COMPUTATIONAL INFRASTRUCTURE FOR GEODYNAMICS (CIG)
PRINCETON UNIVERSITY (USA)
UNIVERSITY OF PAU, CNRS and INRIA (FRANCE)

SPECFEM 3D

- User Manual
e o Version 2.0

Ebru Bozdag
Emanuele Casarotti
Min Chen

Hom Nath Gharti
Vala Hjorleifsdottir
Sue Kientz

Dimitri Komatitsch
Jesus Labarta
Nicolas Le Goff
Pieyre Le Loher
Qinya Liu

Yang Luo

Alessia Maggi
Federica Magnoni
Roland Martin
Dennis McRitchie
Matthias Meschede
David Michéa

Tarje Nissen-Meyer
Daniel Peter

Brian Savage
Bernhard Schuberth
Anne Sieminski
Leif Strand

Carl Tape

Jeroen Tromp
Hejun Zhu

VET[NOV)
(BE;
I's EN |TVM] 3

SPECFEM3D
User Manual

© Princeton University (USA) and
University of Pau / CNRS / INRIA (France)
Version 2.0
"Sesame"

April 8, 2011

Authors

The SPECFEM3D package was first developed by Dimitri Komatitsch and Jeroen Tromp at Harvard University and
Caltech, USA, starting in 1998, based in part on earlier work by Dimitri Komatitsch and Jean-Pierre Vilotte at Institut
de Physique du Globe (IPGP) in Paris, France from 1995 to 1997.

Since then it has been developed and maintained by a development team: in alphabetical order, Piero Basini, Céline
Blitz, Ebru Bozdag, Emanuele Casarotti, Min Chen, Hom Nath Gharti, Vala Hjorleifsdéttir, Sue Kientz, Dimitri Ko-
matitsch, Jestis Labarta, Nicolas Le Goff, Pieyre Le Loher, Qinya Liu, Yang Luo, Alessia Maggi, Federica Magnoni,
Roland Martin, Dennis McRitchie, Matthias Meschede, David Michéa, Tarje Nissen-Meyer, Daniel Peter, Brian Sav-
age, Bernhard Schuberth, Anne Sieminski, Leif Strand, Carl Tape, Jeroen Tromp, Hejun Zhu.

The cover graphic of the manual was created by Santiago Lombeyda from Caltech’s Center for Advanced Com-
puting Research (CACR) (http://www.cacr.caltech.edu).

http://www.cacr.caltech.edu

Contents

1 Introduction 4
L1 Gitation o e e e e e e e e e e e e 5

1.2 SUpporto e e 6

2 Getting Started 7
3 Mesh Generation 9
3.1 Meshing with CUBITt it e et e e e e e 9
3.1.1 Creating the Mesh with CUBIT, 10

3.1.2 Exporting the Mesh with cubit2specfem3d.py 11

3.1.3 Partitioning the Mesh with xdecompose_mesh_SCOTCH 13

3.2 Meshing with xmeshfem3D 0 it e e e e e 14

4 Creating the Distributed Databases 18
4.1 Main parameter file Par_file 18

4.2 Choosing the time SteP DT o v v v v v e e e e e e e e e e e e e e e e e 20

5 Running the Solver xspecfem3D 22
6 Adjoint Simulations 27
6.1 Adjoint Simulations for Sources L 27

6.2 Adjoint Simulations for Finite-Frequency Kernels (Kernel Simulation) 28

7 Noise Cross-correlation Simulations 30
7.1 InputParameter Files 30

7.2 Noise Simulations: Stepby Step 31
7.2.1 Pre-simulation e e e e e 31

7.2.2 Simulations Lo e 32

7.2.3 Post-simulation L e e e e e e e 33

7.3 Example Lo 33

8 Graphics 34
8.1 Meshes e e e 34

8.2 MOVIES . . v v e e e e e e e 34
8.2.1 MovieSurface 35

822 Movie Volume 35

8.3 Finite-Frequency Kernels e 36

9 Running through a Scheduler 39
9.1 Jobsubmission run_lsf.bash e e 39
9.2 Jobscript go_mesher_solver_lsf.forward., 40

CONTENTS

10 Post-Processing Scripts

S a w »

10.1 Process Data and Synthetics e e
10.1.1 Data processing script process_data.pl o v v vttt
10.1.2 Synthetics processing script process_syn.pl oo
10.1.3 Script rotate.pl e

10.2 Collect Synthetic SeismOgrams vttt e e e e e e

10.3 Clean Local Database e

10.4 Plot Movie Snapshots and Synthetic Shakemaps
10.4.1 Scriptmovie2gif.gmt.pl e e e
10.4.2 Script plot_shakemap.gmt.pl oo

10.5 Map Local Database e

Reference Frame Convention
Channel Codes of Seismograms
Troubleshooting

License

42
42
42
43
43
43
44
44
44
44
44

54

56

58

61

Chapter 1

Introduction

The software package SPECFEM3D simulates seismic wave propagation at the local or regional scale based upon
the spectral-element method (SEM). The SEM is a continuous Galerkin technique, which can easily be made discon-
tinous [Bernardi et al., 1994, Chaljub, 2000, Kopriva et al., 2002, Chaljub et al., 2003, Legay et al., 2005, Kopriva,
2006, Wilcox et al., 2010, Acosta Minolia and Kopriva, 2011]; it is then close to a particular case of the discontinuous
Galerkin technique [Reed and Hill, 1973, Arnold, 1982, Falk and Richter, 1999, Hu et al., 1999, Cockburn et al., 2000,
Giraldo et al., 2002, Riviere and Wheeler, 2003, Monk and Richter, 2005, Grote et al., 2006, Ainsworth et al., 2006,
Bernacki et al., 2006, Dumbser and Kiser, 2006, De Basabe et al., 2008, de la Puente et al., 2009, Wilcox et al., 2010,
De Basabe and Sen, 2010, Etienne et al., 2010], with optimized efficiency because of its tensorized basis functions
[Wilcox et al., 2010, Acosta Minolia and Kopriva, 2011]. In particular, it can accurately handle very distorted mesh
elements [Oliveira and Seriani, 2011].

It has very good accuracy and convergence properties [Maday and Patera, 1989, Seriani and Priolo, 1994, Deville
et al., 2002, Cohen, 2002, De Basabe and Sen, 2007, Seriani and Oliveira, 2008]. The spectral element approach
admits spectral rates of convergence and allows exploiting hp-convergence schemes. It is also very well suited to
parallel implementation on very large supercomputers [Komatitsch and Tromp, 2002a, Komatitsch et al., 2003, Tsuboi
et al., 2003, Komatitsch et al., 2008, Carrington et al., 2008, Komatitsch et al., 2010c] as well as on clusters of GPU
accelerating graphics cards [Komatitsch et al., 2009, 2010a, Komatitsch, 2011]. Tensor products inside each element
can be optimized to reach very high efficiency [Deville et al., 2002], and mesh point and element numbering can be
optimized to reduce processor cache misses and improve cache reuse [Komatitsch et al., 2008]. The SEM can also
handle triangular (in 2D) or tetrahedral (in 3D) elements [Wingate and Boyd, 1996, Taylor and Wingate, 2000, Ko-
matitsch et al., 2001, Cohen, 2002, Mercerat et al., 2006] as well as mixed meshes, although with increased cost and
reduced accuracy in these elements, as in the discontinuous Galerkin method.

Note that in most geological models in the context of seismic wave propagation studies (except for fault dynamic
rupture studies, in which very high frequencies or supershear rupture need to be modeled near the fault, see e.g. Ben-
jemaa et al. [2007, 2009], de la Puente et al. [2009], Tago et al. [2010]) a discontinous mesh is not needed because
material property contrasts are not drastic and thus a continuous formulation is sufficient; conforming mesh doubling
bricks can efficiently handle mesh size variations [Komatitsch and Tromp, 2002a, Komatitsch et al., 2004, Lee et al.,
2008, 2009a,b]. Also, without significant modifications in the complexity of the discontinuous technique [Castro
et al., 2010, Smith et al., 2010], usually those methods need to assume constant material properties inside each ele-
ment, while the SEM can handle gradients inside each element.

For a detailed introduction to the SEM as applied to regional seismic wave propagation, please consult Komatitsch
and Vilotte [1998], Komatitsch and Tromp [1999], Chaljub et al. [2007], Tromp et al. [2008] and in particular Ko-
matitsch et al. [2004]. A detailed theoretical analysis of the dispersion and stability properties of the SEM is available
in Cohen [2002], De Basabe and Sen [2007] and Seriani and Oliveira [2007].

Effects due to lateral variations in compressional-wave speed, shear-wave speed, density, a 3D crustal model,
topography and bathymetry are included. The package can accommodate full 21-parameter anisotropy (see Chen

CHAPTER 1. INTRODUCTION 5

and Tromp [2007]) as well as lateral variations in attenuation [Savage et al., 2010]. Adjoint capabilities and finite-
frequency kernel simulations are included [Liu and Tromp, 2006, Tromp et al., 2008, Fichtner et al., 2009, Virieux and
Operto, 2009].

All SPECFEM3D software is written in Fortran90 with full portability in mind, and conforms strictly to the For-
tran95 standard. It uses no obsolete or obsolescent features of Fortran77. The package uses parallel programming
based upon the Message Passing Interface (MPI) [Gropp et al., 1994, Pacheco, 1997].

SPECFEM3D won the Gordon Bell award for best performance at the SuperComputing 2003 conference in
Phoenix, Arizona (USA) (see Komatitsch et al. [2003] and www . sc—conference.org/sc2003/nr_finalaward.
html). It was a finalist again in 2008 for a run at 0.16 petaflops (sustained) on 149,784 processors of the ‘Jaguar’
Cray XTS5 system at Oak Ridge National Laboratories (USA) [Carrington et al., 2008]. It also won the BULL Joseph
Fourier supercomputing award in 2010.

The next release of the code will include support for GPU graphics card acceleration [Komatitsch et al., 2009,
2010a, Michéa and Komatitsch, 2010, Komatitsch, 2011] as well as Convolutional or Auxiliary Differential Equation
Perfectly Matched absorbing Layers (C-PML or ADE-PML) [Komatitsch and Martin, 2007, Martin et al., 2008b,c,
Martin and Komatitsch, 2009, Martin et al., 2010]. It will also use the PT-SCOTCH parallel library for mesh partition-

ing.

1.1 Citation

If you use SPECFEM3D for your own research, please cite at least one of the following articles:

Numerical simulations in general

Forward simulations are described in detail in Tromp et al. [2008], Vai et al. [1999], Komatitsch et al. [2009,
2010a,b], Chaljub et al. [2007], Madec et al. [2009], Komatitsch et al. [2010c], Carrington et al. [2008], Tromp
et al. [2010a], Komatitsch et al. [2002], Komatitsch and Tromp [2002a,b, 1999] or Komatitsch and Vilotte
[1998]. Additional aspects dealing with adjoint simulations are described in Tromp et al. [2005], Liu and Tromp
[2006], Tromp et al. [2008], Liu and Tromp [2008], Tromp et al. [2010a]. Domain decomposition is explained
in detail in Martin et al. [2008a], and excellent scaling up to 150,000 processor cores is shown for instance in
Carrington et al. [2008], Komatitsch et al. [2008], Martin et al. [2008a], Komatitsch et al. [2010a,b], Komatitsch
[2011].

If you use this new version 2.0, which has non blocking MPI for much better performance for medium or large runs,
please cite at least one of these six articles, in which results of non blocking MPI runs are presented: Peter et al. [2011],
Komatitsch et al. [2010a,c], Komatitsch [2011], Carrington et al. [2008], Martin et al. [2008a].

If you work on geophysical applications, you may be interested in citing some of these application articles as well,
among others:

Southern California simulations
Komatitsch et al. [2004], Krishnan et al. [2006a,b].

If you use the 3D southern California model, please cite Siiss and Shaw [2003] (Los Angeles model), Lovely
et al. [2006] (Salton Trough), and Hauksson [2000] (southern California). The Moho map was determined by
Zhu and Kanamori [2000]. The 1D SoCal model was developed by Dreger and Helmberger [1990].

Anisotropy
Chen and Tromp [2007], Ji et al. [2005], Chevrot et al. [2004], Favier et al. [2004], Ritsema et al. [2002], Tromp
and Komatitsch [2000].

Attenuation
Savage et al. [2010], Komatitsch and Tromp [2002a, 1999].

www.sc-conference.org/sc2003/nr_finalaward.html
www.sc-conference.org/sc2003/nr_finalaward.html

CHAPTER 1. INTRODUCTION 6

Topography
Lee et al. [2009b,a, 2008], Godinho et al. [2009], van Wijk et al. [2004].

The corresponding BibTEX entries may be found in file doc/USER_MANUAL/bibliography.bib.

1.2 Support

This material is based upon work supported by the USA National Science Foundation under Grants No. EAR-0406751
and EAR-0711177, by the French CNRS, French INRIA Sud-Ouest MAGIQUE-3D, French ANR NUMASIS under
Grant No. ANR-05-CIGC-002, and European FP6 Marie Curie International Reintegration Grant No. MIRG-CT-
2005-017461. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the USA National Science Foundation, CNRS, INRIA, ANR or the
European Marie Curie program.

Chapter 2

Getting Started

The SPECFEM3D software package comes in a gzipped tar ball. In the directory in which you want to install the
package, type

tar —-zxvf SPECFEM3D_V2.0.l.tar.gz

The directory SPECFEM3D/ will then contain the source code. To configure the software for your system, run the
configure shell script. This script will attempt to guess the appropriate configuration values for your system.
However, at a minimum, it is recommended that you explicitly specify the appropriate command names for your
Fortran90 compiler and MPI package:

./configure FC=ifort MPIFC=mpif90

The SPECFEM3D software package relies on the SCOTCH library to partition meshes created with CUBIT. Note
that we use CUBIT to create meshes of hexahedra, but other packages can be used as well, for instance GiD from
http://gid.cimne.upc.es or Gmsh from http://geuz.org/gmsh [Geuzaine and Remacle, 2009]. Even
mesh creation packages that generate tetrahedra, for instance TetGen from http://tetgen.berlios.de, can
be used because each tetrahedron can then easily be decomposed into four hexahedra as shown in the picture of the
TetGen logo at http://tetgen.berlios.de/figs/Delaunay-Voronoi—-3D.gif; while this approach
does not generate hexahedra of optimal quality, it can ease mesh creation in some situations and it has been shown that
the spectral-element method can very accurately handle distorted mesh elements [Oliveira and Seriani, 2011].

The SCOTCH library [Pellegrini and Roman, 1996] provides efficent static mapping, graph and mesh partitioning
routines. SCOTCH is a free software package developed by Francois Pellegrini et al. from LaBRI and INRIA in
Bordeaux, France, downloadable from the web page https://gforge.inria.fr/projects/scotch/. It
is more recent than METIS, actively maintained and performs better in many cases. A recent version of its source
code is provided in directory src/decompose_mesh_SCOTCH/scotch_5.1.10b. In case no SCOTCH
libraries can be found on the system, the configuration will bundle this version for compilation. The path to an
existing SCOTCH installation can to be set explicitly with the option ——with-scotch-dir. Just as an example:

./configure FC=ifort MPIFC=mpif90 —--with-scotch-dir=/opt/scotch

If you use the Intel ifort compiler to compile the code, we recommend that you use the Intel icc C compiler to
compile Scotch, i.e., use:

./configure CC=icc FC=ifort MPIFC=mpif90

To compile a serial version of the code for small meshes that fits on one compute node and can therefore be run
serially, run configure with the ——without-mpi option to suppress all calls to MPIL.
A summary of the most important configuration variables follows.

F90 Path to the Fortran90 compiler.

MPIF90 Path to MPI Fortran90.

http://gid.cimne.upc.es
http://geuz.org/gmsh
http://tetgen.berlios.de
http://tetgen.berlios.de/figs/Delaunay-Voronoi-3D.gif
https://gforge.inria.fr/projects/scotch/

CHAPTER 2. GETTING STARTED 8

MPI_FLAGS Some systems require this flag to link to MPI libraries.
FLAGS_CHECK Compiler flag for non-critical subroutines.

FLAGS_NO_CHECK Compiler flag for creating fast, production-run code for critical subroutines.

The configuration script automatically creates for each executable a corresponding Makefile in the src/ subdi-
rectoy. The Makefile contains a number of suggested entries for various compilers, e.g., Portland, Intel, Absoft,
NAG, and Lahey. The software has run on a wide variety of compute platforms, e.g., various PC clusters and machines
from Sun, SGI, IBM, Compaqg, and NEC. Select the compiler you wish to use on your system and choose the related
optimization flags. Note that the default flags in the Makefile are undoubtedly not optimal for your system, so we
encourage you to experiment with these flags and to solicit advice from your systems administrator. Selecting the right
compiler and optimization flags can make a tremendous difference in terms of performance. We welcome feedback
on your experience with various compilers and flags.

Now that you have set the compiler information, you need to select a number of flags in the constants.h file
depending on your system:

LOCAL_PATH_IS_ALSO_GLOBAL Setto .false. on most cluster applications. For reasons of speed, the (par-
allel) distributed database generator typically writes a (parallel) database for the solver on the local disks of the
compute nodes. Some systems have no local disks, e.g., BlueGene or the Earth Simulator, and other systems
have a fast parallel file system, in which case this flag should be set to . t rue .. Note that this flag is not used
by the database generator or the solver; it is only used for some of the post-processing.

The package can run either in single or in double precision. The default is single precision mode because this requires
exactly half as much memory. Select your preference by selecting the appropriate setting in the constants. h file:

CUSTOM_REAL Setto SIZE_REAL for single precision and SIZE_DOUBLE for double precision.
In the precision.h file:
CUSTOM MPI_TYPE SettoMPI_REAL for single precision and MPI_DOUBLE_PRECISION for double precision.

On a new system, it is definitely worth experimenting with single versus double precision simulations to determine
which is faster. Note that on many current processors (e.g., Intel, AMD, IBM Power), single precision calculations are
often significantly faster; the difference can typically be 10% to 25%. It is therefore often worth using single precision
if you can. We recommend running the same calculation once in single precision and in double precision on your
system and then comparing the seismograms. If they are identical, you should probably select single precision for
your future runs.

When compiling on an IBM machine with the x1f and x1c compilers, we suggest running the configure
script with the following options:

./configure FC=x1f90_r MPIFC=mpif90 CC=xlc_r CFLAGS="-03 —-g64" FCFLAGS="-03 -g64"
-with-scotch-dir=....

On SGI systems, f1ags . guess automatically informs configure toinsert ‘* *TRAP_FPE=0FF” into the gen-
erated Makefile in order to turn underflow trapping off.

Note that if you run very large meshes on a relatively small number of processors, the memory size needed on each
processor might become greater than 2 gigabytes, which is the upper limit for 32-bit addressing; in this case, on some
compilers you may need to add "-mcmodel=medium" to the compiler options otherwise the compiler will display
an error message; on an IBM machine with the x1f and x1c compilers, using —q64 is usually sufficient.

Chapter 3

Mesh Generation

The first step in running a spectral-element simulation consists of constructing a high-quality mesh for the region
under consideration. We provide two possibilities to do so: (1) relying on the external, hexahedral mesher CUBIT, or
(2) using the provided, internal mesher xmeshfem3D. In the following, we explain these two approaches.

3.1 Meshing with CUBIT

CUBIT is a meshing tool suite for the creation of finite-element meshes for arbitrarily shaped models. It has been
developed and maintained at Sandia National Laboratories and can be purchased for a small academic institutional
fee at http://cubit.sandia.gov. Our experience showed that using CUBIT greatly facilitates and speeds up
the generation and preparation of hexahedral, conforming meshes for a variety of geophysical models with increasing
complexity.

Fle Edit View Display Tools Help

DSENHMNND Prd9ogddgaotEeaae@moar +

Power Tools

(M (@(e]

Current View | Full Tree

o
£}

Froperties Page
Perform Action

HEREEIES

5

l [9]..

Figure 3.1: Example of the graphical user interface of CUBIT. The hexahedral mesh shown in the main display consists
of a hexahedral discretization of a single volume with topography.

The basic steps in creating a load-balanced, partitioned mesh with CUBIT are:

1. setting up a hexahedral mesh with CUBIT,

http://cubit.sandia.gov

CHAPTER 3. MESH GENERATION 10

2. exporting the CUBIT mesh into a SPECFEM3D file format and
3. partitioning the SPECFEM3D mesh files for a chosen number of cores.

Examples are provided in the SPECFEM3D package in the subdirectory examples/. We strongly encourage
you to contribute your own example to this package by contacting the CIG Computational Seismology Mailing List
(cig-seismolgeodynamics.org).

3.1.1 Creating the Mesh with CUBIT

For the installation and handling of the CUBIT meshing tool suite, please refer to the CUBIT user manual and docu-
mentation. In order to give you a basic understanding of how to use CUBIT for our purposes, examples are provided
in the SPECFEM3D package in the subdirectory examples/:

homogeneous_halfspace Creates a single block model and assigns elastic material parameters.

layered halfspace Combines two different, elastic material volumes and creates a refinement layer between
the two. This example can be compared for validation against the solutions provided in subdirectory
VALIDATION_3D_SEM_SIMPLER_LAYER_SOURCE_DEPTH/.

waterlayered_halfspace Combines an acoustic and elastic material volume as in a schematic marine survey
example.

tomographic_model Creates a single block model whose material properties will have to be read in from a
tomographic model file during the databases creation by xgenerate_databases.

Figure 3.2: Screenshots of the CUBIT examples provided in subdirectory examples/: homogeneous halfspace
(top-left), layered halfspace (top-right), water layered halfspace (bottom-left) and tomographic model (bottom-right).

In each example subdirectory you will find a README file, which explains in a step-by-step tutorial the workflow
for the example. Please feel free to contribute your own example to this package by contacting the CIG Computational
Seismology Mailing List (cig-seismo@geodynamics.orq).

cig-seismo@geodynamics.org
cig-seismo@geodynamics.org

CHAPTER 3. MESH GENERATION 11

3.1.2 Exporting the Mesh with cubit2specfem3d.py

Once the geometric model volumes in CUBIT are meshed, you prepare the model for exportation with the definition
of material blocks and boundary surfaces. Thus, prior to exporting the mesh, you need to define blocks specify-
ing the materials and absorbing boundaries in CUBIT. This process could be done automatically using the script
boundary_definition.py if the mesh meets some conditions or manually, following the block convention:

material_name Each material should have a specific block defined by a unique name. The name convention of the
material is to start with either ’elastic’ or ’acoustic’. It must be then followed by a unique identifier, e.g. ’elastic
1’, ’elastic 2’, etc. The additional attributes to the block define the material description.

For an elastic material:

material_id An integer value which is unique for this material.
Vp P-wave speed of the material (given in m/s).

Vs S-wave speed of the material (given in m/s).

rho density of the material (given in kg/m?).

Q quality factor to use in case of a simulation with attenuation turned on. It should be between 1 and 9000.
In case no attenuation information is available, it can be set to zero. Please note that your Vp- and Vs-
speeds are given for a reference frequency. To change this reference frequency, you change the value
of ATTENUATION_fO_REFERENCE in the main constants file constants.h found in subdirectory
src/shared/.

anisotropic_flag Flag describing the anisotropic model to use in case an anisotropic simulation should be con-
ducted. See the file model_aniso.f£90 in subdirectory src/generate_databases/ for an im-
plementation of the anisotropic models. In case no anisotropy is available, it can be set to zero.

Note that this material block has to be defined using all the volumes which belong to this elastic material. For
volumes belonging to another, different material, you will need to define a new material block.

For an acoustic material:

material_id An integer value which is unique for this material.
Vp P-wave speed of the material (given in m/s).
0 S-wave speed of the material is ignored.
rho density of the material (given in kg/m?).
face_topo Block definition for the surface which defines the free surface (which can have topography). The name of

this block must be "face_topo’, the block has to be defined using all the surfaces which constitute the complete
free surface of the model.

face_abs_xmin Block definition for the faces on the absorbing boundaries, one block for each surface with x=Xmin.
face_abs_xmax Block definition for the faces on the absorbing boundaries, one block for each surface with x=Xmax.
face_abs_ymin Block definition for the faces on the absorbing boundaries, one block for each surface with y=Ymin.
face_abs_ymax Block definition for the faces on the absorbing boundaries, one block for each surface with y=Ymax.

face_abs_bottom Block definition for the faces on the absorbing boundaries, one block for each surface with z=bottom.

Optionally, instead of specifying for each surface at the boundaries a single block like mentioned above, you
can also specify a single block for all boundary surfaces and name it as one of the absorbing blocks above, e.g.
’face_abs_xmin’.

After the block definitions are done, you export the mesh using the script cubit2specfem3d. py provided in
each of the example directories. If the export was successful, you should find the following files in a subdirectory
MESH/:

CHAPTER 3. MESH GENERATION 12

Fle Edt View Display Tools Help

DY@ NHEN Prd9I9I999a9UR QAU NI DT
@

Ele Edt View Display Tools Help

Power oot X

S e e]

Current View [Full Tee

rces
& Accelerations
L, velocities.
4

PR

S
S

=
B
AN
o

/

AN

T

Ay
o

NS
LW\
N
g

W

LAY
X

face_abs_xmin L)

N
\ \
\
Ty

T

Parform A

[2[e]=]@[=] (%

A

Figure 3.3: Example of the block definitions for the free surface *face_topo’ (left) and the absorbing boundaries,
defined in a single block ’face_abs_xmin’ (right) in CUBIT.

nummaterial_velocity_file Defines the material properties. For fully defined materials, the formats is:
domain_ID material ID rho vp vs Q anisotropy_flag

where domain_ID is 1 for acoustic or 2 for elastic materials, material_ID a unique identifier, rho the
density in kgm ™3, vp the P-wave speed in m s~!, vs the S-wave speed in m s~*, Q the quality factor and
anisotropy_flag an identifier for anisotropic models. For a tomographic model, the material definition
format is:

domain_ID material_ ID tomography name

where domain_1ID is 1 for acoustic or 2 for elastic materials, material_ID a negative, unique identifier,
tomography keyword for tomographic material definition and name the name of the tomography file. The
name is not used so far, rather change the filename defined in the file model_tomography.£90 located in
the src/generate_databases/ directory.

materials_file Contains the material associations for each element.

nodes_coords_file Contains the point locations in Cartesian coordinates of the mesh element corners.

mesh_file Contains the mesh element connectivity.

free_surface_file Contains the free surface connectivity.

absorbing_surface_file_xmax Contains the surface connectivity of the absorbing boundary surface at the Xmax.
absorbing_surface_file_xmin Contains the surface connectivity of the absorbing boundary surface at the Xmin.

absorbing_surface_file_ymax Contains the surface connectivity of the absorbing boundary surface at the Ymax.
absorbing_surface_file_ymin Contains the surface connectivity of the absorbing boundary surface at the Ymin.

absorbing_surface_file_bottom Contains the surface connectivity of the absorbing boundary surface at the bottom.

These mesh files are needed as input files for the partitioner xdecompose_mesh_SCOTCH to load-balance the
mesh. Please see the next section for further details.

CHAPTER 3. MESH GENERATION 13

Checking the mesh quality

The quality of the mesh may be inspected more precisely based upon the serial code in the file check_mesh_quality_
CUBIT_Abaqus.f90 located in the directory src/check_mesh_quality_CUBIT_Abaqus/. Running this
code is optional because no information needed by the solver is generated.

Prior to running and compiling this code, you have to export your mesh in CUBIT to an ABAQUS (.inp) format.
For example, export mesh block IDs belonging to volumes in order to check the quality of the hexahedral elements.
You also have to determine a number of parameters of your mesh, such as the number of nodes and number of
elements and modify the header of the check_mesh_quality_ CUBIT_Abaqus.f90 source file. Then, in the
main directory, type

make xcheck_mesh_qgquality_CUBIT_Abaqus
and use
./bin/xcheck_mesh_quality_CUBIT_Abaqus

to generate an AVS output file (AVS_meshquality.inp in AVS UCD format) or OpenDX output file (DX_meshquality.
dx) that can be used to investigate mesh quality, e.g, skewness of elements and a Gnuplot histogram (mesh_quality_
histogram.txt) that can be plotted with gnuplot (type ‘gnuplot plot_mesh_quality_histogram.gnu’). The
histogram is also printed to the screen. Analyze that skewness histogram of mesh elements to make sure no element
has a skewness above approximately 0.75, otherwise the mesh is of poor quality (and if even a single element has

a skewness value above 0.80, then you must definitely improve the mesh). If you want to start designing your own
meshes, this tool is useful for viewing your creations. You are striving for meshes with elements with ‘cube-like’
dimensions, e.g., the mesh should contain no very elongated or skewed elements.

3.1.3 Partitioning the Mesh with xdecompose_mesh_SCOTCH

The SPECFEM3D software package performs large scale simulations in a parallel *Single Process Multiple Data’
way. The spectral-element mesh created with CUBIT needs to be distributed on the processors. This partitioning is
executed once and for all prior to the execution of the solver so it is referred to as a static mapping.

An efficient partitioning is important because it leverages the overall running time of the application. It amounts to
balance the number of elements in each slice while minimizing the communication costs resulting from the placement
of adjacent elements on different processors. decompose_mesh_SCOTCH depends on the SCOTCH library [Pelle-
grini and Roman, 1996], which provides efficent static mapping, graph and mesh partitioning routines. SCOTCH is a
free software package developed by Francois Pellegrini et al. from LaBRI and INRIA in Bordeaux, France, download-
able from the web page https://gforge.inria.fr/projects/scotch/. It is more recent than METIS,
actively maintained and performs better in many cases. A recent version of its source code is provided in directory
src/decompose_mesh_SCOTCH/scotch_5.1.10b.

In most cases, the configuration with . /configure FC=ifort should be sufficient. During the configuration
process, the script tries to find existing SCOTCH installations. In case your system has no pre-existing SCOTCH
installation, we provide the source code of SCOTCH, which is released open source under the French CeCILL-C
version 1 license, in directory src/decompose_mesh_SCOTCH/scotch_5.1.10b. This version gets bundled
with the compilation of the SPECFEM3D package if no libraries could have been found. If this automatic compilation
of the SCOTCH libraries fails, please refer to file INSTALL.txt in that directory to see further details how to compile
it on your system. In case you want to use a pre-existing installation, make sure you have correctly specified the path
of the SCOTCH library when using the option ——with-scotch—dir with the . /configure script. In the fu-
ture you should be able to find more recent versions at http://www. labri.fr/perso/pelegrin/scotch/
scotch_en.html .

When you are ready to compile, in the main directory type
make xdecompose_mesh_SCOTCH

If all paths and flags have been set correctly, the executable bin/xdecompose_mesh_SCOTCH should be pro-
duced.

https://gforge.inria.fr/projects/scotch/
http://www.labri.fr/perso/pelegrin/scotch/scotch_en.html
http://www.labri.fr/perso/pelegrin/scotch/scotch_en.html

CHAPTER 3. MESH GENERATION 14

Figure 3.4: Example of a mesh partitioning onto four cores. Each single core partition is colored differently. The
executable xdecompose_mesh_SCOTCH can equally distribute the mesh on any arbitrary number of cores. Domain
decomposition is explained in detail in Martin et al. [2008a], and excellent scaling up to 150,000 processor cores in
shown for instance in Carrington et al. [2008], Komatitsch et al. [2008], Martin et al. [2008a], Komatitsch et al.
[2010a,b], Komatitsch [2011].

The partitioning is done in serial for now (in the next release we will provide a parallel version of that code), the
Synopsis is:

./bin/xdecompose_mesh_SCOTCH nparts input_directory output_directory
where
* nparts is the number of partitions, i.e., the number of cores for the parallel simulations,

e input_directory isthe directory which holds all the files generated by the Python script cubit2specfem3d. py
explained in the previous Section 3.1.2, e.g. MESH/, and

e output_directory is the directory for the output of this partitioner which stores ACII-format files named
like proc+x+x+x_Database for each partition. These files will be needed for creating the distributed
databases, and have to reside in the directory LOCAL_PATH specified in the main Par_file, e.g. in directory
in_out_files/DATABASES_MPI. Please see Chapter 4 for further details.

Note that all the files generated by the Python script cubit2specfem3d. py mustbe placed inthe input_directory
folder before running the program.

3.2 Meshing with xmeshfem3D

In case you successfully ran the configuration script, you are also ready to compile the internal mesher. This is
an alternative to CUBIT for the mesh generation of relatively simple geological models. The mesher is no longer
dedicated to Southern California and more flexiblity is provided in this version of the package.

In the main directory, type

make xmeshfem3D

If all paths and flags have been set correctly, the mesher should now compile and produce the executable bin/xmeshfem3D.
Please note that xme shfem3D must be called directly from the bin/ directory, as most of the binaries of the package.

Input for the mesh generation program is provided through the parameter file Mesh_Par_file, which resides
in the subdirectory in_data_files/meshfem3D_files/. Before running the mesher, a number of parameters
need to be set in the Mesh_Par_file. This requires a basic understanding of how the SEM is implemented, and we
encourage you to read Komatitsch and Vilotte [1998], Komatitsch and Tromp [1999] and Komatitsch et al. [2004].

The mesher and the solver use UTM coordinates internally, therefore you need to define the zone number for the
UTM projection (e.g., zone 11 for Los Angeles). Use decimal values for latitude and longitude (no minutes/seconds).

CHAPTER 3. MESH GENERATION 15

-120° -118° -116°

Figure 3.5: For parallel computing purposes, the model block is subdivided in NPROC_XI x NPROC_ETA slices of
elements. In this example we use 52 = 25 processors.

These values are approximate; the mesher will round them off to define a square mesh in UTM coordinates. When run-
ning benchmarks on rectangular models, turn the UTM projection off by using the flag SUPPRESS_UTM_PROJECTION,
in which case all ‘longitude’ parameters simply refer to the x axis, and all ‘latitude’ parameters simply refer to the
y axis. To run the mesher for a global simulation, the following parameters need to be set in the Mesh_Par_file:

LATITUDE_MIN Minimum latitude in the block (negative for South).
LATITUDE MAX Maximum latitude in the block.

LONGITUDE_MIN Minimum longitude in the block (negative for West).
LONGITUDE_MAX Maximum longitude in the block.
DEPTH_BLOCK_KM Depth of bottom of mesh in kilometers.

UTM_PROJECTION_ZONE UTM projection zone in which your model resides, only valid when SUPPRESS_UTM__
PROJECTIONIs .false..

SUPPRESS_UTM PROJECTION set to be . false. when your model range is specified in geographical coordi-
nates, and needs to be .true. when your model is specified in Cartesian coordinates. UTM PROJECTION
ZONE IN WHICH YOUR SIMULATION REGION RESIDES.

INTERFACES_FILE File which contains the description of the topography and of the interfaces between the dif-
ferent layers of the model, if any. The number of spectral elements in the vertical direction within each layer is
also defined in this file.

NEX_XI The number of spectral elements along one side of the block. This number must be 8 x a multiple of
NPROC_XTI defined below. Based upon benchmarks against semi-analytical discrete wavenumber synthetic
seismograms [Komatitsch et al., 2004], determined that a NEX_ XTI = 288 run is accurate to a shortest period of
roughly 2 s. Therefore, since accuracy is determined by the number of grid points per shortest wavelength, for
any particular value of NEX_XT the simulation will be accurate to a shortest period determined by

shortest period (s) = (288 /NEX_XI) x 2. 3.1

CHAPTER 3. MESH GENERATION 16

The number of grid points in each orthogonal direction of the reference element, i.e., the number of Gauss-
Lobatto-Legendre points, is determined by NGLLX in the constants.h file. We generally use NGLLX = 5,
for a total of 53 = 125 points per elements. We suggest not to change this value.

NEX_ETA The number of spectral elements along the other side of the block. This number must be 8 x a multiple of
NPROC_ETA defined below.

NPROC_XI The number of processors or slices along one side of the block (see Figure 3.5); we must have NEX_XT =
8 X ¢ x NPROC_XI, where ¢ > 1 is a positive integer.

NPROC_ETA The number of processors or slices along the other side of the block; we must have NEX_ETA =
8 X ¢ Xx NPROC_ETA, where ¢ > 1 is a positive integer.

USE_REGULAR_MESH set to be .true. if you want a perfectly regular mesh or . false. if you want to add
doubling horizontal layers to coarsen the mesh. In this case, you also need to provide additional information by
setting up the next three parameters.

NDOUBLINGS The number of horizontal doubling layers. Must be set to 1 or 2 if USE_REGULAR_MESH is set to
.true..

NZ_DOUBLING_1 The position of the first doubling layer (only interpreted if USE_REGULAR_MESH is set to
.true.).

NZ_DOUBLING_2 The position of the second doubling layer (only interpreted if USE_REGULAR_MESH is set to
.true. and if NDOUBLINGS is set to 2).

CREATE_ABAQUS_FILES Set this flag to .true. to save Abaqus FEA (www.simulia.com) mesh files for
subsequent viewing. Turning the flag on generates files in the LOCAL_PATH directory. See Section 8.1 for a
discussion of mesh viewing features.

CREATE_DX_ FILES Set this flag to .true. to save OpenDX (www.opendx.org) mesh files for subsequent
viewing.

LOCAL_PATH Directory in which the partitions generated by the mesher will be written. Generally one uses a di-
rectory on the local disk of the compute nodes, although on some machines these partitions are written on a
parallel (global) file system (see also the earlier discussion of the LOCAL_PATH_IS_ALSO_GLOBAL flag in
Chapter 2). The mesher generates the necessary partitions in parallel, one set for each of the NPROC_XI X
NPROC_ETA slices that constitutes the mesh (see Figure 3.5). After the mesher finishes, you can log in to
one of the compute nodes and view the contents of the LOCAL_PATH directory to see the files generated by
the mesher. These files will be needed for creating the distributed databases, and have to reside in the direc-
tory LOCAL_PATH specified in the main Par_file, e.g. indirectory in_out_files/DATABASES_MPI.
Please see Chapter 4 for further details.

NMATERIALS The number of different materials in your model. In the following lines, each material needs to be
defined as :

material_ID rho vp vs Q anisotropy_flag domain_ID
where

e O : quality factor (O=no attenuation)
* anisotropy_flag: 0=no anisotropy / 1,2,.. check with implementation in aniso_model.f90

e domain_id: l=acoustic / 2=elastic

NMATERIALS The number of regions in the mesh. In the following lines, because the mesh is regular or *almost
regular’, each region is defined as :

XI_begin XI_end ETA_begin ETA_end material_ID

www.simulia.com
www.opendx.org

CHAPTER 3. MESH GENERATION 17

The INTERFACES_FILE parameter of Mesh_Par_File defines the file which contains the settings of the
topography grid and of the interfaces grids. Topography is defined as a set of elevation values on a regular 2D grid. It
is also possible to define interfaces between the layers of the model in the same way. The file needs to define several
parameters:

* The number of interfaces, including the topography. This needs to be set at the first line. Then, from the bottom
to the top of the model, you need to define the grids with:

SUPPRESS_UTM_PROJECTION flag as described previously,

¢ number of points along x and y direction (NXI and NETA),

¢ minimal z and y coordinates (LONG_MIN and LAT_MIN),

* spacing between points along x and y (SPACING_XI and SPACING_ETA) and
* the name of the file which contains the elevation values (in y.x increasing order).

At the end of this file, you simply need to set the number of spectral elements in the vertical direction for each layer.
We provide a few models in the examples/ directory.

Finally, depending on your system, you might need to provide a file that tells MPI what compute nodes to use for
the simulations. The file must have a number of entries (one entry per line) at least equal to the number of processors
needed for the run. A sample file is provided in the file mymachines. This file is not used by the mesher or solver,
but is required by the go_mesher and go_solver default job submission scripts. See Chapter 9 for information
about running the code on a system with a scheduler, e.g., LSF.

Now that you have set the appropriate parameters in the Mesh_Par_file and have compiled the mesher, you
are ready to launch it! This is most easily accomplished based upon the go_mesher script. When you run on a
PC cluster, the script assumes that the nodes are named n001, n002, etc. If this is not the case, change the tr -d
*‘n’ line in the script. You may also need to edit the last command at the end of the script that invokes the mpirun
command. See Chapter 9 for information about running the code on a system with a scheduler, e.g., LSF.

Mesher output is provided in the in_out_files/OUTPUT_FILES directory in output_mesher.txt; this
file provides lots of details about the mesh that was generated. Please note that the mesher suggests a time step DT to
run the solver with. The mesher output file also contains a table about the quality of the mesh to indicate possible
problems with the distortions of elements. Alternatively, output can be directed to the screen instead by
uncommenting a line in constants. h:

! uncomment this to write messages to the screen
! integer, parameter :: IMAIN = ISTANDARD_OUTPUT

To control the quality of the mesh, check the standard output (either on the screen orinthe in_out_files/OUTPUT_FILES
directory in output_mesher. txt) and analyze the skewness histogram of mesh elements to make sure no element
has a skewness above approximately 0.75, otherwise the mesh is of poor quality (and if even a single element has
a skewness value above 0.80, then you must definitely improve the mesh). To draw the skewness histogram on the
screen, type gnuplot plot_mesh_quality_ histogram.gnu.

Chapter 4

Creating the Distributed Databases

After using xmeshfem3D or xdecompose_mesh_SCOTCH, the next step in the workflow is to compile xgenerate_
databases. This program is going to create all the missing information needed by the SEM solver.

| xmeshfem3D

SCOTCH
xdecompose_mesh_SCOTCH

xgenerate databases

xspecfem3D

Figure 4.1: Schematic workflow for a SPECFEM3D simulation. The exectable xgenerate_databases creates
the GLL mesh points and assigns specific model parameters.

In the main directory, type
make xgenerate_databases

Input for the program is provided through the main parameter file Par_file, which resides in the subdirectory
in_data_files/. Please note that xgenerate_databases must be called directly from the bin/ directory,
as most of the binaries of the package.

4.1 Main parameter file Par_file

Before running xgenerate_databases, a number of parameters need to be set in the main parameter Par_file
located in the subdirectory in_data_files/:

SIMULATION_TYPE is setto 1 for forward simulations, 2 for adjoint simulations (see Section 6.2) and 3 for kernel
simulations (see Section 8.3).

18

CHAPTER 4. CREATING THE DISTRIBUTED DATABASES 19

SAVE_FORWARD is only set to .true. for a forward simulation with the last frame of the simulation saved,
as part of the finite-frequency kernel calculations (see Section 8.3). For a regular forward simulation, leave
SIMULATION_TYPE and SAVE_FORWARD at their default values.

UTM_PROJECTION_ZONE UTM projection zone in which your model resides, only valid when SUPPRESS_UTM__
PROJECTIONIs .false..

SUPPRESS_UTM_PROJECTION setto be . false. when your model range is specified in the geographical coor-
dinates, and needs to be . true. when your model is specified in a cartesian coordinates. UTM PROJECTION
ZONE IN WHICH YOUR SIMULATION REGION RESIDES.

NPROC The number of MPI processors, each one is assigned one slice of the whole mesh.

NSTEP The number of time steps of the simulation. This controls the length of the numerical simulation, i.e., twice
the number of time steps requires twice as much CPU time. This feature is not used at the time of generat-
ing the distributed databases but is required for the solver, i.e., you may change this parameter after running
xgenerate_databases.

DT The length of each time step in seconds. This feature is not used at the time of generating the distributed databases
but is required for the solver. Please see also Section 4.2 for further details.

OCEANS Set to .true. if the effect of the oceans on seismic wave propagation should be incorporated based upon
the approximate treatment discussed in Komatitsch and Tromp [2002b]. This feature is inexpensive from a
numerical perspective, both in terms of memory requirements and CPU time. This approximation is accurate at
periods of roughly 20 s and longer. At shorter periods the effect of water phases/reverberations is not taken into
account, even when the flag is on.

TOPOGRAPHY This feature is only effective if OCEANS is set to .true.. Setto .true. if topography and
bathymetry should be read in based upon the topography file specified in the main constants file constants.h
found in subdirectory src/shared/ to evaluate elevations. If not set, elevations will be read from the numer-
ical mesh.

ATTENUATION Setto .true. if attenuation should be incorporated. Turning this feature on increases the memory
requirements significantly (roughly by a factor of 1.5), and is numerically fairly expensive. See Komatitsch
and Tromp [1999, 2002a] for a discussion on the implementation of attenuation based upon standard linear
solids. Please note that the Vp- and Vs-velocities of your model are given for a reference frequency. To change
this reference frequency, you change the value of ATTENUATION_f0_REFERENCE in the main constants file
constants.h found in subdirectory src/shared/.

USE_OLSEN_ATTENUATION Setto .true. if you want to use the attenuation model that scaled from the S-wave
speed model using Olsen’s empirical relation (see Olsen et al. [2003]).

ANISOTROPY Setto .true. if you want to use an anisotropy model. Please see the file model_aniso.f90 in
subdirectory src/generate_databases/ for the current implementation of anisotropic models.

ABSORBING_CONDITIONS Setto .true. to turn on Clayton-Enquist absorbing boundary conditions (see Ko-
matitsch and Tromp [1999]).

MOVIE_SURFACE Setto .false., unless you want to create a movie of seismic wave propagation on the Earth’s
surface. Turning this option on generates large output files. See Section 8.2 for a discussion on the generation
of movies. This feature is only relevant for the solver.

MOVIE VOLUME Setto .false., unless you want to create a movie of seismic wave propagation in the Earth’s
interior. Turning this option on generates huge output files. See Section 8.2 for a discussion on the generation
of movies. This feature is only relevant for the solver.

NTSTEP_BETWEEN_FRAMES Determines the number of timesteps between movie frames. Typically you want to
save a snapshot every 100 timesteps. The smaller you make this number the more output will be generated! See
Section 8.2 for a discussion on the generation of movies. This feature is only relevant for the solver.

CHAPTER 4. CREATING THE DISTRIBUTED DATABASES 20

CREATE_SHAKEMAP Set this flag to .true. to create a ShakeMap®, i.e., a peak ground velocity map of the
maximum absolute value of the two horizontal components of the velocity vector.

SAVE_DISPLACEMENT Set this flag to .true. if you want to save the displacement instead of velocity for the
movie frames.

USE_HIGHRES_FOR_MOVIES Set this flag to . true. if you want to save the values at all the NGLL grid points
for the movie frames.

HDUR_MOVIE determines the half duration of the source time function for the movie simulations. When this parame-
ter is set to be 0, a default half duration that corresponds to the accuracy of the simulation is provided. Otherwise,
it adds this half duration to the half duration specified in the source file CMTSOLUTION, thus simulates longer
periods to make the movie images look smoother.

SAVE_MESH_FILES Set this flagto . true. to save ParaView (www.paraview.orqg) mesh files for subsequent
viewing. Turning the flag on generates large (distributed) files in the LOCAL_PATH directory. See Section 8.1
for a discussion of mesh viewing features.

LOCAL_PATH Directory in which the distributed databases will be written. Generally one uses a directory on
the local disk of the compute nodes, although on some machines these databases are written on a parallel
(global) file system (see also the earlier discussion of the LOCAL_PATH_IS_ALSO_GLOBAL flag in Chap-
ter 2). xgenerate_databases generates the necessary databases in parallel, one set for each of the NPROC
slices that constitutes the mesh (see Figure 3.4 and Figure 3.5). After the executable finishes, you can log in to
one of the compute nodes and view the contents of the LOCAL_PATH directory to see the (many) files generated
by xgenerate_databases. Please note that the LOCAL_PATH directory should already contain the output
files of the partitioner, i.e. from xdecompose_mesh_SCOTCH or xmeshfem3D.

NTSTEP_BETWEEN_OUTPUT_INFO This parameter specifies the interval at which basic information about a run
is written to the file system (t imestamp~ files in the in_out_files/OUTPUT_FILES directory). If you
have access to a fast machine, set NTSTEP_BETWEEN_OUTPUT_INFO to a relatively high value (e.g., at least
100, or even 1000 or more) to avoid writing output text files too often. This feature is not used at the time of
meshing. One can set this parameter to a larger value than the number of time steps to avoid writing output
during the run.

NTSTEP_BETWEEN_OUTPUT_SEISMOS This parameter specifies the interval at which synthetic seismograms are
written in the LOCAL_PATH directory. If a run crashes, you may still find usable (but shorter than requested)
seismograms in this directory. On a fast machine set NTSTEP_BETWEEN_OUTPUT_SEISMOS to a relatively
high value to avoid writing to the seismograms too often. This feature is only relevant for the solver.

PRINT_SOURCE_TIME_FUNCTION Turn this flag on to print information about the source time function in the file
in_out_files/OUTPUT_FILES/plot_source_time_function.txt. This featureis only relevant
for the solver.

4.2 Choosing the time step DT

The parameter DT sets the length of each time step in seconds. The value of this parameter is crucial for the stability
of the spectral-element simulation. Your time step DT will depend on the minimum ratio between the distance h of
neighboring mesh points and the wave speeds v defined in your model. The condition for the time step At is:

At < C ming(h/v)

where C' is the so-called Courant number and 2 denotes the model volume. The distance & depends on the mesh
element size and the number of GLL points NGLL specified in the main constants file constants.h located in the
src/shared/ subdirectory. The wave speed v is determined based on your model’s P- (or S-) wave speed values.

The database generator xgenerate_databases, as well as the internal mesher xmeshfem3D, are trying to
evaluate the value of At for empirically chosen Courant numbers C' ~ 0.3. If you used the mesher xmeshfem3D to
generate your mesh, you should set the value suggestedin in_out_files/OUTPUT_FILES/output_mesher.txt

www.paraview.org

CHAPTER 4. CREATING THE DISTRIBUTED DATABASES 21

file, which is created after the mesher completed. In case you used CUBIT to create the mesh, you might use an arbi-
trary value when running xgenerate_databases and then use the value suggested in the
in_out_files/OUTPUT_FILES/output_mesher.txt file after the database generation completed. Note
that the implemented Newmark time scheme uses this time step globally, thus your simulations become more expen-
sive for very small mesh elements in high wave-speed regions. Please be aware of this restriction when constructing
your mesh in Chapter 3.

Chapter 5

Running the Solver xspecfem3D

Now that you have successfully generated the databases, you are ready to compile the solver. In the main directory,
type

make xspecfem3D

Please note that xspecfem3D must be called directly from the bin/ directory, as most of the binaries of the package.
The solver needs three input files in the in_data_files/ directory to run:

Par_file the main parameter file which was discussed in detail in the previous Chapter 4,
CMTSOLUTION the earthquake source parameter file, and
STATIONS the stations file.

Most parameters in the Par_file should be set prior to running the databases generation. Only the following
parameters may be changed after running xgenerate_databases:

* the simulation type control parameters: SIMULATION_TYPE and SAVE_FORWARD

* the time step parameters NSTEP and DT

* the absorbing boundary control parameter ABSORBING_CONDITIONS

* the movie control parameters MOVIE_SURFACE, MOVIE_VOLUME, and NTSTEPS_BETWEEN_FRAMES
¢ the ShakeMap®option CREATE_SHAKEMAP

* the output information parameters NTSTEP_BETWEEN_OUTPUT_INFO and NTSTEP_BETWEEN_OUTPUT_
SEISMOS

e the PRINT_SOURCE_TIME_FUNCTION flags

Any other change to the Par_ file implies rerunning both the database generator xgenerate_databases and
the solver xspecfem3D.

For any particular earthquake, the CMTSOLUTION file that represents the point source may be obtained directly
from the Harvard Centroid-Moment Tensor (CMT) web page (www.seismology.harvard.edu). It looks like
this:

22

www.seismology.harvard.edu

CHAPTER 5. RUNNING THE SOLVER XSPECFEM3D 23
Preliminary Determination of Epicenter body-wave magnitude
surface-wave magnitude
year day min
month hour sec latitude longitude depth mb Ms PDE event name
PDE 2001 9 9 23 59 17.78 34.0745 -118.3792 6.4 4.2 4.2 HOLLYWOOD
[| event name: 9703873

g time shift: 0.0000

'.g half duration: 0.0000

S 1at1Fude: 34.0745 M,, M.]ww

2] longitude: -118.3792

E depth: 5.4000 >M = Mg Mg Mpg

O Mrr: -0.002000e+23 : y I

o Mtt : -0.064000e+23 My Moy My

e Mpp : 0.066000e+23

> 3 ’

c Mrt : -0.090000e+23 1 . 1/2 22 3

S| | rp. 0. 0020000403 My, = 7 (M :M)"/* ~ 2.18 x 10°° dyne cm

L | Mtp: 0.188000e+23 ; 5
M, = % (logygMy—16.1)~4.19

Figure 5.1: CMTSOLUTION file based on the format from the Harvard CMT catalog. M is the moment tensor, M is

the seismic moment, and M, is the moment magnitude.

The CMTSOLUTION should be edited in the following way:

e Set the time shift parameter equal to 0.0 (the solver will not run otherwise.) The time shift parameter

would simply apply an overall time shift to the synthetics, something that can be done in the post-processing
(see Section 10.1).

For point-source simulations (see finite sources, page 24) we recommend setting the source half-duration
parameter half duration equal to zero, which corresponds to simulating a step source-time function, i.e.,
a moment-rate function that is a delta function. If half duration is not set to zero, the code will use a
Gaussian (i.e., a signal with a shape similar to a ‘smoothed triangle’, as explained in Komatitsch and Tromp
[2002a] and shown in Fig 5.2) source-time function with half-width half duration. We prefer to run the
solver with half duration setto zero and convolve the resulting synthetic seismograms in post-processing
after the run, because this way it is easy to use a variety of source-time functions (see Section 10.1).
Komatitsch and Tromp [2002a] determined that the noise generated in the simulation by using a step source
time function may be safely filtered out afterward based upon a convolution with the desired source time
function and/or low-pass filtering. Use the serial code convolve_source_timefunction.f90 and the
script convolve_source_timefunction.csh for this purpose, or alternatively use signal-processing
software packages such as SAC (www.11lnl.gov/sac). Type

make xconvolve_source_timefunction

to compile the code and then set the parameter hdur in convolve_source_timefunction.csh to the
desired half-duration.

The zero time of the simulation corresponds to the center of the triangle/Gaussian, or the centroid time of the
earthquake. The start time of the simulation is ¢ = —1.5 x half duration (the 1.5 is to make sure the
moment rate function is very close to zero when starting the simulation). To convert to absolute time ¢}, set

tabs = lpde + time shift + feynthetic

where 4. is the time given in the first line of the CMTSOLUTION, time shift is the corresponding value
from the original CMTSOLUTION file and tsynthetic 1S the time in the first column of the output seismogram.

www.llnl.gov/sac

CHAPTER 5. RUNNING THE SOLVER XSPECFEM3D 24

/N

M
/ \
(¢ - sourcedecayrate // \

s‘/ \ /\/—
T - half duration / \

/ \

S
7

half duration

t

temr

Figure 5.2: Comparison of the shape of a triangle and the Gaussian function actually used.

Centroid latitude and longitude should be provided in geographical coordinates. The code converts these coordi-
nates to geocentric coordinates [Dahlen and Tromp, 1998]. Of course you may provide your own source representa-
tions by designing your own CMTSOLUTION file. Just make sure that the resulting file adheres to the Harvard CMT
conventions (see Appendix A). Note that the first line in the CMTSOLUTION file is the Preliminary Determination of
Earthquakes (PDE) solution performed by the USGS NEIC, which is used as a seed for the Harvard CMT inversion.
The PDE solution is based upon P waves and often gives the hypocenter of the earthquake, i.e., the rupture initiation
point, whereas the CMT solution gives the ‘centroid location’, which is the location with dominant moment release.
The PDE solution is not used by our software package but must be present anyway in the first line of the file.

To simulate a kinematic rupture, i.e., a finite-source event, represented in terms of Nyoyrces point sources, provide
a CMTSOLUTION file that has Nyources €ntries, one for each subevent (i.e., concatenate Nyources CMTSOLUTION files
to a single CMTSOLUTION file). At least one entry (not necessarily the first) must have a zero time shift, and
all the other entries must have non-negative time shift. Each subevent can have its own half duration, latitude,
longitude, depth, and moment tensor (effectively, the local moment-density tensor).

Note that the zero in the synthetics does NOT represent the hypocentral time or centroid time in general, but the
timing of the center of the source triangle with zero time shift (Fig 5.3).

Although it is convenient to think of each source as a triangle, in the simulation they are actually Gaussians (as
they have better frequency characteristics). The relationship between the triangle and the gaussian used is shown in
Fig 5.2. For finite fault simulations it is usually not advisable to use a zero half duration and convolve afterwards,
since the half duration is generally fixed by the finite fault model.

CHAPTER 5. RUNNING THE SOLVER XSPECFEM3D 25

tstart

N\

\4

t1=0 t2 t3 .
Time
<> <« < >
hdur1 hdur2 hdur3

Figure 5.3: Example of timing for three sources. The center of the first source triangle is defined to be time zero. Note
that this is NOT in general the hypocentral time, or the start time of the source (marked as tstart). The parameter t ime
shift in the CMTSOLUTION file would be t1(=0), t2, t3 in this case, and the parameter half duration would
be hdurl, hdur2, hdur3 for the sources 1, 2, 3 respectively.

The solver can calculate seismograms at any number of stations for basically the same numerical cost, so the user
is encouraged to include as many stations as conceivably useful in the STATIONS file, which looks like this:

Network Longitude (deg) Burial (m)
Station Latitude (deg) Elevation (m)
ASBS AZ 33.6208 -116.4664 0.0 0.0
BZN AZ 33.4915 -116.6670 0.0 0.0
CRY AZ 33.5654 -116.7373 0.0 0.0
ELKS AZ 33.5813 -116.4496 0.0 0.0
AGA CI 33.6384 -116.4011 0.0 0.0
AGO CI 34.1465 -118.7670 0.0 0.0
ALP CI 34.6870 -118.2995 0.0 0.0
BAK CI 35.3444 -119.1044 0.0 0.0
BAR CI 32.6801 -116.6722 0.0 0.0
BBA CI 34.1955 -118.3534 0.0 0.0
BBB CI 33.3526 -115.7332 0.0 0.0
BBR CI 34.2623 -116.9207 0.0 0.0
BBS CI 33.9214 -116.9805 0.0 0.0

Figure 5.4: Sample STATIONS file. Station latitude and longitude should be provided in geo-
graphical coordinates. The width of the station label should be no more than 32 characters (see
MAX_LENGTH_STATION_NAME in the constants.h file), and the network label should be no more than 8 char-
acters (see MAX_LENGTH_NETWORK_NAME in the constants.h file).

Each line represents one station in the following format:

CHAPTER 5. RUNNING THE SOLVER XSPECFEM3D 26

Station Network Latitude (degrees) Longitude (degrees) Elevation (m) burial (m)

The solver xspecfem3D filters the list of stations in file in_data_files/STATIONS to exclude stations that are
not located within the region given in the Par_file (between LATITUDE_MIN and LATITUDE_MAX and between
LONGITUDE_MIN and LONGITUDE_MAX). The filtered file is called in_data_files/STATIONS_FILTERED.

Solver output is provided in the in_out_files/OUTPUT_FILES directory in the output_solver.txt
file. Output can be directed to the screen instead by uncommenting a line in constants.h:

! uncomment this to write messages to the screen
! integer, parameter :: IMAIN = ISTANDARD_OUTPUT

On PC clusters the seismogram files are generally written to the local disks (the path LOCAL_PATHinthe Par_file)
and need to be gathered at the end of the simulation.

While the solver is running, its progress may be tracked by monitoring the ‘t imestamp«’ files in the
in_out_files/OUTPUT_FILES directory. These tiny files look something like this:

Time step # 10000

Time: 108.4890 seconds

Elapsed time in seconds = 1153.28696703911

Elapsed time in hh:mm:ss = 0 h 19 m 13 s

Mean elapsed time per time step in seconds = 0.115328696703911
Max norm displacement vector U in all slices (m) = 1.0789589E-02

The timestamp~ files provide the Mean elapsed time per time step in seconds, which may be
used to assess performance on various machines (assuming you are the only user on a node), as well as the Max
norm displacement vector U in all slices (m). If something is wrong with the model, the mesh,
or the source, you will see the code become unstable through exponentially growing values of the displacement and
fluid potential with time, and ultimately the run will be terminated by the program. You can control the rate at which
the timestamp files are written based upon the parameter NTSTEP_BETWEEN_OUTPUT_INFO in the Par_file.

Having set the Par_file parameters, and having provided the CMTSOLUTION and STATIONS files, you are
now ready to launch the solver! This is most easily accomplished based upon the go_solver script (See Chapter 9
for information about running through a scheduler, e.g., LSF). You may need to edit the last command at the end of the
script that invokes the mpirun command. The runall script compiles and runs both xgenerate_databases
and xspecfem3D in sequence. This is a safe approach that ensures using the correct combination of distributed
database output and solver input.

It is important to realize that the CPU and memory requirements of the solver are closely tied to choices about
attenuation (ATTENUAT ION) and the nature of the model (i.e., isotropic models are cheaper than anisotropic models).
We encourage you to run a variety of simulations with various flags turned on or off to develop a sense for what is
involved.

For the same model, one can rerun the solver for different events by simply changing the CMTSOLUTION file,
or for different stations by changing the STATIONS file. There is no need to rerun the xgenerate_databases
executable. Of course it is best to include as many stations as possible, since this does not add to the cost of the
simulation.

Chapter 6

Adjoint Simulations

Adjoint simulations are generally performed for two distinct applications. First, they can be used for earthquake
source inversions, especially earthquakes with large ruptures such as the Lander’s earthquake [Wald and Heaton,
1994]. Second, they can be used to generate finite-frequency sensitivity kernels that are a critical part of tomographic
inversions based upon 3D reference models [Tromp et al., 2005, Liu and Tromp, 2006, Tromp et al., 2008, Liu and
Tromp, 2008]. In either case, source parameter or velocity structure updates are sought to minimize a specific misfit
function (e.g., waveform or traveltime differences), and the adjoint simulation provides a means of computing the
gradient of the misfit function and further reducing it in successive iterations. Applications and procedures pertaining
to source studies and finite-frequency kernels are discussed in Sections 6.1 and 6.2, respectively. The two related
parameters in the Par_file are SIMULATION_TYPE (1 or 2) and the SAVE_FORWARD (boolean).

6.1 Adjoint Simulations for Sources

In the case where a specific misfit function is minimized to invert for the earthquake source parameters, the gradient
of the misfit function with respect to these source parameters can be computed by placing time-reversed seismograms
at the receivers and using them as sources in an adjoint simulation, and then the value of the gradient is obtained from
the adjoint seismograms recorded at the original earthquake location.

1. Prepare the adjoint sources

(a) First, run a regular forward simlation (SIMULATION_TYPE = 1 and SAVE_FORWARD = .false.).
You can automatically set these two variables using the utils/change_simulation_type.pl script:

utils/change_simulation_type.pl -f
and then collect the recorded seismograms at all the stations given in in_data_files/STATIONS.

(b) Then select the stations for which you want to compute the time-reversed adjoint sources and run the
adjoint simulation, and compile them into the in_data_files/STATIONS_ADJOINT file, which has
the same format as the regular in_data_files/STATIONS file.

* Depending on what type of misfit function is used for the source inversion, adjoint sources need
to be computed from the original recorded seismograms for the selected stations and saved in the
in_out_files/SEM/ directory with the format STA.NT.BX?.adj, where STA, NT are the sta-
tion name and network code given in the in_data_files/STATIONS_ADJOINT file, and BX?
represents the component name of a particular adjoint seismogram. Please note that the band code
can change depending on your sampling rate (see Appendix B for further details).

* The adjoint seismograms are in the same format as the original seismogram (STA.NT.BX?.sem?),
with the same start time, time interval and record length.

(c) Notice that even if you choose to time reverse only one component from one specific station, you still need
to supply all three components because the code is expecting them (you can set the other two components
to be zero).

27

CHAPTER 6. ADJOINT SIMULATIONS 28

(d) Also note that since time-reversal is done in the code itself, no explicit time-reversing is needed for the
preparation of the adjoint sources, i.e., the adjoint sources are in the same forward time sense as the original
recorded seismograms.

2. Set the related parameters and run the adjoint simulation
Inthe in_data_files/Par_file, set the two related parameters to be SIMULATION_TYPE = 2 and
SAVE_FORWARD = .false.. Moreconveniently, use the scriptsutils/change_simulation_type.pl
to modify the Par_file automatically (change_simulation_type.pl -a). Then run the solver to
launch the adjoint simulation.

3. Collect the seismograms at the original source location

After the adjoint simulation has completed successfully, collect the seismograms from LOCAL_PATH.

» These adjoint seismograms are recorded at the locations of the original earthquake sources given by the

source, then the seismograms collected will start with S00001.

* These adjoint seismograms provide critical information for the computation of the gradient of the misfit
function.

6.2 Adjoint Simulations for Finite-Frequency Kernels (Kernel Simulation)

Finite-frequency sensitivity kernels are computed in two successive simulations (please refer to Liu and Tromp [2006]
and Tromp et al. [2008] for details).

1. Run a forward simulation with the state variables saved at the end of the simulation

Prepare the CMTSOLUTION and STATIONS files, set the parameters SIMULATION_TYPE = 1 and SAVE_FORWARD
= .true. inthe Par_file (change_simulation_type -F), and run the solver.

* Notice that attenuation is not implemented yet for the computation of finite-frequency kernels; therefore
set ATTENUATION = .false. inthe Par_file.

* We also suggest you modify the half duration of the CMTSOLUTION to be similar to the accuracy of the
simulation (see Equation 3.1) to avoid too much high-frequency noise in the forward wavefield, although
theoretically the high-frequency noise should be eliminated when convolved with an adjoint wavefield with
the proper frequency content.

* This forward simulation differs from the regular simulations (SIMULATION_TYPE = 1 and SAVE_FORWARD
= .false.) described in the previous chapters in that the state variables for the last time step of the simula-
tion, including wavefields of the displacement, velocity, acceleration, etc., are saved to the LOCAL_PATH
to be used for the subsequent simulation.

* For regional simulations, the files recording the absorbing boundary contribution are also written to the
LOCAL_PATH when SAVE_FORWARD = .true..

2. Prepare the adjoint sources

The adjoint sources need to be prepared the same way as described in the Section 1.

¢ In the case of travel-time finite-frequency kernel for one source-receiver pair, i.e., point source from the
CMTSOLUTION, and one station in the STATIONS_ADJOINT list, we supply a sample program in
utils/adjoint_sources/traveltime/xcreate_adjsrc_traveltime to cuta certain
portion of the original displacement seismograms and convert it into the proper adjoint source to compute
the finite-frequency kernel.

CHAPTER 6. ADJOINT SIMULATIONS 29

xcreate_adjsrc_traveltime tl t2 ifile[0-5] E/N/Z-ascii-files [baz]

where t1 and t2 are the start and end time of the portion you are interested in, 1file denotes the
component of the seismograms to be used (0 for all three components, 1 for East, 2 for North, and 3
for vertical, 4 for transverse, and 5 for radial component), E/N/Z-ascii-files indicate the three-
component displacement seismograms in the right order, and baz is the back-azimuth of the station. Note
that baz is only supplied when 1 file =4 or 5.

 Similarly, a sample program to compute adjoint sources for amplitude finite-frequency kernels may be
foundinutils/adjoint_sources/amplitude and used in the same way as described for
traveltime measurements

xcreate_adjsrc_amplitude tl1 t2 ifile[0-5] E/N/Z-ascii-files [baz].

3. Run the kernel simulation

With the successful forward simulation and the adjoint source ready in the in_out_files/SEM/ direc-
tory, set SIMULATION_TYPE = 3 and SAVE_FORWARD = .false. inthe Par_file (you can use
change_simulation_type.pl -b), and rerun the solver.

* The adjoint simulation is launched together with the back reconstruction of the original forward wavefield
from the state variables saved from the previous forward simulation, and the finite-frequency kernels are
computed by the interaction of the reconstructed forward wavefield and the adjoint wavefield.

» The back-reconstructed seismograms at the original station locations are saved to the LOCAL_PATH at the
end of the kernel simulations, and can be collected to the local disk.

* These back-constructed seismograms can be compared with the time-reversed original seismograms to
assess the accuracy of the backward reconstruction, and they should match very well.

» The arrays for density, P-wave speed and S-wave speed kernels are also saved in the LOCAL_PATH with

processor number, rho (alpha, beta) are the different types of kernels.

In general, the three steps need to be run sequentially to assure proper access to the necessary files. If the simulations
are run through some cluster scheduling system (e.g., LSF), and the forward simulation and the subsequent kernel
simulations cannot be assigned to the same set of computer nodes, the kernel simulation will not be able to access the
database files saved by the forward simulation. Solutions for this dilemma are provided in Chapter 9. Visualization of
the finite-frequency kernels is discussed in Section 8.3.

Chapter 7

Noise Cross-correlation Simulations

Besides earthquake simulations, SPECFEM3D includes functionality for seismic noise tomography as well. In order
to proceed successfully in this chapter, it is critical that you have already familiarized yourself with procedures for
meshing (Chapter 3), creating distributed databases (Chapter 4), running earthquake simulations (Chapters 5) and
adjoint simulations (Chapter 6). Also, make sure you read the article ‘Noise cross-correlation sensitivity kernels’
[Tromp et al., 2010b], in order to understand noise simulations from a theoretical perspective.

7.1 Input Parameter Files

As usual, the three main input files are crucial: Par_file, CMTSOLUTION and STATIONS. Unless otherwise spec-
ified, those input files should be located in directory in_data_files/.

CMTSOLUTION is required for all simulations. At a first glance, it may seem unexpected to have it here, since the
noise simulations should have nothing to do with the earthquake — CMTSOLUTION. However, for noise simulations, it
is critical to have no earthquakes. In other words, the moment tensor specified in CMTSOLUT ION must be set to zero
manually!

STATIONS remains the same as in previous earthquake simulations, except that the order of receivers listed in
STATIONS is now important. The order will be used to determine the ‘master’ receiver, i.e., the one that simultane-
ously cross correlates with the others.

Par_file also requires careful attention. A parameter called NOISE_TOMOGRAPHY has been added which
specifies the type of simulation to be run. NOISE_TOMOGRAPHY is an integer with possible values 0, 1, 2 and 3. For
example, when NOISE_TOMOGRAPHY equals 0, a regular earthquake simulation will be run. When it is 1/2/3, you
are about to run step 1/2/3 of the noise simulations respectively. Should you be confused by the three steps, refer to
Tromp et al. [2010b] for details.

Another change to Par_file involves the parameter NSTEP. While for regular earthquake simulations this
parameter specifies the length of synthetic seismograms generated, for noise simulations it specifies the length of
the seismograms used to compute cross correlations. The actual cross correlations are thus twice this length, i.e.,
2 NSTEP — 1. The code automatically makes the modification accordingly, if NOI SE_ TOMOGRAPHY is not zero.

There are other parameters in Par_file which should be given specific values. For instance, since the first
two steps for calculating noise sensitivity kernels correspond to forward simulations, SIMULATION_TYPE must be
1 when NOISE_TOMOGRAPHY equals 1 or 2. Also, we have to reconstruct the ensemble forward wavefields in adjoint
simulations, therefore we need to set SAVE_FORWARD to . t rue . for the second step, i.e., when NOISE_ TOMOGRAPHY
equals 2. The third step is for kernel constructions. Hence SIMULATION_TYPE should be 3, whereas SAVE__FORWARD
mustbe . false..

30

CHAPTER 7. NOISE CROSS-CORRELATION SIMULATIONS 31

Finally, for most system architectures, please make sure that LOCAL_PATH in Par_file is in fact local, not
globally shared. Because we have to save the wavefields at the earth’s surface at every time step, it is quite problematic
to have a globally shared LOCAL_PATH, in terms of both disk storage and I/O speed.

7.2 Noise Simulations: Step by Step

Proper parameters in those parameter files are not enough for noise simulations to run. We have more parameters to
specify: for example, the ensemble-averaged noise spectrum, the noise distribution etc. However, since there are a few
‘new’ files, it is better to introduce them sequentially. In this section, standard procedures for noise simulations are
described.

7.2.1 Pre-simulation

* As usual, we first configure the software package using:
./configure FC=ifort MPIFC=mpif90
Use the following if SCOTCH is needed:
./configure FC=ifort MPIFC=mpif90 -with-scotch-dir=/opt/scotch

» Next, we need to compile the source code using:
make xgenerate_databases

make xspecfem3D

* Before we can run noise simulations, we have to specify the noise statistics, e.g., the ensemble-averaged noise
spectrum. Matlab scripts are provided to help you to generate the necessary file.

examples/noise_tomography/NOISE_TOMOGRAPHY .m (main program)
examples/noise_tomography/PetersonNoiseModel .m

In Matlab, simply run:
NOISE_TOMOGRAPHY (NSTEP, DT, Tmin, Tmax, NOISE_MODEL)

DT is given in Par_file, but NSTEP is NOT the one specified in Par_file. Instead, you have to feed
2 NSTEP — 1 to account for the doubled length of cross correlations. Tmin and Tmax correspond to the period
range you are interested in, whereas NOISE_MODEL denotes the noise model you will be using. Details can be
found in the Matlab script.

After running the Matlab script, you will be given the following information (plus a figure in Matlab):

LR e R I I I b I I R I I I I I I I I I I I e e I I I I I I I I I b I b I I I I 2 b b b b b b e
the source time function has been saved in:
/data2/yangl/3D_NOISE/S_squared (note this path must be different)
S_squared should be put into directory:
in_out_files/NOISE_TOMOGRAPHY/ in the SPECFEM3D package

In other words, the Matlab script creates a file called S_squared, which is the first ‘new’ input file we en-
counter for noise simulations.

One may choose a flat noise spectrum rather than Peterson’s noise model. This can be done easily by modifying
the Matlab script a little.

 Create a new directory in the SPECFEM3D package, name it as in_out_files/NOISE_TOMOGRAPHY/.
We will add some parameter files later in this folder.

CHAPTER 7. NOISE CROSS-CORRELATION SIMULATIONS 32

* Put the Matlab-generated-file S_squaredin in_out_files/NOISE_TOMOGRAPHY/.

That’s to say, you willhave afile in_out_files/NOISE_TOMOGRAPHY/S_squared inthe SPECFEM3D
package.

e Create a file called in_out_files/NOISE_TOMOGRAPHY/irec_master_noise. Note that this file
is located in directory in_out_files/NOISE_TOMOGRAPHY/ as well. In general, all noise simulation
related parameter files go into that directory. irec_master_noise contains only one integer, which is
the ID of the ‘master’ receiver. For example, if this file contains 5, it means that the fifth receiver listed in
in_data_files/STATIONS becomes the ‘master’. That’s why we mentioned previously that the order of
receivers in in_data_files/STATIONS is important.

Note that in regional simulations, the in_data_files/STATIONS might contain receivers which are out-
side of our computational domains. Therefore, the integer in irec_master_noise is actually the ID in
in_data_files/STATIONS_FILTERED (which is generated by bin/xgenerate_databases).

¢ Create a file called in_out_files/NOISE_TOMOGRAPHY/nu_master. This file holds three numbers,
forming a (unit) vector. It describes which component we are cross-correlating at the ‘master’ receiver, i.e.,
2% in Tromp et al. [2010b]. The three numbers correspond to E/N/Z components respectively. Most often, the
vertical component is used, and in those cases the three numbers should be 0, 0 and 1.

¢ Describe the noise direction and distributions in src/shared/noise_tomography.f£90. Search for a
subroutine called noise_distribution_direction in noise_tomography.f90. Itis actually lo-
cated at the very beginning of noise_tomography.f£90. The default assumes vertical noise and a uniform
distribution across the whole free surface of the model. It should be quite self-explanatory for modifications.
Should you modify this part, you have to re-compile the source code.

7.2.2 Simulations

With all of the above done, we can finally launch our simulations. Again, please make sure that the LOCAL_PATH in
in_data_files/Par_fileisnotglobally shared. Itis quite problematic to have a globally shared LOCAL_PATH,
in terms of both disk storage and speed of I/O (we have to save the wavefields at the earth’s surface at every time step).

As discussed in Tromp et al. [2010b], it takes three steps/simulations to obtain one contribution of the ensemble
sensitivity kernels:

¢ Step 1: simulation for generating wavefields
SIMULATION_TYPE=1
NOISE_TOMOGRAPHY=1
SAVE_FORWARD not used, can be either .true. or .false.

 Step 2: simulation for ensemble forward wavefields
SIMULATION_TYPE=1
NOISE_TOMOGRAPHY=2
SAVE_FORWARD=.true.

* Step 3: simulation for ensemble adjoint wavefields and sensitivity kernels
SIMULATION_TYPE=3
NOISE_TOMOGRAPHY=3
SAVE_FORWARD=.false.

Note Step 3 is an adjoint simulation, please refer to previous chapters on how to prepare adjoint sources and
other necessary files, as well as how adjoint simulations work.

Note that it is better to run the three steps continuously within the same job, otherwise you have to collect the
saved surface movies from the old nodes/CPUs to the new nodes/CPUs. This process varies from cluster to cluster and
thus cannot be discussed here. Please ask your cluster administrator for information/configuration of the cluster you
are using.

CHAPTER 7. NOISE CROSS-CORRELATION SIMULATIONS 33

7.2.3 Post-simulation

After those simulations, you have all stuff you need, either in the in_out_files/OUTPUT_FILES/ or in the
directory specified by LOCAL_PATH in in_data_files/Par_file (which are most probably on local nodes).
Collect whatever you want from the local nodes to your workstation, and then visualize them. This process is the same
as what you may have done for regular earthquake simulations. Refer to other chapters if you have problems.

Simply speaking, two outputs are the most interesting: the simulated ensemble cross correlations and one contri-
bution of the ensemble sensitivity kernels.

The simulated ensemble cross correlations are obtained after the second simulation (Step 2). Seismograms in
in_out_files/OUTPUT_FILES/ are actually the simulated ensemble cross correlations. Collect them im-
mediately after Step 2, or the Step 3 will overwrite them. Note that we have a ‘master’ receiver specified by
irec_master_noise, the seismogram at one station corresponds to the cross correlation between that station
and the ‘master’. Since the seismograms have three components, we may obtain cross correlations for different com-
ponents as well, not necessarily the cross correlations between vertical components.

One contribution of the ensemble cross-correlation sensitivity kernels are obtained after Step 3, stored in the
in_data_files/LOCAL_PATH on local nodes. The ensemble kernel files are named the same as regular earth-

quake kernels.

You need to run another three simulations to get the other contribution of the ensemble kernels, using different
forward and adjoint sources given in Tromp et al. [2010b].

7.3 Example

In order to illustrate noise simulations in an easy way, one example is provided in examples/noise_tomography/.
See examples/noise_tomography/README for explanations.

Note, however, that they are created for a specific workstation (CLOVER @PRINCETON), which has at least 4
cores with ‘mpif90” working properly.

If your workstation is suitable, you can run the example in examples/noise_tomography/ using:
./pre-processing.sh
Even if this script does not work on your workstation, the procedure it describes is universal. You may review

the whole process described in the last section by following the commands in pre-processing. sh, which should
contain enough explanations for all the commands.

Chapter 8

Graphics

8.1 Meshes

In case you used the internal mesher xmeshfem3D to create and partition your mesh, you can output mesh files in
ABAQUS (.INP) and DX (.dx) format to visualize them. For this, you must set either the flag CREATE_DX_FILES
or CREATE_ABAQUS_FILES to .true. in the mesher’s parameter file Mesh_Par_file prior to running the
mesher (see Chapter 3.2 for details). You can then use AVS (www.avs.com) or OpenDX (www.opendx.org) to
visualize the mesh and MPI partition (slices).

Figure 8.1: Visualization using Paraview of VTK files created by xgenerate_databases showing P- and S-wave
velocities assigned to the mesh points. The mesh was created by xmeshfem3D for 4 processors.

You have also the option to visualize the distributed databases produced by xgenerate_databases using
Paraview (www.paraview.orq). For this, you must set the flag SAVE_MESH_FILES to .true. in the main
parameter file Par_file (see Chapter 4.1 for details). This will create VTK files for each single partition. You can
then use Paraview (www . paraview.orq) to visualized these partitions.

8.2 Movies

To make a surface or volume movie of the simulation, set parameters MOVIE_SURFACE, MOVIE_VOLUME, and
NTSTEP_BETWEEN_FRAMES in the Par_file. Turning on the movie flags, in particular MOVIE_VOLUME, pro-
duces large output files. MOVIE_VOLUME files are saved in the LOCAL_PATH directory, whereas MOVIE_SURFACE
output files are saved in the in_out_files/OUTPUT_FILES directory. We save the velocity field. The look
of a movie is determined by the half-duration of the source. The half-duration should be large enough so that the

34

www.avs.com
www.opendx.org
www.paraview.org
www.paraview.org

CHAPTER 8. GRAPHICS 35

movie does not contain frequencies that are not resolved by the mesh, i.e., it should not contain numerical noise.
This can be accomplished by selecting a CMT HALF_DURATION > 1.1 X smallest period (see figure 5.1). When
MOVIE_SURFACE =.true., the half duration of each source in the CMTSOLUTION file is replaced by

\/(HALF_DURATION? + HDUR_MOVIE?)

NOTE: If HDUR_MOVIE is set to 0.0, the code will select the appropriate value of 1.1 x smallest period.
As usual, for a point source one can set HALF_DURATIONinthe Par_filetobe 0.0 and HDUR_MOVIE
= 0.0 to get the highest frequencies resolved by the simulation, but for a finite source one would keep all
the HALF_DURATIONSs as prescribed by the finite source model and set HDUR_MOVIE = 0.0.

8.2.1 Movie Surface

inthe in_out_files/OUTPUT_FILES directory. There are several flags in the main parameter file Par_file
that control the output of these moviedata files (see section 4.1 for details): NTSTEP_BETWEEN_FRAMES to set the
timesteps between frames, SAVE_DISPLACEMENT to save displacement instead of velocity, USE_HIGHRES_FOR_MOVIES
to save values at all GLL point instead of element edges. In order to output additionally shakemaps, you would set the
parameter CREATE_SHAKEMAP to .true..

The files are in a fairly complicated binary format, but there is a program provided to convert the output into more
user friendly formats:

xcreate_movie_shakemap AVS_DX GMT From create_movie_shakemap_ AVS_DX_GMT.f90, it
outputs data in ASCII, OpenDX, or AVS format (also readable in ParaView). Before compiling the code, make
sure you have the file surface_from_mesher.hinthe in_out_files/OUTPUT_FILES/ directory.
This file will be created by the solver run. Then type

make xcreate_movie_shakemap_ AVS_DX_GMT

and run the executable xcreate_movie_shakemap_AVS_DX_GMT inthe bin/ subdirectory. It will create
visualization files in your format of choice. The code will prompt the user for input parameters.

Figure 8.2: Visualization using AVS files created by xcreate_movie_shakemap_AVS_DX_GMT showing movie
snapshots of vertical velocity components at different times.

The SPECFEM3D code is running in near real-time to produce animations of southern California earthquakes via
the web; see Southern California ShakeMovie®(www . shakemovie.caltech.edu).

8.2.2 Movie Volume

When running xspecfem3D with the MOVIE_VOLUME flag turned on, the code outputs several files in LOCAL_PATH
specified in the main Par_file, e.g. in directory in_out_files/DATABASES_MPI. The output is saved
by each processor at the time interval specified by NTSTEP_BETWEEN_FRAMES. For all domains, the velocity field

www.shakemovie.caltech.edu

CHAPTER 8. GRAPHICS 36

other arrays are stored on all GLL points. Note that the components X/Y/Z can change to E/N/Z according to the
SUPPRESS_UTM_PROJECTION flag (see also Appendix A and B).

velocity_7
1 Oerg5

0.0e+00

S S S AN s

velocity 7 velocity 7
1 0673/5 1.0&&5

0.0e+00 0.0e+00

Figure 8.3: Paraview visualization using movie volume files (converted by xcombine_vol_data and
mesh2vtu.pl) and showing snapshots of vertical velocity components at different times.

To visualize these files, we use an auxilliary program combine_vol_data.f90 to combine the data from all
slices into one mesh file. To compile it in the root directory, type:

make xcombine_vol_data

which will create the executable xcombine_vol_data in the directory bin/. To output the usage of this
executable, type ‘./bin/xcombine_vol_data‘ without arguments. As an example, to run the executable you would use

cd bin/
./xcombine_vol_data 0 3 velocity_Z_1it000400 ../in_out_files/DATABASES_MPI ../in_out_files/OUTPUT_FILES 0

to create a low-resolution mesh file. The output mesh file will have the name velocity_Z_1it000400.mesh.
We next convert the . mesh file into the VTU (Unstructured grid file) format which can be viewed in ParaView. For
this task, you can use and modify the script mesh2vtu.pl located in directory
utils/Visualization/Paraview/, for example:

mesh2vtu.pl -i velocity_Z_it000400.mesh -o velocity_Z_1it000400.vtu

Notice that this Perl script uses a program mesh2vtu inthe utils/Visualization/Paraview/mesh2vtu
directory, which further uses the VIK (http://www.vtk.org/) run-time library for its execution. Therefore,
make sure you have them properly set in the script according to your system.

8.3 Finite-Frequency Kernels

The finite-frequency kernels computed as explained in Section 6.2 are saved in the LOCAL_PATH at the end of the
simulation. Therefore, we first need to collect these files on the front end, combine them into one mesh file, and
visualize them with some auxilliary programs.

1. Create slice files

We will only discuss the case of one source-receiver pair, i.e., the so-called banana-doughnut kernels. Although
it is possible to collect the kernel files from all slices on the front end, it usually takes up too much storage space
(at least tens of gigabytes). Since the sensitivity kernels are the strongest along the source-receiver great circle
path, it is sufficient to collect only the slices that are along or close to the great circle path.

A Perl script slice_number.pl located in directory utils/Visualization/Paraview/ can help to
figure out the slice numbers that lie along the great circle path. It applies to meshes created with the internal
mesher xmeshfem3D.

(a) On machines where you have access to the script, copy the Mesh_Par_file, and output_solver
files, and run:

http://www.vtk.org/

CHAPTER 8. GRAPHICS 37

slice_number.pl Mesh_Par_file output_solver.txt slice_file

which will generate a slices_file.

(b) For cases with multiple sources and multiple receivers, you need to provide a slice file before proceeding
to the next step.

2. Collect the kernel files

After obtaining the slice files, you can collect the corresponding kernel files from the given slices.

(a) You can use or modify the script utils/copy_basin_database.pl to accomplish this:
utils/copy_database.pl slice_file 1lsf_machine_file filename |[Jjobid]

where 1sf_machine_file is the machine file generated by the LSF scheduler, £ilename is the kernel
name (e.g., rho_kernel, alpha_kernel and beta_kernel), and the optional jobid is the name of the
subdirectory under LOCAL_PATH where all the kernel files are stored.

(b) After executing this script, all the necessary mesh topology files as well as the kernel array files are col-
lected to the local directory of the front end.

3. Combine Kkernel files into one mesh file

We use an auxilliary program combine_vol_data.f90 to combine the kernel files from all slices into one
mesh file.

(a) Compile it in the root directory:

make xcombine_vol_data
./bin/xcombine_vol_data slice_list filename input_dir output_dir high/low-resolution

where input_dir is the directory where all the individual kernel files are stored, and output_dir is
where the mesh file will be written.

(b) Use 1 for a high-resolution mesh, outputting all the GLL points to the mesh file, or use 0 for low resolution,
outputting only the corner points of the elements to the mesh file.

(c) The output mesh file will have the name filename_rho (alpha, beta) .mesh

4. Convert mesh files into .vtu files

(a) We next convert the .mesh file into the VTU (Unstructured grid file) format which can be viewed
in ParaView. For this task, you can use and modify the script mesh2vtu.pl located in directory
utils/Visualization/Paraview/, for example:

mesh2vtu.pl -i file.mesh -o file.vtu

(b) Notice that this Perl script uses a programmesh2vtuintheutils/Visualization/Paraview/mesh2vtu
directory, which further uses the VIK (http://www.vtk.org/) run-time library for its execution.
Therefore, make sure you have them properly set in the script according to your system.

5. Copy over the source and receiver .vtk file
In the case of a single source and a single receiver, the simulation also generates the file sr . vtk located in the
in_out_files/OUTPUT_FILES/ directory to describe the source and receiver locations, which can also
be viewed in Paraview in the next step.

6. View the mesh in ParaView

Finally, we can view the mesh in ParaView (www.paraview.org).

(a) Open ParaView.
(b) From the top menu, File —Open data, select file.vtu, and click the Accept button.

« If the mesh file is of moderate size, it shows up on the screen; otherwise, only the bounding box is
shown.

http://www.vtk.org/
www.paraview.org

CHAPTER 8. GRAPHICS 38

(c) Click Display Tab — Display Style — Representation and select wireframe of surface to display it.

(d) To create a cross-section of the volumetric mesh, choose Filter — cut, and under Parameters Tab, choose
Cut Function — plane.

(e) Fill in center and normal information given by the global_slice_number.pl script (either from the
standard output or from normal_plane.txt file).

(f) To change the color scale, go to Display Tab — Color — Edit Color Map and reselect lower and upper
limits, or change the color scheme.

(2) Now load in the source and receiver location file by File — Open data, select sr.vtk, and click the
Accept button. Choose Filter — Glyph, and represent the points by ‘spheres’.

(h) For more information about ParaView, see the ParaView Users Guide (www.paraview.org/files/
vl.6/ParaViewUsersGuide.PDF).

(a) S Kernel for Station GSC (b) S Kernel for Station HEC
K beta
1 2.0
€. 1.0
0.0
-1.0
-—2.0
5
4
3
2
1
0
km/s

Figure 8.4: (a) Top Panel: Vertical source-receiver cross-section of the S-wave finite-frequency sensitivity kernel Kz
for station GSC at an epicentral distance of 176 km from the September 3, 2002, Yorba Linda earthquake. Lower
Panel: Vertical source-receiver cross-section of the 3D S-wave speed model used for the spectral-element simulations
[Komatitsch et al., 2004]. (b) The same as (a) but for station HEC at an epicentral distance of 165 km [Liu and Tromp,

www.paraview.org/files/v1.6/ParaViewUsersGuide.PDF
www.paraview.org/files/v1.6/ParaViewUsersGuide.PDF

Chapter 9

Running through a Scheduler

The code is usually run on large parallel machines, often PC clusters, most of which use schedulers, i.e., queuing or
batch management systems to manage the running of jobs from a large number of users. The following considerations
need to be taken into account when running on a system that uses a scheduler:

» The processors/nodes to be used for each run are assigned dynamically by the scheduler, based on availability.
Therefore, in order for the xgenerate_databases and the xspecfem3D executables (or between succes-
sive runs of the solver) to have access to the same database files (if they are stored on hard drives local to the
nodes on which the code is run), they must be launched in sequence as a single job.

* On some systems, the nodes to which running jobs are assigned are not configured for compilation. It may
therefore be necessary to pre-compile both the xgenerate_databases and the xspecfem3D executables.

* One feature of schedulers/queuing systems is that they allow submission of multiple jobs in a “launch and
forget” mode. In order to take advantage of this property, care needs to be taken that output and intermediate
files from separate jobs do not overwrite each other, or otherwise interfere with other running jobs.

Examples of job scripts can be found in the utils/Cluster/ directory and can straightforwardly be modified and
adapted to meet more specific running needs.

We describe here in some detail a job submission procedure for the Caltech 1024-node cluster, CITerra, under
the LSF scheduling system. We consider the submission of a regular forward simulation using the internal mesher to
create mesh partitions. The two main scripts are run_1sf.bash, which compiles the Fortran code and submits the
job to the scheduler, and go_mesher_solver_lsf basin.forward, which contains the instructions that make up
the job itself. These scripts can be found in utils/Cluster/1sf/ directory

9.1 Job submission run_1sf.bash

This script first sets the job queue to be ‘normal’. It then compiles the mesher, database generator and solver to-
gether, figures out the number of processors required for this simulation from the in_data_files/Par_file,
and submits the LSF job.

#!/bin/bash
use the normal queue unless otherwise directed gqueue="-g normal”
if [$# -eq 1 1; then
echo "Setting the queue to $1"
queue="-gq S$1"
fi

compile the mesher and the solver

d=‘date’ echo "Starting compilation $d"
make clean

39

CHAPTER 9. RUNNING THROUGH A SCHEDULER 40

make xmeshfem3D

make xgenerate_databases

make xspecfem3D

d=‘date’

echo "Finished compilation $d"

get total number of nodes needed for solver
NPROC=‘grep NPROC in_data_files/Par_file | cut -c 34- '

compute total number of nodes needed for mesher

NPROC_XI=‘grep NPROC_XI in_data_files/meshfem3D_files/Mesh_Par_file | cut -c 34- '
NPROC_ETA=‘grep NPROC_ETA in_data_files/meshfem3D_files/Mesh_Par_file | cut -c 34- '/
total number of nodes is the product of the values read

numnodes=$ ((SNPROC_XI * SNPROC_ETA))

checks total number of nodes

if [S$numnodes —-neq SNPROC]; then
echo "error number of procs mismatch"
exit

fi

echo "Submitting Jjob"
bsub $queue —-n $numnodes -W 60 —-K <go_mesher_solver_lsf.forward

9.2 Job script go_mesher_solver_lsf.forward

This script describes the job itself, including setup steps that can only be done once the scheduler has assigned a job-ID
and a set of compute nodes to the job, the run_1sf.bash commands used to run the mesher, database generator
and the solver, and calls to scripts that collect the output seismograms from the compute nodes and perform clean-up
operations.

1. First the script directs the scheduler to save its own output and output from stdout into
in_out_files/OUTPUT_FILES/%J.o, Where %J is short-hand for the job-ID; it also tells the scheduler what
version of mpich to use (mpich_gm) and how to name this job (go_mesher_solver_1lsf).

2. The script then creates a list of the nodes allocated to this job by echoing the value of a dynamically set en-
vironment variable LSB_MCPU_HOSTS and parsing the output into a one-column list using the Perl script
utils/Cluster/lsf/remap_lsf_machines.pl. It then creates a set of scratch directories on these
nodes (/scratch/
$USER/DATABASES_MPTI) to be used as the LOCAL_PATH for temporary storage of the database files. The
scratch directories are created using shmux, a shell multiplexor that can execute the same commands on
many hosts in parallel. shmux is available from Shmux (web.taranis.org/shmux/). Make sure that
the LOCAL_PATH parameter in in_data_files/Par_file is also set properly.

3. The next portion of the script launches the mesher, database generator and then the solver using run_1sf .bash.

4. The final portion of the script collects the seismograms and performs clean up on the nodes, using the Perl
scripts collect_seismo_lsf_multi.pl and cleanmulti.pl.

#!/bin/bash -v

#BSUB -o in_out_files/OUTPUT_FILES/%J.0
#BSUB —a mpich_gm

#BSUB —-J go_mesher_solver_1sf

set up local scratch directories

web.taranis.org/shmux/

CHAPTER 9. RUNNING THROUGH A SCHEDULER

41

BASEMPIDIR=/scratch/$USER/DATABASES_MPI
mkdir —-p in_out_files/OUTPUT_FILES
echo "S$LSB_MCPU_HOSTS" > in_out_files/OUTPUT_FILES/lsf_machines
echo "S$LSB_JOBID" > in_out_files/OUTPUT_FILES/jobid
remap_lsf_machines.pl in_out_files/OUTPUT_FILES/lsf_machines >
in_out_files/OUTPUT_FILES/machines
shmux -M50 -Sall -c¢ "rm -r —-f /scratch/SUSER; \

mkdir -p /scratch/S$USER; mkdir -p $BASEMPIDIR" \

- < in_out_files/OUTPUT_FILES/machines >/dev/null

run the specfem program

current_pwd=$PWD

cd bin/

run_lsf.bash ——-gm—-no-shmem —--gm-copy-env $current_pwd/xmeshfem3D
run_lsf.bash —--gm-no-shmem —--gm-copy-env $current_pwd/xgenerate_databases
run_lsf.bash ——gm—-no-shmem —--gm-copy-env S$Scurrent_pwd/xspecfem3D

collect seismograms and clean up

cd current_pwd/

mkdir -p in_out_files/SEM

cd in_out_files/SEM/

collect_seismo.pl ../OUTPUT_FILES/lsf_machines
cleanbase.pl ../OUTPUT_FILES/machines

Chapter 10

Post-Processing Scripts

Several post-processing scripts/programs are provided in the utils/ directory, and most of them need to be adjusted
when used on different systems, for example, the path of the executable programs. Here we only list a few of the
available scripts and provide a brief description, and you can either refer to the related sections for detailed usage or,
in a lot of cases, type the script/program name without arguments for its usage.

10.1 Process Data and Synthetics

In many cases, the SEM synthetics are calculated and compared to data seismograms recorded at seismic stations.
Since the SEM synthetics are accurate for a certain frequency range, both the original data and the synthetics need to
be processed before a comparison can be made.

For such comparisons, the following steps are recommended:

1. Make sure that both synthetic and observed seismograms have the correct station/event and timing information.

2. Convolve synthetic seismograms with a source time function with the half duration specified in the CMTSOLUTION
file, provided, as recommended, you used a zero half duration in the SEM simulations.

3. Resample both observed and synthetic seismograms to a common sampling rate.
Cut the records using the same window.

Remove the trend and mean from the records and taper them.

AN U

Remove the instrument response from the observed seismograms (recommended) or convolve the synthetic
seismograms with the instrument response.

7. Make sure that you apply the same filters to both observed and synthetic seismograms. Preferably, avoid filtering
your records more than once.

8. Now, you are ready to compare your synthetic and observed seismograms.

We generally use the following scripts provided in the utils/seis_process/ directory:

10.1.1 Data processing script process_data.pl

This script cuts a given portion of the original data, filters it, transfers the data into a displacement record, and picks
the first P and S arrivals. For more functionality, type ‘process_data.pl’ without any argument. An example of
the usage of the script:

process_data.pl -m CMTSOLUTION -s 1.0 -1 0/4000 -i -f -t 40/500 -p -x bp DATA/1999.330+.BH?.SAC

42

CHAPTER 10. POST-PROCESSING SCRIPTS 43

which has resampled the SAC files to a sampling rate of 1 seconds, cut them between 0 and 4000 seconds, transfered
them into displacement records and filtered them between 40 and 500 seconds, picked the first P and S arrivals, and
added suffix ‘bp’ to the file names.

Note that all of the scripts in this section actually use the SAC and/or IASP91 to do the core operations; therefore
make sure that the SAC and IASP91 packages are installed properly on your system, and that all the environment
variables are set properly before running these scripts.

10.1.2 Synthetics processing script process_syn.pl

This script converts the synthetic output from the SEM code from ASCII to SAC format, and performs similar
operations as ‘process_data.pl’. An example of the usage of the script:

process_syn.pl -m CMTSOLUTION -h -a STATIONS -s 1.0 -1 0/4000 -f -t 40/500 -p -x bp SEM/*.BX?.semd

which will convolve the synthetics with a triangular source-time function from the CMTSOLUTION file, convert the
synthetics into SAC format, add event and station information into the SAC headers, resample the SAC files with a
sampling rate of 1 seconds, cut them between 0 and 4000 seconds, filter them between 40 and 500 seconds with the
same filter used for the observed data, pick the first P and S arrivals, and add the suffix ‘bp’ to the file names.

More options are available for this script, such as adding time shift to the origin time of the synthetics, convolving
the synthetics with a triangular source time function with a given half duration, etc. Type process_syn.pl without
any argument for a detailed usage.

In order to convert between SAC format and ASCII files, useful scripts are provided in the subdirectories
utils/sac2000_alpha_convert/andutils/seis_process/asc2sac/.

10.1.3 Script rotate.pl

The original data and synthetics have three components: vertical (BHZ resp. BXZ), north (BHN resp. BXN) and east
(BHE resp. BXE). However, for most seismology applications, transverse and radial components are also desirable.
Therefore, we need to rotate the horizontal components of both the data and the synthetics to the transverse and radial
direction, and rotate.pl can be used to accomplish this:

rotate.pl -1 0 -L 180 -d DATA/*.BHE.SAC.bp
rotate.pl -1 0 -L 180 SEM/x.BXE.semd.sac.bp

where the first command performs rotation on the SAC data obtained through Seismogram Transfer Program (STP)
(http://www.data.scec.org/STP/stp.html), while the second command rotates the processed SEM syn-
thetics.

10.2 Collect Synthetic Seismograms

The forward and adjoint simulations generate synthetic seismograms in the in_out_files/OUTPUT_FILES/
directory by default. For the forward simulation, the files are named like STA.NT .BX? . semd for two-column time
series, or STA.NT.BX?.semd. sac for ASCII SAC format, where STA and NT are the station name and network
code, and BX ? stands for the component name. Please see the Appendix A and B for further details.

6.1 for details). The kernel simulations output the back-reconstructed synthetic seismogram in the name STA .NT . BX? . semd,
mainly for the purpose of checking the accuracy of the reconstruction. Refer to Section 6.2 for further details.

You do have further options to change this default output behavior, given in the main constants file constants.h
located in src/shared/ directory:

SEISMOGRAMS_BINARY setto .true. to have seismograms written out in binary format.

WRITE_SEISMOGRAMS_BY MASTER Setto .true. to have only the master process writing out seismograms.
This can be useful on a cluster, where only the master process node has access to the output directory.

http://www.data.scec.org/STP/stp.html

CHAPTER 10. POST-PROCESSING SCRIPTS 44

USE_OUTPUT_FILES_PATH Setto .false. to have the seismograms output to LOCAL_PATH directory speci-
fied in the main parameter file in_data_files/Par_file. In this case, you could collect the synthetics
onto the frontend using the collect_seismo_lsf_multi.pl scriptlocatedintheutils/Cluster/1sf/
directory. The usage of the script would be e.g.:

collect_seismo.pl machines in_data_files/Par_file

where machines is a file containing the node names and in_data_files/Par_file the parameter file used to
extract the LOCAL_PATH directory used for the simulation.

10.3 Clean Local Database

After all the simulations are done, the seismograms are collected, and the useful database files are copied to the
frontend, you may need to clean the local scratch disk for the next simulation. This is especially important in the case
of kernel simulation, where very large files are generated for the absorbing boundaries to help with the reconstruction
of the regular forward wavefield. A sample script is provided in utils/:

cleanbase.pl machines

where machines is a file containing the node names.

10.4 Plot Movie Snapshots and Synthetic Shakemaps

10.4.1 Scriptmovie2gif.gmt.pl

With the movie data savedin in_out_files/OUTPUT_FILES/ atthe end of a movie simulation (MOVIE_SURFACE=.true.),
you can run the ‘create_movie_shakemap_AVS_DX_GMT’ code to convert these binary movie data into GMT

xyz files for futher processing. A sample script movie2gif.gmt.pl is provided to do this conversion, and then

plot the movie snapshots in GMT, for example:

movie2gif.gmt.pl -m CMTSOLUTION -g -f 1/40 -n -2 -p

which for the first through the 40th movie frame, converts the moviedata files into GMT xyz files, interpolates them
using the ’nearneighbor’ command in GMT, and plots them on a 2D topography map. Note that ‘-2’ and ‘~p’ are
both optional.

10.4.2 Script plot_shakemap.gmt.pl

With the shakemap data saved in in_out_files/OUTPUT_FILES/ at the end of a shakemap simulation
(CREATE_SHAKEMAP=.true.), you can also run ‘create_movie_shakemap_AVS_DX_GMT’ code to con-
vert the binary shakemap data into GMT xyz files. A sample script plot_shakemap.gmt .pl is provided to do
this conversion, and then plot the shakemaps in GMT, for example:

plot_shakemap.gmt.pl data_dir type(l,2,3) CMTSOLUTION

where t ype=1 for a displacement shakemap, 2 for velocity, and 3 for acceleration.

10.5 Map Local Database

A sample program remap_database is provided to map the local database from a set of machines to another set
of machines. This is especially useful when you want to run mesher and solver, or different types of solvers
separately through a scheduler (refer to Chapter 9).

run_lsf.bash —-—-gm—-no-shmem --gm-copy-env remap_database old_machines 150

where 01d_machines is the LSF machine file used in the previous simulation, and 150 is the number of processors
in total.

Bug Reports and Suggestions for
Improvements

To report bugs or suggest improvements to the code, please send an e-mail to the CIG Computational Seismology
Mailing List (cig-seismo@geodynamics.orqg) or Jeroen Tromp (jtromp-AT-princeton.edu), and/or
use our online bug tracking system Roundup (www . geodynamics.org/roundup).

45

cig-seismo@geodynamics.org
jtromp-AT-princeton.edu
www.geodynamics.org/roundup

Notes & Acknowledgments

In order to keep the software package thread-safe in case a multithreaded implementation of MPI is used, developers
should not add modules or common blocks to the source code but rather use regular subroutine arguments (which can
be grouped in “derived types” if needed for clarity).

The Gauss-Lobatto-Legendre subroutines in g11_library.£90 are based in part on software libraries from
the Massachusetts Institute of Technology, Department of Mechanical Engineering (Cambridge, Massachusetts, USA).
The non-structured global numbering software was provided by Paul F. Fischer (Brown University, Providence, Rhode
Island, USA, now at Argonne National Laboratory, USA).

OpenDX (http://www.opendx.orq) is open-source based on IBM Data Explorer, AVS (http://www.
avs.com) is a trademark of Advanced Visualization Systems, and ParaView (http://www.paraview.orq)is
an open-source visualization platform.

Please e-mail your feedback, questions, comments, and suggestions to Jeroen Tromp (jtromp-AT-princeton.
edu) or to the CIG Computational Seismology Mailing List (cig-seismo@geodynamics.org).

46

http://www.opendx.org
http://www.avs.com
http://www.avs.com
http://www.paraview.org
jtromp-AT-princeton.edu
jtromp-AT-princeton.edu
cig-seismo@geodynamics.org

Copyright

Main authors: Dimitri Komatitsch and Jeroen Tromp

Princeton University, USA, and University of Pau / CNRS / INRIA, France

© Princeton University and University of Pau / CNRS / INRIA, April 2011

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation (see Appendix D).

47

Bibliography

C. A. Acosta Minolia and D. A. Kopriva. Discontinuous Galerkin spectral element approximations on moving meshes.
J. Comput. Phys., 230(5):1876-1902, 2011. doi: 10.1016/j.jcp.2010.11.038.

M. Ainsworth, P. Monk, and W. Muniz. Dispersive and dissipative properties of discontinuous Galerkin finite element
methods for the second-order wave equation. Journal of Scientific Computing, 27(1):5-40, 2006. doi: 10.1007/
s10915-005-9044-x.

K. Aki and P. G. Richards. Quantitative seismology, theory and methods. W. H. Freeman, San Francisco, USA, 1980.

D. N. Arnold. An interior penalty finite element method with discontinuous elements. SIAM Journal on Numerical
Analysis, 19(4):742-760, 1982. doi: 10.1137/0719052.

M. Benjemaa, N. Glinsky-Olivier, V. M. Cruz-Atienza, J. Virieux, and S. Piperno. Dynamic non-planar crack rupture
by a finite volume method. Geophys. J. Int., 171(1):271-285, 2007. doi: 10.1111/j.1365-246X.2006.03500.x.

M. Benjemaa, N. Glinsky-Olivier, V. M. Cruz-Atienza, and J. Virieux. 3D dynamic rupture simulation by a finite
volume method. Geophys. J. Int., 178(1):541-560, 2009. doi: 10.1111/j.1365-246X.2009.04088.x.

M. Bernacki, S. Lanteri, and S. Piperno. Time-domain parallel simulation of heterogeneous wave propagation on
unstructured grids using explicit, nondiffusive, discontinuous Galerkin methods. J. Comput. Acoust., 14(1):57-81,
2006.

C. Bernardi, Y. Maday, and A. T. Patera. A new nonconforming approach to domain decomposition: the Mortar
element method. In H. Brezis and J. L. Lions, editors, Nonlinear partial differential equations and their applications,
Séminaires du College de France, pages 13-51, Paris, 1994. Pitman.

L. Carrington, D. Komatitsch, M. Laurenzano, M. Tikir, D. Michéa, N. Le Goff, A. Snavely, and J. Tromp. High-
frequency simulations of global seismic wave propagation using SPECFEM3D_GLOBE on 62 thousand processor
cores. Proceedings of the ACM/IEEE Supercomputing SC’2008 conference, pages 1-11, 2008. doi: 10.1145/
1413370.1413432. Article #60, Gordon Bell Prize finalist article.

C. E. Castro, M. Kiser, and G. B. Brietzke. Seismic waves in heterogeneous material: subcell resolution of the
discontinuous galerkin method. Geophys. J. Int., 182(1):250-264, 2010.

E. Chaljub. Modélisation numérique de la propagation d’ondes sismiques en géométrie sphérique : application a la
sismologie globale (Numerical modeling of the propagation of seismic waves in spherical geometry: application to
global seismology). PhD thesis, Université Paris VII Denis Diderot, Paris, France, 2000.

E. Chaljub, Y. Capdeville, and J. P. Vilotte. Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel
spectral-element approximation on non-conforming grids. J. Comput. Phys., 187(2):457-491, 2003.

E. Chaljub, D. Komatitsch, J. P. Vilotte, Y. Capdeville, B. Valette, and G. Festa. Spectral element analysis in seismol-
ogy. In R.-S. Wu and V. Maupin, editors, Advances in wave propagation in heterogeneous media, volume 48 of
Advances in Geophysics, pages 365—419. Elsevier - Academic Press, London, UK, 2007.

M. Chen and J. Tromp. Theoretical and numerical investigations of global and regional seismic wave propagation
in weakly anisotropic earth models. Geophys. J. Int., 168(3):1130-1152, 2007. doi: 10.1111/j.1365-246X.2006.
03218 x.

48

BIBLIOGRAPHY 49

S. Chevrot, N. Favier, and D. Komatitsch. Shear wave splitting in three-dimensional anisotropic media. Geophys. J.
Int., 159(2):711-720, 2004. doi: 10.1111/j.1365-246X.2004.02432.x.

B. Cockburn, G. E. Karniadakis, and C.-W. Shu. Discontinuous Galerkin Methods: Theory, Computation and Appli-
cations. Springer, Heidelberg, Germany, 2000.

G. Cohen. Higher-order numerical methods for transient wave equations. Springer-Verlag, Berlin, Germany, 2002.

F. A. Dahlen and J. Tromp. Theoretical Global Seismology. Princeton University Press, Princeton, New-Jersey, USA,
1998.

J. D. De Basabe and M. K. Sen. Grid dispersion and stability criteria of some common finite-element methods for
acoustic and elastic wave equations. Geophysics, 72(6):T81-T95, 2007. doi: 10.1190/1.2785046.

J. D. De Basabe and M. K. Sen. Stability of the high-order finite elements for acoustic or elastic wave propagation
with high-order time stepping. Geophys. J. Int., 181(1):577-590, 2010. doi: 10.1111/j.1365-246X.2010.04536.x.

J. D. De Basabe, M. K. Sen, and M. F. Wheeler. The interior penalty discontinuous Galerkin method for elastic wave
propagation: grid dispersion. Geophys. J. Int., 175(1):83-93, 2008. doi: 10.1111/j.1365-246X.2008.03915.x.

J. de la Puente, J. P. Ampuero, and M. Kiser. Dynamic rupture modeling on unstructured meshes using a discontinuous
Galerkin method. J. Geophys. Res., 114:B10302, 2009. doi: 10.1029/2008JB006271.

M. O. Deville, P. F. Fischer, and E. H. Mund. High-Order Methods for Incompressible Fluid Flow. Cambridge
University Press, Cambridge, United Kingdom, 2002.

D. S. Dreger and D. V. Helmberger. Broadband modeling of local earthquakes. Bull. Seismol. Soc. Am., 80:1162—-1179,
1990.

M. Dumbser and M. Kiéser. An arbitrary high-order discontinuous Galerkin method for elastic waves on un-
structured meshes-II. The three-dimensional isotropic case. Geophys. J. Int., 167(1):319-336, 2006. doi:
10.1111/j.1365-246X.2006.03120.x.

V. Etienne, E. Chaljub, J. Virieux, and N. Glinsky. An hp-adaptive discontinuous Galerkin finite-element method for
3-D elastic wave modelling. Geophys. J. Int., 183(2):941-962, 2010. doi: 10.1111/j.1365-246X.2010.04764 .x.

R. S. Falk and G. R. Richter. Explicit finite element methods for symmetric hyperbolic equations. SIAM Journal on
Numerical Analysis, 36(3):935-952, 1999. doi: 10.1137/S0036142997329463.

N. Favier, S. Chevrot, and D. Komatitsch. Near-field influences on shear wave splitting and traveltime sensitivity
kernels. Geophys. J. Int., 156(3):467-482, 2004. doi: 10.1111/j.1365-246X.2004.02178.x.

A. Fichtner, H. Igel, H.-P. Bunge, and B. L. N. Kennett. Simulation and inversion of seismic wave propagation on
continental scales based on a spectral-element method. Journal of Numerical Analysis, Industrial and Applied
Mathematics, 4(1-2):11-22, 2009.

C. Geuzaine and J. F. Remacle. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and
post-processing facilities. Int. J. Numer. Meth. Eng., 79(11):1309-1331, 2009.

F. X. Giraldo, J. S. Hesthaven, and T. Warburton. Nodal high-order discontinuous Galerkin methods for the spherical
shallow water equations. J. Comput. Phys., 181(2):499-525, 2002. doi: 10.1006/jcph.2002.7139.

L. Godinho, P. A. Mendes, A. Tadeu, A. Cadena-Isaza, C. Smerzini, F. J. Sanchez-Sesma, R. Madec, and D. Ko-
matitsch. Numerical simulation of ground rotations along 2D topographical profiles under the incidence of elastic
plane waves. Bull. Seismol. Soc. Am., 99(2B):1147-1161, 2009. doi: 10.1785/0120080096.

W. Gropp, E. Lusk, and A. Skjellum. Using MPI, portable parallel programming with the Message-Passing Interface.
MIT Press, Cambridge, USA, 1994.

M. J. Grote, A. Schneebeli, and D. Schotzau. Discontinuous Galerkin finite element method for the wave equation.
SIAM Journal on Numerical Analysis, 44(6):2408-2431, 2006. doi: 10.1137/05063194X.

BIBLIOGRAPHY 50

E. Hauksson. Crustal structure and seismicity distribution adjacent to the Pacific and North America plate boundary
in Southern California. J. Geophys. Res., 105:13875-13903, 2000.

F. Q. Hu, M. Y. Hussaini, and P. Rasetarinera. An analysis of the discontinuous Galerkin method for wave propagation
problems. J. Comput. Phys., 151(2):921-946, 1999. doi: 10.1006/jcph.1999.6227.

C. Ji, S. Tsuboi, D. Komatitsch, and J. Tromp. Rayleigh-wave multipathing along the west coast of north america.
Bull. Seismol. Soc. Am., 95(6):2115-2124, 2005. doi: 10.1785/0120040180.

D. Komatitsch. Fluid-solid coupling on a cluster of GPU graphics cards for seismic wave propagation. Comptes
Rendus de I’Académie des Sciences - Mécanique, 2011. doi: 10.1016/j.crme.2010.11.007. in press.

D. Komatitsch and R. Martin. An unsplit convolutional Perfectly Matched Layer improved at grazing incidence for
the seismic wave equation. Geophysics, 72(5):SM155-SM167, 2007. doi: 10.1190/1.2757586.

D. Komatitsch and J. Tromp. Spectral-element simulations of global seismic wave propagation-1. Validation. Geophys.
J. Int., 149(2):390-412, 2002a. doi: 10.1046/j.1365-246X.2002.01653 x.

D. Komatitsch and J. Tromp. Spectral-element simulations of global seismic wave propagation-II. 3-D models, oceans,
rotation, and self-gravitation. Geophys. J. Int., 150(1):303-318, 2002b. doi: 10.1046/j.1365-246X.2002.01716.x.

D. Komatitsch and J. Tromp. Introduction to the spectral-element method for 3-D seismic wave propagation. Geophys.
J. Int., 139(3):806-822, 1999. doi: 10.1046/j.1365-246x.1999.00967 .x.

D. Komatitsch and J. P. Vilotte. The spectral-element method: an efficient tool to simulate the seismic response of 2D
and 3D geological structures. Bull. Seismol. Soc. Am., 88(2):368-392, 1998.

D. Komatitsch, R. Martin, J. Tromp, M. A. Taylor, and B. A. Wingate. Wave propagation in 2-D elastic media
using a spectral element method with triangles and quadrangles. J. Comput. Acoust., 9(2):703-718, 2001. doi:
10.1142/S0218396X01000796.

D. Komatitsch, J. Ritsema, and J. Tromp. The spectral-element method, Beowulf computing, and global seismology.
Science, 298(5599):1737-1742, 2002. doi: 10.1126/science.1076024.

D. Komatitsch, S. Tsuboi, C. Ji, and J. Tromp. A 14.6 billion degrees of freedom, 5 teraflops, 2.5 terabyte earthquake
simulation on the Earth Simulator. Proceedings of the ACM/IEEE Supercomputing SC’2003 conference, pages
4-11,2003. doi: 10.1109/SC.2003.10023. Gordon Bell Prize winner article.

D. Komatitsch, Q. Liu, J. Tromp, P. Siiss, C. Stidham, and J. H. Shaw. Simulations of ground motion in the Los
Angeles basin based upon the spectral-element method. Bull. Seismol. Soc. Am., 94(1):187-206, 2004. doi: 10.
1785/0120030077.

D. Komatitsch, J. Labarta, and D. Michéa. A simulation of seismic wave propagation at high resolution in the inner
core of the Earth on 2166 processors of MareNostrum. Lecture Notes in Computer Science, 5336:364-377, 2008.

D. Komatitsch, D. Michéa, and G. Erlebacher. Porting a high-order finite-element earthquake modeling application to
NVIDIA graphics cards using CUDA. Journal of Parallel and Distributed Computing, 69(5):451-460, 2009. doi:
10.1016/.jpdc.2009.01.006.

D. Komatitsch, G. Erlebacher, D. Goddeke, and D. Michéa. High-order finite-element seismic wave propagation
modeling with MPI on a large GPU cluster. J. Comput. Phys., 229(20):7692-7714, 2010a. doi: 10.1016/j.jcp.2010.
06.024.

D. Komatitsch, D. Goddeke, G. Erlebacher, and D. Michéa. Modeling the propagation of elastic waves using spectral
elements on a cluster of 192 GPUs. Computer Science Research and Development, 25(1-2):75-82, 2010b. doi:
10.1007/s00450-010-0109-1.

D. Komatitsch, L. P. Vinnik, and S. Chevrot. SHdiff/SVdiff splitting in an isotropic Earth. J. Geophys. Res., 115(B7):
B07312, 2010c. doi: 10.1029/2009IB006795.

BIBLIOGRAPHY 51

D. A. Kopriva. Metric identities and the discontinuous spectral element method on curvilinear meshes. Journal of
Scientific Computing, 26(3):301-327, 2006. doi: 10.1007/s10915-005-9070-8.

D. A. Kopriva, S. L. Woodruff, and M. Y. Hussaini. Computation of electromagnetic scattering with a non-conforming
discontinuous spectral element method. Int. J. Numer. Meth. Eng., 53(1):105-122, 2002. doi: 10.1002/nme.394.

S. Krishnan, C. Ji, D. Komatitsch, and J. Tromp. Case studies of damage to tall steel moment-frame buildings in
Southern California during large San Andreas earthquakes. Bull. Seismol. Soc. Am., 96(4A):1523-1537, 2006a.
doi: 10.1785/0120050145.

S. Krishnan, C. Ji, D. Komatitsch, and J. Tromp. Performance of two 18-story steel moment-frame buildings in
Southern California during two large simulated San Andreas earthquakes. Earthquake Spectra, 22(4):1035-1061,
2006b. doi: 10.1193/1.2360698.

S.J. Lee, H. W. Chen, Q. Liu, D. Komatitsch, B. S. Huang, and J. Tromp. Three-dimensional simulations of seismic
wave propagation in the Taipei basin with realistic topography based upon the spectral-element method. Bull.
Seismol. Soc. Am., 98(1):253-264, 2008. doi: 10.1785/0120070033.

S.J. Lee, Y. C. Chan, D. Komatitsch, B. S. Huang, and J. Tromp. Effects of realistic surface topography on seismic
ground motion in the Yangminshan region of Taiwan based upon the spectral-element method and LiDAR DTM.
Bull. Seismol. Soc. Am., 99(2A):681-693, 2009a. doi: 10.1785/0120080264.

S.J. Lee, D. Komatitsch, B. S. Huang, and J. Tromp. Effects of topography on seismic wave propagation: An example
from northern Taiwan. Bull. Seismol. Soc. Am., 99(1):314-325, 2009b. doi: 10.1785/0120080020.

A. Legay, H. W. Wang, and T. Belytschko. Strong and weak arbitrary discontinuities in spectral finite elements. Int. J.
Numer. Meth. Eng., 64(8):991-1008, 2005. doi: 10.1002/nme.1388.

Q. Liu and J. Tromp. Finite-frequency kernels based on adjoint methods. Bull. Seismol. Soc. Am., 96(6):2383-2397,
2006. doi: 10.1785/0120060041.

Q. Liu and J. Tromp. Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint
methods. Geophys. J. Int., 174(1):265-286, 2008. doi: 10.1111/j.1365-246X.2008.03798 .x.

P. Lovely, J. Shaw, Q. Liu, and J. Tromp. A structural model of the Salton Trough and its implications for seismic
hazard. Bull. Seismol. Soc. Am., 96:1882—-1896, 2006.

Y. Maday and A. T. Patera. Spectral-element methods for the incompressible Navier-Stokes equations. In State of the
art survey in computational mechanics, pages 71-143, 1989. A. K. Noor and J. T. Oden editors.

R. Madec, D. Komatitsch, and J. Diaz. Energy-conserving local time stepping based on high-order finite elements for
seismic wave propagation across a fluid-solid interface. Comput. Model. Eng. Sci., 49(2):163—-189, 2009.

R. Martin and D. Komatitsch. An unsplit convolutional perfectly matched layer technique improved at grazing inci-
dence for the viscoelastic wave equation. Geophys. J. Int., 179(1):333-344, 2009. doi: 10.1111/j.1365-246X.2009.
04278 .x.

R. Martin, D. Komatitsch, C. Blitz, and N. Le Goff. Simulation of seismic wave propagation in an asteroid based upon
an unstructured MPI spectral-element method: blocking and non-blocking communication strategies. Lecture Notes
in Computer Science, 5336:350-363, 2008a.

R. Martin, D. Komatitsch, and A. Ezziani. An unsplit convolutional perfectly matched layer improved at grazing
incidence for seismic wave equation in poroelastic media. Geophysics, 73(4):T51-T61, 2008b. doi: 10.1190/1.
2939484.

R. Martin, D. Komatitsch, and S. D. Gedney. A variational formulation of a stabilized unsplit convolutional perfectly
matched layer for the isotropic or anisotropic seismic wave equation. Comput. Model. Eng. Sci., 37(3):274-304,
2008c.

BIBLIOGRAPHY 52

R. Martin, D. Komatitsch, S. D. Gedney, and E. Bruthiaux. A high-order time and space formulation of the unsplit
perfectly matched layer for the seismic wave equation using Auxiliary Differential Equations (ADE-PML). Comput.
Model. Eng. Sci., 56(1):17-42, 2010.

E. D. Mercerat, J. P. Vilotte, and F. J. Sdnchez-Sesma. Triangular spectral-element simulation of two-dimensional
elastic wave propagation using unstructured triangular grids. Geophys. J. Int., 166(2):679-698, 2006.

D. Michéa and D. Komatitsch. Accelerating a 3D finite-difference wave propagation code using GPU graphics cards.
Geophys. J. Int., 182(1):389-402, 2010. doi: 10.1111/j.1365-246X.2010.04616.x.

P. Monk and G. R. Richter. A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomoge-
neous media. Journal of Scientific Computing, 22-23(1-3):443-477, 2005. doi: 10.1007/s10915-004-4132-5.

S. P. Oliveira and G. Seriani. Effect of element distortion on the numerical dispersion of spectral element methods.
Communications in Computational Physics, 9(4):937-958, 2011.

K. B. Olsen, S. M. Day, and C. R. Bradley. Estimation of @) for long-period (>2 sec) waves in the Los Angeles basin.
Bull. Seismol. Soc. Am., 93(2):627-638, 2003.

P. S. Pacheco. Parallel programming with MPI. Morgan Kaufmann Press, San Francisco, 1997.

F. Pellegrini and J. Roman. SCOTCH: A software package for static mapping by dual recursive bipartitioning of
process and architecture graphs. Lecture Notes in Computer Science, 1067:493-498, 1996.

D. Peter, D. Komatitsch, Y. Luo, R. Martin, N. Le Goff, E. Casarotti, P. Le Loher, F. Magnoni, Q. Liu, C. Blitz,
T. Nissen-Meyer, P. Basini, and J. Tromp. Forward and adjoint simulations of seismic wave propagation on unstruc-
tured hexahedral meshes. Geophys. J. Int., 2011. Submitted.

W. H. Reed and T. R. Hill. Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-
479, Los Alamos Scientific Laboratory, Los Alamos, USA, 1973.

J. Ritsema, L. A. Rivera, D. Komatitsch, J. Tromp, and H. J. van Heijst. The effects of crust and mantle heterogeneity
on PP/P and SS/S amplitude ratios. Geophys. Res. Lett., 29(10):1430, 2002. doi: 10.1029/2001GL013831.

B. Riviere and M. F. Wheeler. Discontinuous finite element methods for acoustic and elastic wave problems. Contem-
porary Mathematics, 329:271-282, 2003.

B. Savage, D. Komatitsch, and J. Tromp. Effects of 3D attenuation on seismic wave amplitude and phase measure-
ments. Bull. Seismol. Soc. Am., 100(3):1241-1251, 2010. doi: 10.1785/0120090263.

G. Seriani and S. P. Oliveira. Optimal blended spectral-element operators for acoustic wave modeling. Geophysics,
72(5):SM95-SM106, 2007. doi: 10.1190/1.2750715.

G. Seriani and S. P. Oliveira. Dispersion analysis of spectral-element methods for elastic wave propagation. Wave
Motion, 45:729-744, 2008. doi: 10.1016/j.wavemoti.2007.11.007.

G. Seriani and E. Priolo. A spectral element method for acoustic wave simulation in heterogeneous media. Finite
Elements in Analysis and Design, 16:337-348, 1994.

T. M. Smith, S. S. Collis, C. C. Ober, J. R. Overfelt, and H. F. Schwaiger. Elastic wave propagation in variable media
using a discontinuous galerkin method. SEG Technical Program Expanded Abstracts, 29(1):2982-2987, 2010. doi:
10.1190/1.3513466.

M. P. Siiss and J. H. Shaw. P wave seismic velocity structure derived from sonic logs and industry reflection data in
the Los Angeles basin, California. J. Geophys. Res., 108(B3):2170, 2003. doi: 10.1029/2001JB001628.

J. Tago, V. M. Cruz-Atienza, V. Etienne, J. Virieux, M. Benjemaa, and F. J. Sanchez-Sesma. 3D dy-
namic rupture with anelastic wave propagation using an hp-adaptive Discontinuous Galerkin method. In Ab-
stract S51A-1915 presented at 2010 AGU Fall Meeting, San Francisco, California, USA, December 2010.
www.agu.org/meetings/fm10/waisfm10.html.

BIBLIOGRAPHY 53

M. A. Taylor and B. A. Wingate. A generalized diagonal mass matrix spectral element method for non-quadrilateral
elements. Appl. Num. Math., 33:259-265, 2000.

J. Tromp and D. Komatitsch. Spectral-element simulations of wave propagation in a laterally homogeneous Earth
model. In E. Boschi, G. Ekstrom, and A. Morelli, editors, Problems in Geophysics for the New Millennium, pages
351-372. INGV, Roma, Italy, 2000.

J. Tromp, C. Tape, and Q. Liu. Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels.
Geophys. J. Int., 160(1):195-216, 2005. doi: 10.1111/j.1365-246X.2004.02453 x.

J. Tromp, D. Komatitsch, and Q. Liu. Spectral-element and adjoint methods in seismology. Communications in
Computational Physics, 3(1):1-32, 2008.

J. Tromp, D. Komatitsch, V. Hjoerleifsdottir, Q. Liu, H. Zhu, D. Peter, E. Bozdag, D. McRitchie, P. Friberg, C. Trabant,
and A. Hutko. Near real-time simulations of global CMT earthquakes. Geophys. J. Int., 183(1):381-389, 2010a.
doi: 10.1111/5.1365-246X.2010.04734 .x.

J. Tromp, Y. Luo, S. Hanasoge, and D. Peter. Noise cross-correlation sensitivity kernels. Geophys. J. Int., 183:
791-819, 2010b. doi: 10.1111/j.1365-246X.2010.04721 .x.

S. Tsuboi, D. Komatitsch, C. Ji, and J. Tromp. Spectral-element simulations of the November 3, 2002, Denali, Alaska
earthquake on the Earth Simulator. Phys. Earth Planet. In., 139(3-4):305-313, 2003. doi: 10.1016/j.pepi.2003.09.
012.

R. Vai, J. M. Castillo-Covarrubias, F. J. Sdnchez-Sesma, D. Komatitsch, and J. P. Vilotte. Elastic wave propagation
in an irregularly layered medium. Soil Dynamics and Earthquake Engineering, 18(1):11-18, 1999. doi: 10.1016/
S0267-7261(98)00027-X.

K. van Wijk, D. Komatitsch, J. A. Scales, and J. Tromp. Analysis of strong scattering at the micro-scale. J. Acoust.
Soc. Am., 115(3):1006-1011, 2004. doi: 10.1121/1.1647480.

J. Virieux and S. Operto. An overview of full-waveform inversion in exploration geophysics. Geophysics, 74(6):
WCC1-WCC26, 2009. doi: 10.1190/1.3238367.

D. J. Wald and T. H. Heaton. Spatial and temporal distribution of slip for the 1992 Landers, California earthquake.
Bull. Seismol. Soc. Am., 84:668—691, 1994.

L. C. Wilcox, G. Stadler, C. Burstedde, and O. Ghattas. A high-order discontinuous Galerkin method for wave
propagation through coupled elastic-acoustic media. J. Comput. Phys., 229(24):9373-9396, 2010. doi: 10.1016/j.
jcp-2010.09.008.

B. A. Wingate and J. P. Boyd. Spectral element methods on triangles for geophysical fluid dynamics problems. In
A. V. Ilin and L. R. Scott, editors, Proceedings of the Third International Conference on Spectral and High-order
Methods, pages 305-314, Houston, Texas, 1996. Houston J. Mathematics.

L. Zhu and H. Kanamori. Moho depth variation in southern California from teleseismic receiver functions. J. Geophys.
Res., 105:2969-2980, 2000.

Appendix A

Reference Frame Convention

The code uses the following convention for the Cartesian reference frame:

* the z axis points East
* the y axis points North

¢ the z axis points up

Note that this convention is different from both the Aki and Richards [1980] convention and the Harvard Centroid-
Moment Tensor (CMT) convention. The Aki & Richards convention is

* the z axis points North
* the y axis points East

* the z axis points down
and the Harvard CMT convention is

¢ the x axis points South
¢ the y axis points East

* the z axis points up

Source and receiver locations

The SPECFEM3D software code internally uses Cartesian coordinates. The given locations for sources and receiver
locations thus may get converted. Sources and receiver locations are read in from the CMTSOLUTION and STATIONS
file. Note that e.g. the CMTSOLUTION file denotes the location by "longitude/latitude/depth". We read in longitude
as x coordinate, latitude as y coordinate.

In case the flag SUPPRESS_UTM_PROJECTION is setto . false. inthe main parameter file (see Chapter 4),
the x/y coordinates have to be given in degrees and are converted to Cartesian coordinates using a UTM conversion
with the specified UTM zone.

The value for depth (given in km in CMTSOLUT ION) or burial depth (given in m in STATIONS) is evaluated with
respect to the surface of the mesh at the specified z/y location to find the corresponding z coordinate. It is possible to
use this depth value directly as z coordinate by changing the flag USE_SOURCES_RECVS_Z to .true. in the file
constants.h located in the src/shared/ subdirectory.

54

APPENDIX A. REFERENCE FRAME CONVENTION 55

Seismogram outputs

The seismogram output directions are given in Cartesian x/y/z directions and not rotated any further. Changing flags
in constants.hinthe src/shared/ subdirectory only rotates the seismogram outputs if receivers are forced to
be located at the surface (RECVS_CAN_BE_BURIED_EXT_MESH setto .false.) and the normal to the surface
at the receiver location should be used (EXT_MESH_RECV_NORMAL set to .true.) as vertical. In this case, the
outputs are rotated to have the vertical component normal to the surface of the mesh, x and y directions are somewhat
arbitrary orthogonal directions along the surface.

For the labeling of the seismogram channels, see Appendix B. Additionally, we add labels to the synthetics using
the following convention: For a receiver station located in an

elastic domain:

* semd for the displacement vector
* semv for the velocity vector
* sema for the acceleration vector
acoustic domain:
(please note that receiver stations in acoustic domains must be buried. This is due to the free surface condition
which enforces a zero pressure at the surface.)
¢ semd for the displacement vector
* semv for the velocity vector

¢ sema for pressure which will be stored in the vertical component Z. Note that pressure in the acoustic
media is isotropic and thus the pressure record would be the same in the other two component directions.
We therefore use the other two seismogram components to store the acoustic potential in component X (or
N) and the first time derivative of the acoustic potential in component Y (or E).

The seismograms are by default written out in ASCII-format to the in_out_files/OUTPUT_FILES/ subdirec-
tory by each parallel process. You can change this behavior by changing the following flags in the constants.h
file located in the src/shared/ subdirectory:

SEISMOGRAMS_BINARY setto .true. to have seismograms written out in binary format.

WRITE_SEISMOGRAMS_BY MASTER Setto .true. to have only the master process writing out seismograms.
This can be useful on a cluster, where only the master process node has access to the output directory.

USE_OUTPUT_FILES_PATH Setto .false. to have the seismograms output to LOCAL_PATH directory speci-
fied in the main parameter file in_data_files/Par_file.

Appendix B

Channel Codes of Seismograms

Seismic networks, such as the Global Seismographic Network (GSN), generally involve various types of instruments
with different bandwidths, sampling properties and component configurations. There are standards to name channel
codes depending on instrument properties. IRIS (www.iris.edu) uses SEED format for channel codes, which are
represented by three letters, such as LHN, BHZ, etc. In older versions of the SPECFEM3D package, a common for-
mat was used for the channel codes of all seismograms, which was BHE /BHN/BHZ for three components. To avoid
confusion when comparison are made to observed data, we are now using the FDSN convention (http://www.
fdsn.org/) for SEM seismograms. In the following, we give a brief explanation of the FDSN convention used by
IRIS, and how it is adopted in SEM seismograms. Please visit www.iris.edu/manuals/SEED_appA.htm for
further information.

Band code: The first letter in the channel code denotes the band code of seismograms, which depends on the
response band and the sampling rate of instruments. The list of band codes used by IRIS is shown in Figure B.1.
The sampling rate of SEM synthetics is controlled by the resolution of simulations rather than instrument properties.
However, for consistency, we follow the FDSN convention for SEM seismograms governed by their sampling rate.
For SEM synthetics, we consider band codes for which d¢t < 1 s. IRIS also considers the response band of instru-
ments. For instance, short-period and broad-band seismograms with the same sampling rate correspond to different
band codes, such as S and B, respectively. In such cases, we consider SEM seismograms as broad band, ignoring
the corner period (> 10 s) of the response band of instruments (note that at these resolutions, the minimum period
in the SEM synthetics will be less than 10 s). Accordingly, when you run a simulation the band code will be chosen
depending on the resolution of the synthetics, and channel codes of SEM seismograms will start with either L, M, B,
H, C or F, shown by red color in the figure.

Instrument code: The second letter in the channel code corresponds to instrument codes, which specify the
family to which the sensor belongs. For instance, H and L are used for high-gain and low-gain seismometers, respec-
tively. The instrument code of SEM seismograms will always be X, as assigned by FDSN for synthetic seismograms.

Orientation code: The third letter in channel codes is an orientation code, which generally describes the phys-
ical configuration of the components of instrument packages. SPECFEM3D uses the traditional orientation code
E/N/z (East-West, North-South, Vertical) for three components when a UTM projection is used. If the UTM conver-
sion is suppressed, i.e. the flag SUPPRESS_UTM_PROJECTION is set to . true., then the three components are
labelled X/ Y/ Z according to the Cartesian reference frame.

EXAMPLE : The sampling rate is given by DT in the main parameter file Par_file locatedinthe in_data_files/
subdirectory. Depending on the resolution of your simulations, if you choose a sampling rate greater than 0.01 s and
less than 1 s, a seismogram recording displacements on the vertical component of a station ASBS (network AZ) will be
named ASBS.AZ.MXZ.semd. sac, whereas it will be ASBS.AZ .BXZ . semd. sac, if the sampling rate is greater
than 0.0125 and less equal to 0.1 s.

56

http://www.fdsn.org/
http://www.fdsn.org/

APPENDIX B. CHANNEL CODES OF SEISMOGRAMS 57

Band . Corrner
code Band type Sampling rate (sec) period

(sec)

F > 0.0002 to <= 0.001 =10 sec

G > 0.0002 to <= 0.001 <10 sec

D > 0.001 to <= 0.004 <10 sec

C > 0.001 to <= 0.004 =10 sec

E Extremely Short Period <=0.0125 <10 sec

S Short Period <=0.1to>0.0125 <10 sec

H High Broad Band <=0.0125 >=10 sec

B Broad Band <=0.1t0>0.0125 >=10 sec

M Mid Period <1t0>01

L Long Period 1

\% Very Long Period 10

U Ultra Long Period 100

R Extremely Long Period 1000

P On the order of 0.1 to 1 day <=100000 to > 10000

T On the order of 1 to 10 days <=1000000 to > 100000

Q Greater than 10 days > 1000000

A Administrative Instrument Channel variable NA

(0] Opaque Instrument Channel variable NA

Figure B.1: The band code convention is based on the sampling rate and the response band of instruments. Please visit
www.iris.edu/manuals/SEED_appA.htm for further information. Grey rows show the relative band-code
range in SPECFEM3D, and the band codes used to name SEM seismograms are denoted in red.

Appendix C

Troubleshooting

FAQ

configuration fails: Examine the log file ’config.log’. It contains detailed informations. In many cases, the path’s to
these specific compiler commands F90, CC and MPIF90 won’t be correct if ‘./configure fails.

Please make sure that you have a working installation of a Fortran compiler, a C compiler and an MPI imple-
mentation. You should be able to compile this little program code:

program main

include 'mpif.h’

integer, parameter :: CUSTOM_MPI_TYPE = MPI_REAL
integer ier

call MPI_INIT (ier)

call MPI_BARRIER (MPI_COMM_WORLD, ier)

call MPI_FINALIZE (ier)

end

compilation fails stating:

obj/program_generate_databases.o: In function ‘MAIN__ ’:
program_generate_databases.f90: (.text+0x14): undefined reference
to ‘_gfortran_set_std’

Make sure you’re pointing to the right 'mpif90” wrapper command.

Normally, this message will appear when you’re mixing two different Fortran compilers. That is, using e.g.
gfortran to compile non-MPI files and mpif90, wrapper provided for e.g. ifort, to compile MPI-files.

fix: e.g. specify > ./configure FC=gfortran MPIF90=/usr/local/openmpi-gfortran/bin/mpif90

after executing xmeshfem3D I’ve got elements with skewness of 81% percent, what does this mean: Look at
the skewness table printed in the output_mesher. txt file after executing xmeshfem3D for the example
given in examples/meshfem3D_examples/simple_model/:

histogram of skewness (0. good - 1. bad):
0.0000000E+00 — 5.0000001E-02 27648 81.81818 %
5.0000001E-02 - 0.1000000 O 0.0000000E+00 %

X

58

APPENDIX C. TROUBLESHOOTING 59

The first line means that you have 27,648 elements with a skewness value between 0 and 0.05 (which means
the element is basically not skewed, just plain regular hexahedral element). The total number of elements you
have in this mesh is (see in the output_mesher. txt file a bit further down):

total number of elements in entire mesh: 33792

which gives you that: 27,648 / 33,792 ~ 81.8 % of all elements are not skewed, i.e. regular elements. a fantastic
value :)

The histogram lists for this mesh also some stronger skewed elements, for example the worst ones belong to:

X

0.6000000 - 0.6500000 2048 6.060606 %

about 6 % of all elements have distortions with a skewness value between 0.6 and 0.65. The skewness values
give you a hint of how good your mesh is. In an ideal world, you would want to have no distortions, just
like the 81% from above. Those elements give you the best approximate values by the GLL quadrature used
in the spectral-element method. However, having weakly distorted elements is still fine and the solutions are
still accurate enough. So empirically, values up to around 0.7 are tolerable, above that you should consider
remeshing...

To give you an idea why some of the elements are distorted, see the following figure C.1 of the mesh you
obtain in the example examples/meshfem3D_examples/simple_model/. You will see that the mesh

Figure C.1: Paraview visualization wusing the mesh vtk-files for the example given in
examples/meshfem3D_examples/simple_model/.

contains a doubling layer, where we stitch elements together such that the size of two elements will transition
to the size of one element (very useful to keep the ratio of wavespeed / element_size about constant). Those
elements in this doubling layer have higher skewness values and make up those 6 % in the histogram.

the code gives following error message ''need at least one receiver'': This means that no stations given in the input
file in_data_files/STATIONS could be located within the dimensions of the mesh. This can happen
for example when the mesh was created with the in-house mesher xmeshfem3D while using the Universal
Transverse Mercator (UTM) projection but the simulation with xspecfem3D was suppressing this projection
from latitude/longitude to x/y/z coordinates.

In such cases, try to change your in_data_files/Par_file andsete.g.

APPENDIX C. TROUBLESHOOTING 60

SUPPRESS_UTM_PROJECTION = .false.

to be the same in Mesh_Par_file and Par_file. This flag should be identical when using the in-house
mesher xmeshfem3D, xgenerate_databases and xspecfem3D together to run simulations.

The flag determines if the coordinates you specify for your source and station locations are given as lat/lon de-
grees and must be converted to UTM coordinates. As an example, if youuse . false. withinMesh_Par_file
then you create a mesh with xmeshfem3D using the UTM projection from lat/lon as input format to UTM pro-
jected coordinates to store the mesh point positions, which is fine. The error then may occur ifin the Par_file
you have this setto . t rue. sothatthe xgenerate_databases and xspecfem3D suppress the UTM pro-
jection and assume that all coordinates you use now for source and receiver locations are given in meters (that
is, converted) already. So it won’t find the specified locations in the used mesh. As a solutions, just change
the flag in Par_file to be the same as in Mesh_Par_file and rerun xgenerate_databases and
xspecfem3D to make sure that your simulation works fine.

I get the following error message ''forward simulation became unstable and blew up'': In most cases this
means that your time step size DT is chosen too big. Look at your files output_mesher.txt or
output_solver.txt created in the folder in_out_files/OUTPUT_FILES/. In these output files,
find the section:

Ak Ak khkhkhkhkhkhhkhkrhhkhhhkhhhkrhkhkrhkhkhkhkhkrh kA hrkhkhkkhkkx*x*

x+% Verification of simulation parameters xxx*

KA KA AR A A KA A AR A AR A AR A A AR A AR A A A A A A A A AR A A d kK k Kk *

*x% Minimum period resolved = 4.308774
**xx Maximum suggested time step = 6.8863556E-02

then change DT in the in_data_files/Par_file to be somewhere close to the maximum suggested time
step. In the example above:

DT = 0.05d0

would (most probably) work fine. It could be also bigger than the 0.068 s suggested. This depends a bit on the
distortions of your mesh elements. The more regular they are, the bigger you can choose DT. Just play with this
value a bit and see when the simulation becomes stable ...

Appendix D

License

GNU GENERAL PUBLIC LICENSE Version 2, June 1991. Copyright (C) 1989, 1991 Free Software Founda-
tion, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the
GNU General Public License is intended to guarantee your freedom to share and change free software — to make sure
the software is free for all its users. This General Public License applies to most of the Free Software Foundation’s
software and to any other program whose authors commit to using it. (Some other Free Software Foundation software
is covered by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed
to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish),
that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new
free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you
to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show
them these terms so they know their rights.

We protect your rights with two steps:

1. Copyright the software, and

2. Offer you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is no warranty
for this free software. If the software is modified by someone else and passed on, we want its recipients to know that
what they have is not the original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistrib-
utors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent
this, we have made it clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

61

APPENDIX D. LICENSE 62

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR
COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder say-
ing it may be distributed under the terms of this General Public License. The “Program” below refers to any
such program or work, and a “work based on the Program” means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is included without limitation in
the term “modification.”) Each licensee is addressed as “you.”

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed the files and the date
of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from
the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms
of this License.

(c) If the modified program normally reads commands interactively when run, you must cause it, when started
running for such interactive use in the most ordinary way, to print or display an announcement including
an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is interactive but does not normally print
such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived
from the Program, and can be reasonably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the
Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based
on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope
of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable
form under the terms of Sections 1 and 2 above provided that you also do one of the following:

APPENDIX D. LICENSE 63

(a) Accompany it with the complete corresponding machine-readable source code, which must be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no
more than your cost of physically performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute corresponding source code.
(This alternative is allowed only for noncommercial distribution and only if you received the program in
object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include anything that is normally distributed (in
either source or binary form) with the major components (compiler, kernel, and so on) of the operating system
on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically
terminate your rights under this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives
a license from the original licensor to copy, distribute or modify the Program subject to these terms and condi-
tions. You may not impose any further restrictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of
the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free soft-
ware distribution system, which is implemented by public license practices. Many people have made generous
contributions to the wide range of software distributed through that system in reliance on consistent application
of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

APPENDIX D. LICENSE 64

8.

10.

If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted
interfaces, the original copyright holder who places the Program under this License may add an explicit geo-
graphical distribution limitation excluding those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of
this License.

The Free Software Foundation may publish revised and/or new versions of the General Public License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License
which applies to it and “any later version,” you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever published by the Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distribution conditions are
different, write to the author to ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11.

12.

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-
GRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF
THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAIL-
URE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve
this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to
most effectively convey the exclusion of warranty; and each file should have at least the “copyright” line and a pointer
to where the full notice is found. For example:

One line to give the program’s name and a brief idea of what it does. Copyright © (year) (name of author)

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

APPENDIX D. LICENSE 65

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright © year name of author Gnomovision comes with ABSOLUTELY
NO WARRANTY; for details type ‘show w’. This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the General Public License.
Of course, the commands you use may be called something other than ‘show w’ and ‘show c’; they could even be
mouse-clicks or menu items — whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright
disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which makes
passes at compilers) written by James Hacker.

(signature of Ty Coon)
1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program
is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If
this is what you want to do, use the GNU Library General Public License instead of this License.

	1 Introduction
	1.1 Citation
	1.2 Support

	2 Getting Started
	3 Mesh Generation
	3.1 Meshing with CUBIT
	3.1.1 Creating the Mesh with CUBIT
	3.1.2 Exporting the Mesh with cubit2specfem3d.py
	3.1.3 Partitioning the Mesh with xdecompose_mesh_SCOTCH

	3.2 Meshing with xmeshfem3D

	4 Creating the Distributed Databases
	4.1 Main parameter file Par_file
	4.2 Choosing the time step DT

	5 Running the Solver xspecfem3D
	6 Adjoint Simulations
	6.1 Adjoint Simulations for Sources
	6.2 Adjoint Simulations for Finite-Frequency Kernels (Kernel Simulation)

	7 Noise Cross-correlation Simulations
	7.1 Input Parameter Files
	7.2 Noise Simulations: Step by Step
	7.2.1 Pre-simulation
	7.2.2 Simulations
	7.2.3 Post-simulation

	7.3 Example

	8 Graphics
	8.1 Meshes
	8.2 Movies
	8.2.1 Movie Surface
	8.2.2 Movie Volume

	8.3 Finite-Frequency Kernels

	9 Running through a Scheduler
	9.1 Job submission run_lsf.bash
	9.2 Job script go_mesher_solver_lsf.forward

	10 Post-Processing Scripts
	10.1 Process Data and Synthetics
	10.1.1 Data processing script process_data.pl
	10.1.2 Synthetics processing script process_syn.pl
	10.1.3 Script rotate.pl

	10.2 Collect Synthetic Seismograms
	10.3 Clean Local Database
	10.4 Plot Movie Snapshots and Synthetic Shakemaps
	10.4.1 Script movie2gif.gmt.pl
	10.4.2 Script plot_shakemap.gmt.pl

	10.5 Map Local Database

	A Reference Frame Convention
	B Channel Codes of Seismograms
	C Troubleshooting
	D License

