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SUMMARY

We present forward and adjoint spectral-element simulations of coupled acoustic and

(an)elastic seismic wave propagation on fully unstructured hexahedral meshes. Sim-

ulations benefit from recent advances in hexahedral meshing, load balancing and

software optimization. Meshing may be accomplished using a mesh generation tool

kit such as CUBIT, and load balancing is facilitated by graph partitioning based on

the SCOTCH library. Coupling between fluid and solid regions is incorporated in

straightforward fashion using domain decomposition. Topography, bathymetry and

Moho undulations may be readily included in the mesh, and physical dispersion and

attenuation associated with anelasticity are accounted for using a series of stan-

dard linear solids. Finite-frequency Fréchet derivatives are calculated using adjoint

methods in both fluid and solid domains. The software is benchmarked for a lay-

ercake model. We present various examples of fully unstructured meshes, snapshots

of wavefields and finite-frequency kernels generated by Version 2.0 ‘Sesame’ of our

widely used open source spectral-element package SPECFEM3D.

1 INTRODUCTION

We present a new software package, SPECFEM3D Version 2.0 ‘Sesame’, capable of sim-

ulating forward and adjoint seismic wave propagation on fully unstructured hexahedral

meshes of arbitrary shaped model domains. In view of unrelenting growth in computa-

tional power, it has become more-and-more important to develop software capable of

harnessing powerful computers to address a broad range of seismological forward and

inverse problems. A well-established numerical technique for solving such problems in a

fast and highly accurate manner is the spectral-element method (SEM). The SEM was

originally developed in computational fluid dynamics (Patera 1984; Maday & Patera

1989) and has been successfully adapted to address problems in seismic wave propaga-

tion. Early seismic wave propagation applications of the SEM, utilizing Legendre basis

functions and a perfectly diagonal mass matrix, include Cohen et al. (1993), Komatitsch

(1997), Faccioli et al. (1997), Casadei & Gabellini (1997), Komatitsch & Vilotte (1998)

and Komatitsch & Tromp (1999), whereas applications involving Chebyshev basis func-

http://cubit.sandia.gov
http://www.labri.fr/perso/pelegrin/scotch/
http://www.geodynamics.org/cig/software/specfem3d
http://www.geodynamics.org/cig/software/specfem3d
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tions and a nondiagonal mass matrix include Seriani & Priolo (1994), Priolo et al. (1994)

and Seriani et al. (1995).

The SEM is a continuous Galerkin technique, which may be made discontinous (Bernardi

et al. 1994; Chaljub 2000; Kopriva et al. 2002; Chaljub et al. 2003; Legay et al. 2005;

Kopriva 2006; Wilcox et al. 2010; Acosta Minolia & Kopriva 2011); it is then close to

a particular case of the discontinuous Galerkin technique (Reed & Hill 1973; Arnold

1982; Falk & Richter 1999; Hu et al. 1999; Cockburn et al. 2000; Giraldo et al. 2002;

Rivière & Wheeler 2003; Monk & Richter 2005; Grote et al. 2006; Ainsworth et al. 2006;

Bernacki et al. 2006; Dumbser & Käser 2006; De Basabe et al. 2008; de la Puente et al.

2009; Wilcox et al. 2010; De Basabe & Sen 2010; Étienne et al. 2010), with optimized

efficiency because of its tensorized basis functions (Wilcox et al. 2010; Acosta Minolia &

Kopriva 2011).

An important feature of the SEM is that it can accurately handle very distorted mesh

elements (Oliveira & Seriani 2011), and thus conforming non-structured mesh doubling

bricks can efficiently accommodate mesh size variations (Komatitsch & Tromp 2002a;

Komatitsch et al. 2004; Lee et al. 2008, 2009a,b). The method has very good accuracy and

convergence properties, such as a spectral rate of convergence (Canuto et al. 1988; Maday

& Patera 1989; Seriani & Priolo 1994; Deville et al. 2002; Cohen 2002; De Basabe & Sen

2007; Seriani & Oliveira 2008). In this sense the SEM is close to the family of pseudo-

spectral methods (see e.g., Canuto et al. 1988; Carcione et al. 1988a, 1992; Carcione &

Wang 1993; Komatitsch et al. 1996), but combined with the flexibility of finite elements,

in particular in terms of mesh design. For reviews of the SEM in seismology, see e.g.,

Komatitsch et al. (2005), Chaljub et al. (2007), Tromp et al. (2008) and Fichtner (2010).

The SEM is well suited to parallel implementations on very large supercomputers (Ko-

matitsch & Tromp 2002a; Komatitsch et al. 2003; Tsuboi et al. 2003; Komatitsch et al.

2008; Carrington et al. 2008; Komatitsch et al. 2010b) as well as on clusters of GPU

accelerating graphics cards (Komatitsch et al. 2009, 2010a; Komatitsch 2011). Tensor

products inside each element may be optimized to reach very high efficiency (Deville

et al. 2002), and mesh point and element numbering may be optimized to reduce pro-

cessor cache misses and improve cache reuse (Komatitsch et al. 2008). The SEM can
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handle triangular (in 2D) or tetrahedral (in 3D) elements (Wingate & Boyd 1996; Taylor

& Wingate 2000; Komatitsch et al. 2001; Cohen 2002; Mercerat et al. 2006), as well as

mixed meshes, although with increased cost and reduced accuracy in these non-tensorized

elements, as in the discontinuous Galerkin method.

In many cases of practical seismological interest, using a conforming mesh and a con-

tinuous formulation is sufficient, because in most geological models material property

contrasts are not too dramatic. When this ceases to be true, requiring a discontinuous

formulation, one can either turn to a discontinuous version of the SEM (Bernardi et al.

1994; Chaljub 2000; Kopriva et al. 2002; Chaljub et al. 2003; Legay et al. 2005; Kopriva

2006; Wilcox et al. 2010; Acosta Minolia & Kopriva 2011) or to a discontinuous Galerkin

technique. A discontinuous formulation is particularly suitable for dynamic rupture sim-

ulations, because high frequencies or supershear rupture need to be accommodated near

the fault, where a significantly denser mesh and a more sophisticated (upwind) time

scheme are required, thereby suppressing the amplification of unstable modes (see e.g.,

Benjemaa et al. 2007; de la Puente et al. 2009; Benjemaa et al. 2009; Tago et al. 2010).

Another example that may require a discontinuous formulation involves the resolution

of a shallow geotechnical layer, in which seismic shear wavespeeds may be reduced by an

order of magnitude.

For seismological applications, the SEM has been successfully implemented for three-

dimensional global- and regional-scale simulations (Komatitsch & Vilotte 1998; Paolucci

et al. 1999; Chaljub 2000; Komatitsch & Tromp 2002a,b; Capdeville et al. 2003; Chaljub

& Valette 2004; Fichtner et al. 2009a), as well as local-scale simulations in complex

and/or densely populated regions, for example in southern California, USA (Komatitsch

et al. 2004; Tape et al. 2009, 2010), Taipei, Taiwan (Lee et al. 2008, 2009a,b), Caracas,

Venezuela (Delavaud et al. 2006) and Grenoble, France (Chaljub et al. 2005; Stupazzini

et al. 2009; Chaljub et al. 2010). The SEM may also be used to study elastic wave

propagation on smaller scales, for instance the propagation of ultrasonic waves in crystals

(van Wijk et al. 2004).

Two complementary SEM software packages —namely, SPECFEM3D GLOBE for global

and regional simulations, and SPECFEM3D for local simulations— are feature-rich, well

http://www.geodynamics.org/cig/software/specfem3d-globe
http://www.geodynamics.org/cig/software/specfem3d
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benchmarked and documented implementations. Data parallelism in the SEM is effi-

ciently exploited using the Message-Passing Interface (MPI) standard, crucial for mod-

ern high-performance computing. These open source packages are freely available via the

Computational Infrastructure for Geodynamics (CIG) and widely used by the seismo-

logical community.

To extend the range of local-scale applications, easing the task of mesh generation is

paramount. The two community software packages separate a simulation into two dis-

tinct steps: first, creation of a hexahedral mesh, and second, solution of the seismic wave

equation. This separation avoids the overhead of remeshing when running multiple sim-

ulations for the same region, e.g., repeated simulations at the same resolution. Focussing

on local-scale simulations, previous versions of SPECFEM3D used an internal mesher

which was explicitly tied to the specific purposes of the package: all geological models

were based on a layercake model. Consequently, the solver was restricted by its internal

mesher. It was impossible to run spectral-element simulations on more complex 3D mod-

els without significant recoding, nor was it possible to run such simulations in regions of

interest for on- and off-shore exploration seismology, because acoustic wave propagation

in fluids was not supported by the package.

The purpose of this article is to present forward and adjoint simulations in various 3D

models using the new software package, SPECFEM3D Version 2.0 ‘Sesame’, thereby

illustrating its current capabilities. The original SPECFEM3D package for local simula-

tions was extended, improved and optimized in various ways. The Version 2.0 ‘Sesame’

release includes a more flexible internal mesher and accommodates more powerful ex-

ternal meshers, such as CUBIT (Blacker et al. 1994; White et al. 1995; Mitchell 1996).

Adding such external meshers into the workflow greatly increases flexibility for high-

performance applications, as illustrated by the GeoELSE software package (Casadei &

Gabellini 1997; Stupazzini et al. 2009; Chaljub et al. 2010). Advantages of GeoELSE

include the accommodation of visco-plastic and non-linear rheologies, whereas benefits

of SPECFEM3D include coupled fluid-solid domains and adjoint capabilities; the latter

enable one to address seismological inverse problems. Load balancing parallel simula-

tions in SPECFEM3D is accomplished based on the graph partitioning software package

http://www.geodynamics.org
http://www.geodynamics.org/cig/software/specfem3d
http://www.geodynamics.org/cig/software/specfem3d
http://www.geodynamics.org/cig/software/specfem3d
http://cubit.sandia.gov
http://geoelse.stru.polimi.it/
http://geoelse.stru.polimi.it/
http://www.geodynamics.org/cig/software/specfem3d
http://www.geodynamics.org/cig/software/specfem3d
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SCOTCH (Pellegrini & Roman 1996; Chevalier & Pellegrini 2008). The new package

facilitates coupled forward and adjoint acoustic/(an)elastic simulations, which are espe-

cially interesting for problems in exploration seismology, ocean acoustics and medical

tomography. The new software is freely available under the GNU GPL Version 2 license

via CIG.

2 GOVERNING EQUATIONS

Let us briefly summarize the equations governing seismic wave propagation implemented

in SPECFEM3D. For more technical details, the reader is referred to Komatitsch &

Tromp (1999). SPECFEM3D Version 2.0 ‘Sesame’ implements wave propagation in cou-

pled (an)elastic and acoustic materials on local scales. We may thus safely neglect addi-

tional effects that would arise from self-gravitation and rotation (Komatitsch & Tromp

2002b; Komatitsch et al. 2005; Chaljub et al. 2007), which are important at longer pe-

riods. In the following, we first discuss (an)elastic wave propagation and subsequently

consider acoustic waves.

2.1 Elastic domain

For elastic materials, the displacement wavefield s(x, t) is governed by

ρ ∂2
t s = ∇ ·T + f , (1)

where ρ denotes mass density, T the stress tensor and f the seismic source. On free

surfaces, the traction vector must vanish, i.e.,

n̂ ·T = 0 , (2)

where n̂ denotes the unit outward normal on the surface. On boundaries between dif-

ferent elastic materials, both traction n̂ · T and displacement s need to be continuous.

On boundaries between elastic and acoustic domains, traction n̂ · T and the normal

component of displacement n̂ · s need to be continuous. The initial conditions are

s(x, 0) = 0, ∂ts(x, 0) = 0 . (3)

http://www.labri.fr/perso/pelegrin/scotch/
http://www.geodynamics.org
http://www.geodynamics.org/cig/software/specfem3d
http://www.geodynamics.org/cig/software/specfem3d
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We thus initiate the simulation in a medium at rest. To accommodate simulations un-

der pre-stressed conditions, these initial conditions may be modified in an appropriate

manner.

For elastic materials, the force f in eq. (1) represents the earthquake, which for a simple

point source may be written as

f = −M · ∇δ(x− xs)S(t) , (4)

where M denotes the moment tensor, xs the source location, δ(x − xs) the Dirac delta

distribution located at xs and S(t) the source-time function. The software also accommo-

dates kinematic rupture simulations, which may be captured by prescribing a moment-

density tensor field.

The stress tensor T is linearly related to the strain via the constitutive relationship

T = c : ∇s , (5)

where c denotes the stiffness tensor that describes the elastic properties of the medium.

The implementation is general and can handle a fully anisotropic tensor with 21 in-

dependent parameters (Chen & Tromp 2007; Sieminski et al. 2007a,b). Using a linear

constitutive relationship is valid under the assumption that perturbations to the reference

state are small. Note that nonlinear effects are sometimes observed, e.g., nonlinear soil

amplification, and nonlinear constitutive relationships become important for studying

such effects, e.g., for risk mitigation (Xu et al. 2003; Dupros et al. 2010).

In an anelastic medium, we approximate an absorption-band solid using a series of L

standard linear solids (Liu et al. 1976), and model the time evolution of the isotropic

shear modulus µ by

µ(t) = µR

[
1−

L∑
l=1

(
1− τ εl

τσl

)
e−t/τ

σ
l

]
H(t) , (6)

where µR denotes the relaxed modulus, H(t) the Heaviside function and τσl & τ εl the

stress and strain relaxation times of the lth standard linear solid. Experience shows

that three solids generally suffice for simulating an absorption band (Emmerich & Korn

1987). For further details, see Carcione et al. (1988b), Robertsson (1996), Day & Bradley

(2001), Moczo & Kristek (2005), Komatitsch et al. (2005), Carcione (2007) and Savage
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et al. (2010). Simulations of seismic wave propagation in laboratory-scale rock samples

or in the context of medical tomography involve very high frequencies (in the kHz or

even MHz range), and strong attenuation must be taken into account.

The SEM solves the equations of motion in the weak form, which is obtained by dotting

the momentum equation (1) with an arbitrary test vector w and integrating by parts

over the model volume Ω. We focus on elastic domains and consider coupling interfaces

with acoustic domains. Thus, we obtain∫
Ω

ρw · ∂2
t s d3x =

∫
∂Ω

n̂ ·T ·w d2x−
∫

Ω

∇w : T d3x + M : ∇w(xs)S(t) . (7)

Note that in this formulation the traction-free surface condition is implicitly accounted

for by setting the contribution from the free surface to zero.

When and where necessary, we use Clayton-Engquist-Stacey absorbing conditions (Clay-

ton & Engquist 1977; Stacey 1988; Quarteroni et al. 1998) to absorb outgoing waves on

fictitious boundaries of the mesh, thereby representing a semi-infinite domain. It would

be more efficient to use a Perfectly Matched Layer (PML) (see e.g., Komatitsch & Martin

2007; Martin et al. 2008c; Martin & Komatitsch 2009), but a parallel implementation

with good load-balancing properties is challenging because additional equations need to

be solved. This issue becomes important when high-order time marching is required to

reduce numerical dispersion in difficult case studies that involve complex media with

poroelastic or viscoelastic rheologies (Martin et al. 2008b, 2010) or Newtonian compress-

ible fluids (Martin & Couder-Castaneda 2010). Consequently, additional computations

need to be performed in PML layers, in particular in corners, where contributions along

several directions are summed (Komatitsch & Martin 2007).

At a solid-fluid boundary, the interface integral over the coupling surface ∂Ω is used to

exchange pressure from the fluid pfluid to the solid: n̂ ·T = − pfluid n̂ .

2.2 Acoustic domain

We define a scalar potential φ such that the displacement s may be written as

s = ρ−1∇φ . (8)
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The equation of motion in terms of the potential φ becomes

κ−1 ∂2
t φ = ∇ · (ρ−1 ∇φ) + f , (9)

where κ denotes the bulk modulus. It follows that velocity v and pressure p may be

expressed as:

v = ρ−1 ∇∂tφ , (10)

p = − κ (∇ · s) = − ∂2
t φ . (11)

The resulting formulation for pressure p is the reason why we choose to define the poten-

tial φ as in equation (8). Since pressure is continuous across first-order discontinuities,

it follows that ∂2
t φ and thus φ must be continuous, a requirement which is honored au-

tomatically by the basis functions of the SEM. The source f may be expressed in terms

of pressure P acting at location xs:

f = − κ−1 P (t) δ(x− xs) . (12)

Note that the source is multiplied by a factor κ−1 due to the formulation used in eq. (9).

Using Gauss’ theorem and a scalar test function w , the weak form becomes∫
Ω

κ−1 w ∂2
t φ d3x =

∫
∂Ω

ρ−1 w n̂· ∇φ d2x−
∫

Ω

ρ−1 ∇w · ∇φ d3x−κ−1 P (t) w (xs) . (13)

At the free surface ∂Ω we set the pressure p = − ∂2
t φ = 0, thereby enforcing φ = 0,

∂tφ = 0 and ∂2
t φ = 0, i.e., we implement a Dirichlet boundary condition along the surface.

At a fluid-solid boundary, the interface coupling integral may be used to exchange the

normal component of displacement between fluid and solid: ρ−1 n̂ · ∇φ = n̂ · ssolid .

3 MESHING, MESH PARTITIONING AND LOAD BALANCING

The first step in a SEM consists of constructing a high-quality mesh for the region of

interest. In this section, we outline the key issues based on various 3D examples. Fig. 1

draws the schematic workflow from meshing and partitioning to finally running spectral-

element simulations. We discuss each phase separately, focussing on the use of an external

mesher, in our case CUBIT (Blacker et al. 1994).

http://cubit.sandia.gov
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3.1 Hexahedral meshing

We subdivide the model volume Ω into a set of non-overlapping, hexahedral elements.

We impose that the discretization creates a conforming mesh, i.e., elements match on a

full face or edge, and the mesh cannot be discontinuous. Using the SEM with hexahedral

elements leads to computational benefits over tetrahedral finite elements (Komatitsch

et al. 2001; Mercerat et al. 2006; Vos et al. 2010). Especially for parallel implementations,

taking advantage of the diagonal mass matrix and optimized tensor products is critical

in terms of computational speed (Komatitsch et al. 2003; Carrington et al. 2008; Vos

et al. 2010). Hexahedral meshing is also attractive for the SEM because it benefits from

reduced errors and generally smaller element counts compared to tetrahedral meshing

(Hesthaven & Teng 2000; Komatitsch et al. 2001; Vos et al. 2010).

Unfortunately, automatic 3D hexahedral mesh generation is more demanding than un-

structured tetrahedral meshing (Shepherd & Johnson 2008; Staten et al. 2010). In order

to construct hexahedral meshes, our examples make use of an external hexahedral mesher,

such as CUBIT (Blacker et al. 1994). We focus on this particular mesh generation tool

kit because it is a well documented and feature-rich package, on which most of our own

experience is based. One may readily use other meshing tools, such as Abaqus (SIMU-

LIA 2008), ANSYS (ANSYS 2011), GOCAD (Mallet 1992), GiD (Gardia-Donoro et al.

2010; Ribó et al. 2011), Gmsh (Geuzaine & Remacle 2009), TrueGrid (Rainsberger 2006;

Noble & Nuss 2004) or Salome (Ribes & Caremoli 2007; Bergeaud et al. 2010).

Fig. 2 shows several examples of fully unstructured hexahedral meshes. In the Mount

St. Helens region, the mesh employs a mesh tripling layer to increase resolution at the

topographic surface. Tripling is the default refinement in CUBIT for subdividing hexa-

hedral elements in a conforming fashion. Surface topography is imported using Shuttle

Radar Topographic Mission (SRTM) data, converted to Universal Transverse Mercator

(UTM) coordinates with an original resolution of 90 m (Jarvis et al. 2008). Meshing

is performed automatically by CUBIT using a sweep algorithm. The resolution of the

mesh enables seismic wave simulations with frequencies up to ∼1.5 Hz. The Mesh for

the L’Aquila region, Italy, consists of ∼7 M hexahedra with an element size of ∼90 m

at the top surface. This mesh facilitates simulations of seismic wave propagation up to

http://cubit.sandia.gov
http://www.simulia.com/products/abaqus_fea.html
http://www.ansys.com/
http://www.gocad.org/www/
http://gid.cimne.upc.es
http://geuz.org/gmsh
http://www.truegrid.com/
http://www.salome-platform.org/
http://cubit.sandia.gov
http://srtm.csi.cgiar.org/
http://cubit.sandia.gov


SPECFEM3D Version 2.0 ‘Sesame’ 11

∼5 Hz. For the exploration geophysics model, the hexahedral mesh honors a salt dome

body inside a 3D model capped by a water layer. The Mesh for asteroid 433-Eros with

a close-bound surface has a resolution of roughly 300 m. Finally, the filled coffee cup

model discretized into hexahedra couples an elastic domain for the cup with an acoustic

domain for the coffee inside the cup.

In order to ensure compatibility with previous versions of SPECFEM3D (see e.g., Ko-

matitsch et al. 2004; Liu et al. 2004), the in-house mesher based on analytical linear

interpolation from the top to the bottom of the mesh has been adapted to the new code

structure. It facilitates the design of simpler, alternative meshes for layercake models.

3.2 Partitioning and load balancing

Balancing the computational load and distributing the mesh on a large number of cores is

crucial for optimized high-performance simulations (Martin et al. 2008a). In order to do

so, we make use of an external partitioner, namely SCOTCH (Pellegrini & Roman 1996;

Chevalier & Pellegrini 2008), which we use to balance spectral-element computations

on an arbitrary number of cores. An alternative partitioner able to fulfill these tasks is

METIS (Karypis & Kumar 1998), but SCOTCH is more actively maintained (Chevalier

& Pellegrini 2008) and performs better in many cases that we have tested.

Especially for simulations involving coupled elastic and acoustic domains, balancing the

mesh becomes paramount. Most of the computation time is spent resolving the divergence

of the stress tensor in each element. The computational cost for an elastic element is

approximately four times larger than for an acoustic element, which may be established

by running simulations for one domain at a time. During partitioning, we therefore

weight each element according to its associated domain type and computational cost to

balance the overall numerical cost rather than simply the number of elements between

partitions. The major improvement in SPECFEM3D code performance focuses on these

tensor products, using highly efficient algorithms developed by Deville et al. (2002) and

optimizing cache usage. Another key aspect of mesh partitioning is minimization of the

number of edge cuts, because this reduces the amount of MPI communications between

processor cores (an edge cut occurs when two contiguous elements are assigned to distinct

http://www.geodynamics.org/cig/software/specfem3d
http://www.labri.fr/perso/pelegrin/scotch/
http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.labri.fr/perso/pelegrin/scotch/
http://www.geodynamics.org/cig/software/specfem3d
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cores). On machines comprising a very large number of cores, it is crucial to resort to non-

blocking communications between compute nodes, for instance using non-blocking MPI

message passing, in order to obtain good performance scaling (Danielson & Namburu

1998; Martin et al. 2008a; Komatitsch et al. 2008).

Fig. 3 presents a simple example of partitioning and load balancing the mesh around

Mount St. Helens, as shown in Fig. 2. For illustrative purposes, we decompose the mesh

onto four cores using the SCOTCH library. The total number of spectral-elements is

∼24,000, such that each partition contains ∼6,000 elements after decomposition. Par-

titioning and load balancing equally distributes the elements over the different cores,

since the whole domain is purely elastic. A partitioner such as SCOTCH can also load

balance computationally more complex meshes, for example containing PML elements

along absorbing boundaries of the model; this is the subject of future research.

In a final, separate step we generate mesh databases for each partition needed for the

spectral-element solver. These databases contain Gauss-Lobatto-Legendre (GLL) points

for all spectral elements. Material properties are assigned to these GLL points, and thus

sampling resolution of a geological model not only depends on element size but also on

polynomial degree. Furthermore, the generation of mesh databases automatically detects

interfaces between elastic and acoustic domains, needed for coupling seismic waves from

one domain to another. Load-balancing of the simulation persists, because we keep the

polynomial degree fixed for all spectral elements. Note that this final step of generating

mesh databases provides additional freedom in assigning and changing wavespeeds, which

is important for seismic inversion procedures.

3.3 Overlapping computation and communication

The elements that compose the mesh slices shown in Figures 2 and 3 are in contact

through a common face, edge or point. To allow for overlap of communication between

compute nodes with computations within each mesh slice —thereby speeding up the

simulation— a list of all elements in contact with any other mesh slice through a common

face, edge or point is created. Members of this list are termed ‘outer’ elements, and all

other elements are termed ‘inner’ elements, as illustrated in Figure 4.

http://www.labri.fr/perso/pelegrin/scotch/
http://www.labri.fr/perso/pelegrin/scotch/
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Once the outer elements have been identified following a standard procedure (see e.g.,

Danielson & Namburu 1998; Martin et al. 2008a; Micikevicius 2009; Michéa & Ko-

matitsch 2010; Komatitsch et al. 2010a; Komatitsch 2011), MPI buffers are filled and a

non-blocking MPI call is issued, which initiates communication and returns immediately.

While MPI messages are traveling across the network, computations are performed on

inner elements. Achieving effective overlap requires that the ratio of the number of inner

to outer elements is sufficiently large, a condition which is satisfied for suitably large

mesh slices. Under these circumstances, MPI data transfer will generally finish before

the completion of computations on inner elements.

4 SAMPLE SIMULATIONS

In this section, we present various simulations with increasing complexity to highlight

the flexibility of our new spectral-element package. We start with a layercake model and

finish with an example of an arbitrarily-shaped model.

4.1 Validation example: Two-Layer model

The SEM has been well benchmarked against discrete wavenumber methods for layercake

models by Komatitsch & Tromp (1999). Here we compare their two-layer model solution

(Figure 8, left) against the solution obtained by the new code. The model has a horizontal

size of 134 km × 134 km, with a depth of 60 km. We discretize the model into 70,200

elements, using an approximate element size of 1,000 m at the top and 4,500 m at the

bottom. A mesh tripling layer is placed below the upper layer, between 3 km and 10 km,

with the wavespeed properties of the lower layer. We use SCOTCH to partition the model

onto six cores, each with 11,700 elements. The final mesh is generated using GLL points

for a polynomial degree N = 5, which results in 9,025,941 global mesh points.

A vertical force is placed at a depth of 25.05 km in the middle of the model. The source-

time function is a Ricker wavelet with a dominant frequency of 0.4 Hz. The simulation

uses a time step of 6.5 ms and propagates for 6,000 steps. We compare our solution

with seismograms obtained by Komatitsch & Tromp (1999) (Figure 9). The mesh and

http://www.labri.fr/perso/pelegrin/scotch/
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seismograms are shown in Fig. 5. The seismograms match very closely with the refer-

ence solutions, exhibiting almost identical displacements. Maximum waveform differences

reach ∼0.3%, arising from differences in mesh geometry and source implementation.

The performance of the code is summarized in Fig. 6, using simulations with the opti-

mized routines by Deville et al. (2002) and a polynomial degree N = 4. We are interested

in how the code behaves when the number of calculations is decreased linearly with the

number of CPU cores (strong scaling), and how performance varies when the number of

calculations on each core is kept constant while increasing the total number of CPU cores

(weak scaling). To assess strong scaling, we fix the total mesh size but vary the number

of CPU cores used for the simulation. We run the simulation for a duration of 4,000

time steps and show the corresponding average elapsed time per time step in Fig. 6(a).

More interesting for high-performance applications, we assess weak scaling by fixing the

problem size per processor and varying the number of CPU cores. This leads to higher

mesh resolutions for an increasing number of CPU cores but should keep the average

elapsed time per time step constant. We summarize the simulation times in Fig. 6(b).

The computations were performed on a high-performance cluster with compute nodes

consisting of two Intel Nehalem quad-core processors; each core has 3 GB of RAM. The

code scales linearly within ∼90% up to 256 CPU cores for both strong and weak scal-

ing, achieving excellent performance on this parallel system. Note that for the strong

scaling examples shown here, simulations using more than 64 CPUs see a performance

decrease since communications no longer overlap, thus they no longer profit from the

default non-blocking MPI scheme (Martin et al. 2008a).

4.2 Mount St. Helens example: Layercake model with surface topography

In order to include surface topography, we import SRTM data with an original resolution

of 90 m (Jarvis et al. 2008) and convert it to UTM coordinates for the corresponding

UTM zone. We read in this dataset using CUBIT and create a surface honoring these

data points. A 3D volume is built manually with topography on top.

The simulation uses an explosive source at a depth of 5 km. In Fig. 7, we show the vertical

displacement field at the free surface at consecutive times. Note that once the wavefield

http://srtm.csi.cgiar.org/
http://cubit.sandia.gov
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hits the model boundary, it gets absorbed by the Clayton-Engquist-Stacey absorbing

boundary conditions.

4.3 L’Aquila example: Layercake model honoring surface and Moho

topography

The purpose of this example is to show that additional surfaces may be honored by the

mesh, for example the Moho. We import not only surface topography, but also create a

Moho surface that is honored by the boundaries of the spectral elements. The mesh for

the L’Aquila region was built using an additional ‘Python’ library that semi-automates

the mesh creation process with CUBIT (Casarotti et al. 2008). Once these mesh files

are constructed, the default partitioning and database generation process may be used

to create fully load-balanced spectral-element simulations on an arbitrary number of

parallel processors.

Fig. 8 shows several snapshots of the seismic wavefield at consecutive times for an anelas-

tic material, using a kinematic source description for the April 6, 2009, L’Aquila earth-

quake. Simulations are accurate up to 5 Hz and may be used to discriminate between

different wavespeed models and/or kinematic source solutions. These high-frequency sim-

ulations may be used to assess the response of engineered structures and may guide the

development of better seismic building codes for the L’Aquila region.

4.4 SEG/EAGE salt dome example: Exploration model

Our new spectral-element package can combine acoustic and (an)elastic simulations by

coupling these distinct domains. In this example, we generate acoustic waves in the top

water layer and propagate them down through a salt dome body included in the lower,

anelastic domain. The mesh honors the surface of the salt dome and the fluid-solid

boundary, i.e., the bathymetry.

Fig. 9 shows the acoustic wavefield at the free surface of the water layer at different times.

The source is a pressure source, located slightly below the free surface in the water layer,

with a Ricker source-time function. The wavefield is reflected and refracted by the salt

http://cubit.sandia.gov
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dome in the anelastic domain below the water layer. Note how these reflected/refracted

waves, which include P-to-S converted waves, are recorded in the water layer.

4.5 Asteroid example: Arbitrarily-shaped model

This final example shows that our new software package may be used for simulating wave

propagation in arbitrarily-shaped models, such as asteroid Eros, which was imaged by the

NEAR spacecraft in 2000–2001. This silicated asteroid is 34 km long with a peanut-like

shape and is thought to be covered with a regolith layer, corresponding to a blanket of

loose material crushed by impacts (Richardson et al. 2005). We meshed the asteroid with

5,797,440 hexahedral elements having an approximate resolution of 70 m. To simulate

a thin, 70 m regolith layer superimposed on strong bedrock, as suggested by Robinson

et al. (2002), we assigned a low-wavespeed material to the elements touching the free

surface and a high-wavespeed material to elements inside the asteroid, representing solid

bedrock.

We simulated the propagation of seismic waves from a source represented by a point

force normal to the surface. The source-time function corresponds to a Dirac pulse low-

pass filtered up to a cutoff frequency of 5 Hz. Fig. 10 displays wavefield snapshots for

the first ∼10 seconds of the simulation. It shows the propagation of P, S and surface

waves with a refocusing effect on the opposite side. The regolith layer strongly increases

physical dispersion of surface waves. Peak ground accelerations are plotted in Fig. 11 for

a simulation without a regolith layer, showing that refocussing occurs on the asteroid.

5 ADJOINT SENSITIVITY KERNELS

An important goal in seismology is to use differences between observed and simulated

seismograms to improve Earth and source models, that is, we are interested in the inverse

problem. An elegant way to address this issue is to take advantage of adjoint methods

(Tarantola 1984; Tromp et al. 2005) to calculate Fréchet derivatives for a predefined

objective function. These derivatives may then be used in a conjugate-gradient approach

to minimize differences between data and synthetics. The key ingredients of such an

adjoint approach are sensitivity kernels. Following Tromp et al. (2005), Liu & Tromp
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(2006, 2008) and Tromp et al. (2010), we show examples of sensitivity kernels for various

models using our new software package.

5.1 Elastic sensitivity kernels

Following Tromp et al. (2005), we may write the variation of a misfit function χ as

δχ =

∫
V

(
Kρ δ ln ρ+Kcjklm δcjklm

)
d3x , (14)

where δlnρ = δρ/ρ denotes relative perturbations in density and δcjklm denotes pertur-

bations in the elastic tensor. The misfit kernels are given by

Kρ = − ρ
∫ T

0

s†(T − t) · ∂2
t s(t) dt , (15)

Kcjklm = −
∫ T

0

ε†jk(T − t) εlm(t) dt , (16)

where εlm and ε†jk denote elements of the strain and adjoint strain tensors, and where we

have suppressed the spatial dependence to avoid clutter.

In an isotropic model, we have cjklm = (κ− 2µ/3) δjkδlm + µ (δjlδkm + δjmδkl), and thus

eq. (14) may be rewritten as

δχ =

∫
V

(Kρ δlnρ+Kµ δlnµ+Kκ δlnκ) d3x . (17)

The isotropic misfit kernels Kµ and Kκ are defined by

Kµ = − 2µ

∫ T

0

D†(T − t) : D(t) dt , (18)

Kκ = − κ
∫ T

0

[
∇ · s†(T − t)

]
[∇ · s(t)] dt , (19)

where D = 1
2
[∇s + (∇s)T ]− 1

3
(∇ · s) I and D† = 1

2
[∇s† + (∇s†)T ]− 1

3
(∇ · s†) I are the

traceless strain deviator and its adjoint, respectively. In terms of a parameterization in-

volving compressional wavespeed α, shear wavespeed β and density ρ, the corresponding

kernels are given by a linear combination of these primary kernels (Tromp et al. (2005),

eq. 20):

Kα = 2

(
κ+ 4

3
µ

κ

)
Kκ , Kβ = 2

(
Kµ −

4

3

µ

κ
Kκ

)
, K ′ρ = Kκ +Kµ +Kρ . (20)

Note that a suitable parameterization for isotropic inversions is to use bulk sound
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wavespeed Φ =
√
κ/ρ, shear wavespeed β and density ρ (Tarantola 1987). Bulk sound

and shear wavespeeds are independent combinations of the bulk and shear moduli κ and

µ. The corresponding kernels are given by

KΦ = 2Kκ , K ′β = 2Kµ , K ′ρ = Kκ +Kµ +Kρ . (21)

We place an explosive source at a depth of 7 km and a horizontal distance of 16 km

from the receiver in a homogeneous model with topography around Mount St. Helens.

The P wave at the receiver is used to construct a traveltime adjoint source for the kernel

simulation. Fig. 12(a) shows the isotropic kernels Kκ, Kµ and Kρ, and Fig. 12(b) the

isotropic kernels Kα, Kβ and K ′ρ for the same model and source-receiver geometry.

Note that although we construct the adjoint source using the P wave, significant non-zero

S-wave sensitivity is visible in the Kβ and Kµ kernels. We interpret these areas of high

sensitivity as P-to-S scattering locations, which affect the signal within the chosen time

window. As may be observed in Fig. 12, such scattering sensitivity is especially strong

at the free surface close to the receiver.

5.2 Acoustic sensitivity kernels

Liu & Tromp (2008) calculated global sensitivity kernels, which include sensitivity to the

liquid outer core. In this section, we present acoustic sensitivity kernels for general local-

or regional-scale models. Such kernels may be used, for example, in ocean acoustics,

non-destructive testing and medical tomography.

For acoustic simulations, the kernels are given by

Kρ = ρ−1

∫ T

0

[∇∂tφ†(T − t)] · [∇∂tφ(t)] dt , (22)

Kκ = − κ−1

∫ T

0

∂2
t φ
†(T − t) ∂2

t φ(t) dt , (23)

where φ and φ† denote the acoustic scalar potential and adjoint potential, respectively.

To illustrate these kernels, we use a model with acoustic and elastic regions. The model

combines a water layer on top of a homogeneous elastic layer, separated by a bathymetric

surface. The dimensions of the model volume are approximately 2 km× 2 km horizontally

and 1 km in depth. Bathymetry is taken from a location in front of Pearl Harbor (Hawaii,
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USA), with a resolution of ∼11 m. For the forward simulation, we use a pressure source

in the form of an explosion with a Gaussian source-time function, and record pressure

variations at the receiver. Both source and receiver are in the acoustic domain at a depth

of 10 m and ∼1.1 km apart from each other. We use the simulated pressure variation

within the measurement window as the pressure misfit for the adjoint source, as explained

in Appendix A.1.

Fig. 13 shows the corresponding combined acoustic and elastic kernels. The kernels high-

light how the pressure waveform in the chosen measurement window is affected by a head

wave (a Scholte wave) traveling along the sea floor. Since the acoustic region does not

support shear waves, the kernels Kµ and Kβ are zero in this upper domain. However,

they do exhibit non-zero sensitivity in the elastic domain, due to P-to-S coupling along

the sea floor.

5.3 Noise sensitivity kernels

As demonstrated by Tromp et al. (2010), noise cross-correlation sensitivity kernels may

also be calculated based on an adjoint method, and the new package has the necessary

capabilities to perform such calculations. Consider two receivers located at xα and xβ .

In seismic interferometry, ensemble sensitivity kernels are calculated in terms of inter-

actions between an ensemble forward wavefield Φα , generated at location xα , and an

ensemble adjoint wavefield Φ†αβ , generated at xβ and triggered by the differences be-

tween simulated and observed ensemble-averaged cross correlations at xα and xβ . The

isotropic ensemble sensitivity kernels are given by

〈Kρ〉 = −
∫
ρ [Φ†αβ(− t) · ∂2

t Φ
α(t) + Φ†βα(− t) · ∂2

t Φ
β(t)] dt , (24)

〈Kµ〉 = −
∫

2µ [D†αβ(− t) :Dα(t) + D†βα(− t) :Dβ(t)] dt , (25)

〈Kκ〉 = −
∫
κ [∇ ·Φ†αβ(− t) ∇ ·Φα(t) + ∇ ·Φ†βα(− t) ∇ ·Φβ(t)] dt , (26)

where

Dα = 1
2
[∇Φα + (∇Φα)T ]− 1

3
(∇ ·Φα) I , (27)

D†αβ = 1
2
[∇Φ†αβ + (∇Φ†αβ)T ]− 1

3
(∇ ·Φ†αβ) I , (28)
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denote the traceless ensemble strain deviator and corresponding adjoint.

Figure 14 shows the isotropic kernel 〈Kβ〉 calculated according to eq. (20) using the

primary isotropic ensemble sensitivity kernels given above. Plotted are the two contri-

butions from ensemble wavefields generated at the first receiver location, xα, and the

second receiver location, xβ, as well as the combined ensemble sensitivity kernel 〈Kβ〉,

which is the sum of the two contributions. The two receivers are placed at a distance

of 65 km from each other on top of a homogeneous block model with dimensions of

134 km × 134 km horizontally and 60 km in depth. We smooth the kernel contributions

using a 3D Gaussian filter with a standard deviation of 2 km in the horizontal and verti-

cal directions. Note that these noise sensitivity kernels exhibit strong three-dimensional

variability. Depth sensitivity is controlled by the period range (5–100 s in this example).

6 CONCLUSIONS AND FUTURE WORK

We have taken advantage of recent advances in high-performance computing, fully un-

structured hexahedral meshing, load balancing and mesh partitioning to facilitate for-

ward and adjoint simulations of seismic wave propagation in coupled fluid and solid

domains. Our new open source software package, SPECFEM3D Version 2.0 ‘Sesame’,

performs acoustic and (an)elastic simulations of seismic wave propagation in complex

geological models. Hexahedral meshes may be generated based on packages such as

CUBIT, Abaqus, ANSYS, GOCAD, GiD, Gmsh, TrueGrid or Salome, but the sim-

ple in-house mesher used in previous versions of SPECFEM3D remains available for

back-compatibility.

Partitioning and load balancing meshes may be accomplished based on graph partitioning

software, such as SCOTCH. By coupling acoustic and (an)elastic wave propagation, we

are able to calculate related sensitivity kernels, which are useful for waveform inversions

in off-shore exploration seismology, ocean acoustics, non-destructive testing and medical

tomography. Attenuation is important on all scales of seismic wave propagation and is

accommodated based on a series of standard linear solids. In particular for simulations

in medical tomography, strong attenuation and related dispersion play a dominant role.

Finally, the new package can be used to calculate finite-frequency noise cross-correlation

http://www.geodynamics.org/cig/software/specfem3d
http://cubit.sandia.gov
http://www.simulia.com/products/abaqus_fea.html
http://www.ansys.com/
http://www.gocad.org/www/
http://gid.cimne.upc.es
http://geuz.org/gmsh
http://www.truegrid.com/
http://www.salome-platform.org/
http://www.geodynamics.org/cig/software/specfem3d
http://www.labri.fr/perso/pelegrin/scotch/
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sensitivity kernels, which may be used for seismic interferometry. In future work, we

will add C-PML and GPU support to the package. Visco-plastic and non-linear elastic

rheologies (e.g., Xu et al. 2003; di Prisco et al. 2007) are accommodated by the GeoELSE

software package (Stupazzini et al. 2009; Chaljub et al. 2010), and we will consider such

non-linear constitutive relationships in future releases of SPECFEM3D.

The next grand challenge involves the development of 3D seismic imaging and inver-

sion tools for the characterization of earthquakes, Earth ‘noise’, and mapping of Earth’s

interior on all scales, that is, to address the seismological inverse problem. The goal is

to harness the power of forward and adjoint modeling tools, such as SPECFEM3D, to-

gether with modern computers to enhance the quality of images of Earths interior and

the earthquake rupture process. Most traditional tomographic methods utilize traveltime

or phase information measured by comparing data with simulations, and interpret such

measurements based on ray theory or other approximate methods. Because of the limi-

tations of these approximate theories, only parts of seismograms can be used, and initial

models are generally restricted to be spherically symmetric. With the new generation of

modeling tools we can go beyond classical tomography by using fully 3D initial models

(e.g., Akçelik et al. 2002, 2003; Askan et al. 2007; Chen et al. 2007; Fichtner et al. 2009b;

Fichtner 2010), and utilizing as much information contained in seismograms as possible

(e.g., Maggi et al. 2009; Valentine & Woodhouse 2010). Our approach will be to minimize

frequency-dependent phase and amplitude differences between simulated and observed

seismograms based on adjoint techniques in combination with conjugate gradient meth-

ods, an approach we refer to as ‘adjoint tomography’ (Tape et al. 2009, 2010). The

development of such capabilities will affect the fields of exploration geophysics, regional

& global seismology, ocean acoustics, non-destructive testing, medical tomography and

helioseismology.
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A ACOUSTIC ADJOINT EQUATIONS

A.1 Pressure waveform misfit kernels

For acoustic tomographic studies, it is convenient to define a pressure misfit function

χ =
1

2

∑
i

∫
||psyn

i (m)− pobs
i ||2 dt , (29)

where psyn
i is the numerically computed pressure and pobs

i the observed pressure at lo-

cation xi . The variation in pressure may be written in terms of the variation in the

potential φ as

δp = − ∂2
t δφ , (30)

which follows from the definition of the scalar potential φ in eq. (11). The corresponding

action in the acoustic case is given by

χ =
1

2

∑
i

∫
||psyn

i − pobs
i ||2 dt−

∫ ∫
Ω

λ
[
κ−1 ∂2

t φ− ∇ ·
(
ρ−1 ∇φ

)
− f

]
d3x dt , (31)

where λ denotes a scalar Lagrange multiplier. Setting ∆pi = psyn
i − pobs

i and taking the

variation of the action, we obtain

δχ =
∑
i

∫
∆pi δpi dt−

∫ ∫
Ω

[
δκ−1 λ ∂2

t φ− ∇ ·
(
δρ−1 λ ∇φ

)
− λ δf

]
d3x dt

−
∫ ∫

Ω

[
κ−1 ∂2

t λ− ∇ ·
(
ρ−1∇λ

)]
δφ d3x dt−

∫ ∫
∂Ω

n̂ ·
(
ρ−1 ∇λ

)
δφ d2x dt . (32)

Since eq. (32 ) must be stationary when no model perturbations are present, i.e., δρ = 0 ,

δκ = 0 and δf = 0, we obtain∫ ∫
Ω

[
κ−1 ∂2

t λ− ∇ ·
(
ρ−1∇λ

)]
δφ d3x dt

=

∫ ∫
Ω

∑
i

∆pi δ(x− xi) δp d3x dt−
∫ ∫

∂Ω

n̂ ·
(
ρ−1∇λ

)
δφ d2x dt

= −
∫ ∫

Ω

∑
i

∆pi δ(x− xi) ∂
2
t δφ d3x dt−

∫ ∫
∂Ω

ρ−1 n̂ · ∇λ δφ d2x dt

= −
∫ ∫

Ω

∑
i

∂2
t ∆pi δ(x− xi) δφ d3x dt−

∫ ∫
∂Ω

ρ−1 n̂ · ∇λ δφ d2x dt , (33)

where xi is the station location of the corresponding ith measurement. Note that the

last integration by parts of the first term is valid under the assumption that ∆pi and

∂t∆pi vanish at the limits of the time integration, i.e., for a given measurement window
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[0, T ], ∆pi(x, 0) = ∆pi(x, T ) = 0 and ∂t∆pi(x, 0) = ∂t∆pi(x, T ) = 0. This is generally

true because we taper the ends of the misfit window.

Let us define the adjoint scalar potential as

φ†(x, t) ≡ λ(x, T − t) . (34)

It follows from (33) that φ† must satisfy the adjoint wave equation

κ−1∂2
t φ
† − ∇ ·

(
ρ−1∇φ†

)
= f † , (35)

where the adjoint source is given by

f †(x, t) = −
∑
i

∂2
t ∆pi(T − t) δ(x− xi) . (36)

The initial conditions for the adjoint potential must satisfy φ†(T ) = 0 and ∂tφ
†(T ) = 0 .

The corresponding fluid-solid boundary conditions involve terms with ρ−1n̂ · ∇φ† .

For acoustic simulations, there is no shear contribution and we may set Kµ = 0. Using

∇ · s = − κ−1 p = κ−1 ∂2
t φ , (37)

∇ · s† = κ−1 ∂2
t φ
† , (38)

the kernel Kκ given in eq. (18 ) becomes

Kκ = −
∫ T

0

κ−1 ∂2
t φ
†(T − t) ∂2

t φ(t) dt . (39)

It is this last kernel expression that is actually implemented, since the values for ∂2
t φ

and ∂2
t φ
† are obtained at each time step in the Newark time scheme used to propagate

acoustic waves.

A.2 Pressure traveltime adjoint sources

Instead of measuring waveform misfits, one may also define a traveltime misfit for pressure

signals, i.e.,

χ =
1

2

∑
i

||T syn
i (m)− T obs

i ||2 , (40)

where T syn
i (m) denotes the arrival time in the synthetic pressure records computed for

model m, and T obs
i the arrival time of the observed pressure wave. The variation in

traveltime δT may be written to first order in terms of perturbations in pressure as δp



SPECFEM3D Version 2.0 ‘Sesame’ 35

(Hung & Dahlen 2000)

δT =
1

N

∫
∂tp δp dt , (41)

where N =
∫
p ∂2

t p dt . Using δp = − ∂2
t δφ, this leads to

δT = − 1

N

∫
∂tp ∂

2
t δφ dt . (42)

Defining ∆Ti ≡ T syn
i (m)− T obs

i , the variation of the action becomes∑
i

∆Ti δTi = −
∑
i

1

N
∆Ti

∫
∂tp ∂

2
t δφ dt (43)

= −
∫ ∫

Ω

∑
i

1

N
∆Ti δ(x− xi) ∂tp ∂

2
t δφ d3x dt . (44)

Under the assumption that ∂tp(0) = ∂tp(T ) = 0 and ∂2
t p(0) = ∂2

t p(T ) = 0 (which can

be achieved by carefully selecting and tapering the measurement time windows), we find

after some further manipulation that the adjoint source for a traveltime misfit between

observed and simulated pressure signals is given by

f †(x, t) = −
∑
i

1

N
∆Ti ∂

3
t p(x, T − t) δ(x− xi) . (45)
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Figure 1. Workflow for running spectral-element simulations with SPECFEM3D Version 2.0

‘Sesame’.

http://www.geodynamics.org/cig/software/specfem3d
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(a) (b)

(c) (d)

(e)

Figure 2. Mesh examples: (a) Mount St. Helens meshed by hexahedral elements. The mesh honors

surface topography and includes a mesh tripling layer in the middle of the model. The smallest

element size is approximately 280 m. (b) L’Aquila, Italy, region discretized for high-frequency

simulations. The mesh honors surface and Moho topography and includes two mesh tripling layers.

The yellow and blue volumes denote slower and faster than average wavespeeds, respectively.

(c) Salt dome body meshed inside an exploration model for a SEG/EAGE benchmark test. (d)

3D hexahedral mesh of the asteroid 433-Eros. (e) Arbitrarily-shaped mesh for coupled solid-fluid

simulations involving a coffee cup.
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Figure 3. Mount St. Helens mesh partitioned and load balanced to run in parallel on four cores.

The four partitions are indicated by different colors.

Figure 4. Outer (highlighted) and inner (transparent colors) elements for the mesh shown in

Figure 3. Outer elements have at least one point in common with an element from another slice

and must therefore be computed first, before initiating non-blocking MPI communications. While

MPI messages are traveling across the computer network, simultaneous computations are performed

on inner elements. Non-blocking MPI communication is crucial to obtain good scaling results for

simulations running on a large number of parallel cores.
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Figure 5. Validation for a two-layer mesh (left, top), using six partitions (left, bottom), and

seismograms recorded at the surface at horizontal distances of 2.39 km (right, top) and 31.11 km

(right, bottom). Plotted are radial displacements (SEM, red) against reference solutions (REF,

black) from Komatitsch & Tromp (1999), as well as their exaggerated differences (blue) .
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Figure 6. CPU scaling results for the model shown in Fig. 5, (a) using a fixed total problem

size (strong scaling) and (b) a fixed problem size per processor (weak scaling) for up to 256 cores.

Perfect weak scaling deviates slightly from a straight line, because a larger number of processors

involves more MPI buffers and therefore more computational overhead.
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Figure 7. Wavefield snapshots around Mount St. Helens. Plotted are vertical displacements

(up/down colored red/blue respectively) at the free surface of the model.

Figure 8. Wavefield snapshots for the April 6, 2009, L’Aquila earthquake, taken after 6 s, 11 s,

16 s and 21 s. Plotted are vertical displacements (up/down as red/blue).
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Figure 9. Wavefield snapshots for an exploration geophysics simulation taken after 5 s, 10 s, 15 s

and 20 s. Plotted are vertical velocities at the free surface of the water layer.
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Figure 10. Wavefield snapshots for an asteroid simulation taken after 3 s, 4.5 s, 6.5 s and 10.5 s.

Plotted is the norm of the velocity at the free surface of the asteroid.

Figure 11. ShakeMap views for an asteroid simulation. Plotted are different views of the peak

ground accelerations at the free surface of the asteroid.
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(a) (b)

Figure 12. Traveltime sensitivity to elastic structure. Fréchet derivatives for isotropic parameter-

izations (a) Kκ, Kµ & Kρ and (b) Kα, Kβ & K ′ρ are compared in a model of Mount St. Helens

using traveltime adjoint sources for the P wave. Shown are vertical cross sections through the

source-receiver line and perpendicular to this line.



44 Peter et al.

(a) (b)

Figure 13. Waveform sensitivity to acoustic and elastic structure in a coupled fluid-solid simu-

lation. The bathymetric surface of the Pearl Harbor model, separating the two media, is shown

in gray together with a vertical cross-section through source (right) and station (left). Plotted are

combined acoustic and elastic kernels using a parameterization (a) Kκ, Kµ & Kρ and (b) Kα, Kβ

& K ′ρ.
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(a) (b)

(c)

Figure 14. Noise cross-correlation sensitivity to elastic structure. Shown are (a) first, (b) second

and (c) summed contributions to the 〈Kβ〉 Fréchet derivative in a homogeneous isotropic model.

Plotted are vertical and horizontal cross sections through the line connecting the two receivers

(white dots) and perpendicular to this line.


	Introduction
	Governing equations
	Elastic domain
	Acoustic domain

	Meshing, mesh partitioning and load balancing
	Hexahedral meshing
	Partitioning and load balancing
	Overlapping computation and communication

	Sample simulations
	Validation example: Two-Layer model
	Mount St. Helens example: Layercake model with surface topography
	L'Aquila example: Layercake model honoring surface and Moho topography
	SEG/EAGE salt dome example: Exploration model
	Asteroid example: Arbitrarily-shaped model

	Adjoint sensitivity kernels
	Elastic sensitivity kernels
	Acoustic sensitivity kernels
	Noise sensitivity kernels

	Conclusions and future work
	Acoustic adjoint equations
	Pressure waveform misfit kernels
	Pressure traveltime adjoint sources


