space exploration
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FANNS: the algorithm side
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FANNS: the hardware side
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FANNS: the hardware side
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Predict optimal hardware-algorithm combination
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Performance prediction

Performance of a single processing element: 

Performance of the entire accelerator depends on the 
slowest stage:
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Automatically generate the hardware
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Systolic Priority Queue
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Hierarchical priority queue group
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Hybrid bitonic sorting, merging, and priority queue
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PQ distance computation unit
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Optimal FPGA design shifts with nprobe
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Optimal FPGA design shifts with nlist
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Optimal FPGA design shifts with K
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Throughput speedups over CPU and FPGA baselines

Up to 20.79x and 29.98x speedup over the FPGA/CPU baselines
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Single-node latency comparison
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Latency scalability
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SIFT100M, nlist=8192, m=16, R@10=80%



LogGP for modeling the network latency

6.0 𝜇s latency between two endpoints

Latency scalability trends

5/29/24 Systems Group, D-INFK, ETH Zurich 78



QPS comparison to CPU and GPU baselines
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QPS comparison to CPU and GPU baselines
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