EHzürich

Co-design Hardware and Algorithm for Vector Search

Wenqi Jiang, Shigang Li, Yu Zhu, Johannes de Fine Licht, Zhenhao He, Runbin Shi, Cedric Renggli, Shuai Zhang, Theodoros Rekatsina, Torsten Hoefler, and Gustavo Alonso Department of Computer Science, ETH Zürich

April 9, 2024

Vector search: problem definition

Vector search: problem definition

Vector search: problem definition

Vector search in modern AI applications

Recommender systems

Approximate nearest neighbor search (ANNS)

Exact nearest neighbor search is hard to afford linearly scan the whole dataset full-precision dataset vectors

People use approximate search in practice

Quality metric: recall

the fraction of the true nearest neighbors retrieved by the ANNS

IVF-PQ for large-scale ANNS

Inverted-file (IVF) index prune the search space

Product quantization (PQ) quantize database vectors speedup distance computation

Goal: prune the search space to avoid brute-force scan

Training: cluster database vectors into IVF lists

Searching: scan only a subset of IVF lists

Searching: scan only a subset of IVF lists

Searching: scan only a subset of IVF lists

Goal: quantize the vectors to a few bytes of PQ-codes

Step I: divide database vectors into m sub-vectors

Step 2: run clustering on each sub-vector space, each with M=256 centroids

Step 3: approximate each sub-vector by closest centroid ID

Step I: construct a distance lookup table

Step 2: compute distances to database vectors by distance lookups

Step 2: compute distances to database vectors by distance lookups

Step 2: compute distances to database vectors by distance lookups

How to build a specialized hardware accelerator for IVF-PQ-based vector search?

Complexities in designing IVF-PQ accelerators

29

Complexities in designing IVF-PQ accelerators

Should identify the bottleneck stage first

But there are many parameters in IVF-PQ...

nlist:	the number of clusters in the index
nprobe:	the number of clusters to visit per search
<i>K</i> :	the number of results to return per query

All these parameters can change bottlenecks dramatically!

. . .

The effect of K on performance bottlenecks

K: the number of results to return per query

What is the need in a deployment scenario?

Optimal hardware design?

According algorithm parameters?

Ready-to-use accelerator?

FANNS: co-design hardware and algorithm

- I. Consider various algorithm parameters
- 2. Consider various valid hardware designs
- 3. Model the performance of each combination
- 4. Choose the most performant combination
- 5. Generate the respective hardware on FPGA

FANNS: co-design hardware and algorithm

FANNS: the algorithm side

Given user-provided dataset, try various IVF-PQ parameters Explore the relationship between parameters and recall

Index	Recall goal	Minimum nprobe
IVF1024,PQ16	R@10=0.8	12
:	:	:
OPQ,IVF262144,PQ16	R@100=0.95	63

FANNS: the hardware side

For each stage, build the hardware processing elements (PE)

If there are multiple valid designs, build multiple types of PEs

Model the resource consumption per type of PE

Model the performance per type of PE

$$QPS_{PE} = freq/(L + (N - 1) * II)$$
Get all valid accelerator designs

Combine hardware building blocks of all six stages

An accelerator is valid if it fits on the FPGA

$$\sum_{i} C_{r}(PE_{i}) + \sum_{i} C_{r}(FIFO_{i}) + C_{r}(infra) \leq Constraint_{r},$$
$$\forall r \in \{BRAM, URAM, LUT, FF, DSP\}$$

Search performance prediction

We have data on both algorithm and hardware sides: Algorithm: the parameter set to achieve the recall goal Hardware: the performance model of a single PE

Putting them together: the search performance of each parameter-hardware combination

End-to-end generation of the optimal accelerator

The designs differ across user requirements

ha	baseline Index			Stage OPQ		Stage IVFDist			St	Stage SelCells			Stage BuildLUT			Stage PQDist		Stage SelK		
NC				#PE	LUT.(%)	#PE	Index store	LUT.(%)	Arch.	#InStrea	m LUT.(%)	#PE	Index store	LUT.(%)	#PE	LUT.(%)	Arch.	#InStrea	m LUT.(%)	(140 MHz)
	K=1 (Baseline)	N/A	N/A	1	0.2	10	HBM	6.9	HPQ	2	6.4	5	HBM	6.9	36	15.2	HPQ	72	1.8	N/A
	K=10 (Baseline)	N/A	N/A	1	0.2	10	HBM	6.9	HPQ	2	6.4	4	HBM	6.3	16	6.7	HPQ	32	5.7	N/A
	K=100 (Baseline)	N/A	N/A	1	0.2	10	HBM	6.9	HPQ	2	6.4	4	HBM	6.3	4	1.7	HPQ	8	15.0	N/A
	K=1 (FANNS)	IVF4096	5	0	0	16	on-chip	11.0	HPQ	2	0.3	5	on-chip	2.6	57	24.0	HPQ	114	2.9	31,876
	K=10 (FANNS)	OPQ+IVF8192	17	1	0.2	11	on-chip	7.6	HPQ	2	0.9	9	on-chip	5.2	36	15.2	HSMPQ	G 36	12.7	11,098
	K=100 (FANNS)	OPQ+IVF16384	33	1	0.2	8	on-chip	5.5	HPQ	1	0.6	5	on-chip	3.6	9	3.8	HPQ	18	31.7	3,818

FANNS

The designs differ across user requirements

	Index nprobe		Stage	OPQ		Stage IVFDist		St	age SelCe	ells		Stage BuildLU	Г	Stage P	QDist		Stage Selk		Pred. QPS
		1	#PE	LUT.(%)	#PE	Index store	LUT.(%)	Arch.	#InStre	am LUT.(%)	#PE	Index store	LUT.(%)	#PE	LUT.(%)	Arch.	#InStre	am LUT.(%)	(140 MHz)
K=1 (Baseline)) N/A	N/A	1	0.2	10	HBM	6.9	HPO	2	6.4	5	HBM	6.9	36	15.2	HPO	72	1.8	N/A
K=10 (Basel																	32	5.7	N/A
K=100 (Base			200 22			7	Sta	Stage OPO Stage IV		FDist	Dist		8	15.0	N/A				
K=1 (FANN				Index		nprobe	i		0	~	_		0				114	2.9	31,876
K=10 (FANN	(FANT 0 (FAN K=1 (Baseline) K=10 (Baseline)					J –	#PE LUT.(%) #PE In		Index	dex store LUT(%)		(%)	QG 36	12.7	11,098				
K=100 (FAN										20 1.(//)	/				20 2.(.0)		18	31.7	3,818
			1 (Baseline) N/A 10 (Baseline) N/A		N/A		1		0.2	1	10	HBM		6.9					
					N/A		1		0.2	1	10	HBM		6.9					
	K=100 (Baseline) N/A		A		N/A		1		0.2		10	HBM		6.9					
	K=1 (FANN	=1 (<i>FANNS</i>)		096		5		0		0		16	on-ch	ip	11.0		-		
	K=10 (FAN)	NS)	OPQ-	+IVF81	92	17		1		0.2	1	11	on-ch	ip	7.6				
	K=100 (FAN	VNS)	OPQ-	+IVF16	384	33		1		0.2	8	3	on-ch	ip	5.5		_		

The designs differ across user requirements

	Index nprobe	nprobe	Stage	e OPQ		Stage IV	VFDist		S	tage SelCel	lls		Stage BuildI	.UT	Stage	PQDist		Stage SelK		Pred. QPS	
		nprobe	#PE	LUT.(%)	#PE	Index	x store	LUT.(%)	Arch.	#InStrea	am LUT.(%) #PE	Index sto	ore LUT.(%)	#PE	LUT.(%)	Arch.	#InStream	n LUT.(%)	(140 MHz)	
K=1 (Baseline K=10 (Basel) N/A	N/A	1	0.2	10	HBM	ſ	6.9	HPO	2	6.4	5	HBM	6.9	36	15.2	HPO	72 32	1.8 5.7	N/A N/A	
K=100 (Base	107 								Sta	ige OP	Q			Stage IV	FDist			8	15.0	N/A	
K=1 (FANN: K=10 (FANN		Index			nprobe												114	2.9	31,876 11,098		
K=100 (FAN							S	tage I	PQDi	st			Stage	SelK		Pred. QPS				3,818	
	K=1 (Base K=10 (Bas	N/A N/A			n #PE			LU	JT.(%)	A	rch.	#Ir	#InStream LUT.(%)			(140	MHz)				
	K=100 (Ba	aseline)	e) N/A			N/A N	N	36		15	.2	H	IPQ	72		1.8		N/A	6	_	
	K=1 (FAN	IVF4096		5	16		6.	7	H	IPQ	32		5.7		N/A						
	K=10 (FA.	NNS)	OPQ+IVF8192			1	1 4	4		1.7		H	HPQ		8		15.0				
	K=100 (FA	ANNS)	OPQ+IVF1638		5384	3	57		24	.0	E	IPQ	114	4	2.9		31,8	76	7		
							36		15	.2	Н	ISMP	QG 36		12.7		11,0	98			
							9		3.	8	Н	IPQ	18		31.7		3,81	8			

Evaluation

Hardware

CPU: Intel(R) Xeon(R) Platinum 8259CL (14 nm), 16vCPU, 64GB GPU: NVIDIA V100 (12 nm), 16 GB FPGA: AMD Alveo U55c (16 nm), 16 GB

Software

Faiss: the most popular library for PQ-based ANN search Vitis HLS: for FPGA accelerator development

Datasets

SIFT: 128-dimensional, 100 million vectors Deep: 96-dimensional, 100 million vectors **Throughput speedups over CPU and FPGA baselines**

Up to 20.79x and 29.98x speedup over the FPGA/CPU baselines

SIFT100M R@10=0.8

The generated accelerators achieve >90% of the predicted performance

Throughput comparison to GPU baselines

Current-generation GPUs are much more powerful than FPGAs two orders of magnitude higher flop/s one order of magnitude higher bandwidth

GPUs outperform FANNS in throughput (5.3~22.0x)

FANNS versus GPUs in latency

GPUs have shown high variance in terms on latency (long tails) In scale-out settings, the latency is limited by the slowest run

Future ASIC designs?

The shifting bottlenecks is problematic for ASIC designs

Algorithm-level improvements to mitigate the problem? Scan many PQ codes are essential to achieve high recall But index scan can be treated as ANN search instead

Hybrid architecture:

CPU for fast index traversal

ASIC for scanning quantized DB vectors and collecting K results

Conclusion

- Vector search is the core of many AI applications including LLMs
- The IVF-PQ algorithm have multiple stages and shifting bottlenecks
- FANNS: design-space exploration by hardware-algorithm co-design
 - Given a recall target on a dataset
 - Use a performance-model to guide accelerator design
 - Use a code-generator to make the design transparent to users

Up to 20.79x and 29.98x speedup over the FPGA/CPU baselines

Backup slides

PQ on two-dimensional vectors

Bottleneck shifts with different nprobe

nprobe = number of clusters to scan

Bottleneck shifts with different nprobe

nprobe = number of clusters to scan

Bottleneck shifts with different nlist

nlist = number of clusters in total

CPU,SIFT100M,nprobe=16

Bottleneck shifts with different nlist

nlist = number of clusters in total

Bottleneck shifts with different K

K = number of results to return

CPU,SIFT100M,OPQ16+IVF65536

Bottleneck shifts with different K

K = number of results to return

Choices in design space exploration

Algorithm parameter space							
nlist nprobe K OPOmabla	The totol Voronoi cell number. The number of cells to be scanned per query. The number of most similar vectors to return. Whether to apply OPO.						
- Zenuble	Hardware design space						
Design _s #PE _s Cache _s	The microarchitecture design of stage <i>s</i> . The number of processing elements in stage <i>s</i> . Cache index on-chip or store it off-chip for stage $s \in \{\text{Stage IVFDist, Stage BuildLUT}\}$.						

FANNS: the algorithm side

Explore recall-nprobe relationship for all indexes

Index	Recall goal	Minimum nprobe
IVF1024,PQ16	R@10=0.8	12
	:	:
OPQ,IVF262144,PQ16	R@100=0.95	63

FANNS: the hardware side

Basic hardware building blocks (PEs)

Computation Processing Elements

- → Compare query vectors with the centroid vectors of the IVF index
- → Construct distance lookup table for asymmetric distance computation (ADC)
- → Distance evaluation between query vector and database vector by ADC

Selection Processing Elements

- \rightarrow Systolic priority queues
- → Bitonic sorting network
- → Bitonic merging network
- → The combinations of these building blocks can form efficient K-selection groups

A)

FANNS: the hardware side

B Model PE resource

Model the hardware resource consumptions of each PE

PFPGA code template

At the PE level, implement parameterizable code templates

Model PE performance

Getting the pipeline depth and initiation interval per PE from performance reports

For each PE, establish the function that maps input element numbers to the required processing time: this predicts the latency and throughput of a single PE

Predict optimal hardware-algorithm combination

6.2

Performance prediction

Model the performance per search stage given the number of PEs and the number of elements to process per query Accelerator QPS is the same as the slowest stage

Return the optimal combination of accelerator design and algorithm parameters

Get all valid accelerator designs

Combine all hardware design options and return the ones that are within the FPGA resource constraints

Performance prediction

Performance of a single processing element:

$$QPS_{PE} = freq/(L + (N - 1) * II)$$

Performance of the entire accelerator depends on the slowest

 $QPS_{accelerator} = min(QPS_s)$, where $s \in \{Stages\}$

Automatically generate the hardware

FPGA code generation

Take as input (a) the predicted optimal hardware design (b) the predicted optimal algorithm parameters Generate the FPGA program by the using PE code templates and interconnecting them

Compile code to FPGA bitstream

Ready-to-execute FPGA binary Can build a bitstream database that stores several FPGA designs targeting different recall goals

6

(7

Systolic Priority Queue

Hierarchical priority queue group

Hybrid bitonic sorting, merging, and priority queue

PQ distance computation unit

Optimal FPGA design shifts with nprobe

Optimal FPGA design shifts with *nlist*

Optimal FPGA design shifts with K

Throughput speedups over CPU and FPGA baselines

Up to 20.79x and 29.98x speedup over the FPGA/CPU baselines

Throughput speedups over CPU and FPGA baselines

Up to 20.79x and 29.98x speedup over the FPGA/CPU baselines

SIFT100M R@10=0.8
Throughput speedups over CPU and FPGA baselines

Up to 20.79x and 29.98x speedup over the FPGA/CPU baselines

Single-node latency comparison

Latency scalability

SIFT100M, nlist=8192, m=16, R@10=80%

Latency scalability trends

LogGP for modeling the network latency 6.0 μ s latency between two endpoints

QPS comparison to CPU and GPU baselines

QPS comparison to CPU and GPU baselines

QPS comparison to CPU and GPU baselines

