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Representation

ABSTRACT
Various graphs such as web or social networks may contain
up to hundreds of billions of edges, yet they are not neces-
sarily stored and thus managed efficiently. To address this,
we propose Log(Graph): a graph representation that enables
cheaper and faster graph processing for various families of
graphs. The core idea is to encode the graph so that various
elements approach or match respective storage lower bounds.
We call our approach “graph logarithmization” because loga-
rithmic terms are applied to various graph elements to derive
the respective bounds. We use various techniques and notions
to achieve this, including succinctness, compactness, and in-
teger linear programming. We also show a high-performance
design of Log(Graph) that uses modern bitwise operations,
performance models, and parallel implementation for higher
speedups. Our evaluation illustrates that Log(Graph) achieves
simplicity and tunable performance as well as compression
ratios. Log(Graph) can be used to improve the design of
any graph processing framework, algorithm implementation,
or library on both fat shared-memory NUMA nodes and
distributed-memory data centers and supercomputers.

1 INTRODUCTION
Large graphs are behind many problems in machine learn-
ing, medicine, social network analysis, and computational
sciences [54]. Lowering the size of such graphs (e.g., through
compression) is becoming increasingly important for HPC
and Big Data. First, it reduces expensive I/O. Next, it poten-
tially improves performance by storing a larger fraction of
data in caches. Third, it decreases the amount of hardware
resources required to store a given graph.

Traditional lossless graph compression systems such as the
well-known WebGraph [12] introduce costly decompression.
This is often caused by the underlying complexity (e.g., We-
bGraph combines various techniques, such as sophisticated
variable-length codes, reference encoding, and storing inter-
vals instead of vertex IDs). Thus, one needs both simplicity
and high performance for lossless compression.

In this work, we develop Log(Graph): a graph represen-
tation that achieves the above goals. Log(Graph) is founded
on two fundamental ideas. First, to enable significant storage
reductions, it applies storage lower bounds to various elements
of the popular adjacency array graph representation. We call
this approach “logarithmization” because the well-known
combinatorial argument states that a lower bound to store an
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object from some set (or class) is the logarithm of the cardinal-
ity of this set (or class); the name Log(Graph) indicates that
we “logarithmize” various elements of a graph representation
such as vertex IDs or adjacency offsets. Second, we ensure
that all the “logarithmization” schemes maintain high perfor-
mance. The result is a representation that combines storage
reductions with fast accesses to the graph data.

To motivate and explain the “logarithmization” idea for
vertex IDs, consider using a fixed-size 64- and 32-bit memory
word to respectively store a vertex ID and an edge weight
(a strategy used in miscellaneous graph processing codes
such as the GAP Benchmark Suite [8]). Yet, we note that the
storage lower bound (for a graph with n vertices and the
maximum edge weight Wmax) associated with vertex IDs
and edge weights is dlog ne and dlogWmaxe bits. Now, for a
graph with n = 237 andWmax = 210, 42% of each word with
a vertex ID and 69% of each word with an edge weight is
wasted. We instead “logarithmize” IDs and use dlog ne bits
to store an ID and dlogWmaxe bits to store an edge weight.

Other elements of a graph representation use more sophis-
ticated designs. For example, we “logarithmize” an offset
array by implementing it with a bit vector and then using an
interesting family of succinct designs [45, 64] that approach
theoretical storage lower bounds while enabling constant-
time queries, without compressing or decompressing the bit
vector data. We show that they can provide storage-efficient
offsets into the adjacency data, asymptotically reducing the
usual O(n log n) bits used in traditional offset arrays.
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Figure 1: (§ 1, § 7.2) The performance of Log(Graph) with the Single Source
Shortest Path algorithm when logarithmizing vertex IDs.

Now, these ideas offer simplicity but come with challenges
to be solved and questions to be answered to achieve high
performance. For example, if we use dlog ne bits for a vertex
ID instead of a fixed-size memory word, how do we ensure
fast extraction of the graph connectivity information? Can we
use fast bitwise operations available in today’s architectures?
Which ones? How to logarithmize other graph elements?

In this work, we answer these and other questions and pro-
pose a set of schemes that are portable and straightforward
to implement in any graph processing code, framework, or
library. We motivate Log(Graph) in Figure 1 that illustrates
example results for the Single Source Shortest Path (SSSP)
algorithm running over traditional adjacency arrays and a
selected Log(Graph) variant. Log(Graph) does not only re-
duce storage requirements, but also reduces data transfers,
accelerating SSSP. The specific contributions are as follows:
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el G A graph G = (V, E); V and E are sets of vertices and edges.

n, m Numbers of vertices and edges in G; |V| = n, |E| = m.
W(v,w) , D The weight of an edgeW(v,w) and the diameter of G.
dv , Nv , Ni,v Degree and neighbors and ith neighbor of a vertex v; N0,v ≡ v.
x, x
∧

The average and the maximum among x.
α, β; p Parameters of a power-law graph and an Erdős-Rényi graph.

M
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N The number of levels in a hierarchical machine.
Hi , Hnode Total number of elements from level i and compute nodes.
T, P, W The number of threads/processes and the memory word size.
Tx Time to do a given operation x.

A
dj
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ra
y

A , Av The adjacency array of a given graph and a given vertex.
O, Ov The o�set structure of a given graph and an o�set to Av .
|A |, |O| The sizes of A , O.
C[A ], C[O] Compression schemes acting upon A , O.
B, L Various parameters of A and O; see § 4.3 for details.

Sc
he

m
es

fo
r
A

P Permuter: function that relabels vertices.
Tx , T Transformers: functions that arbitrarily modify A .
Gx Subgraphs of G constructed in recursive partitioning.

Table 1: Symbols used in the paper.

• We propose Log(Graph): a representation that losslessly re-
duces storage required for graphs, ensuring both simplicity
and high performance. The core idea is to “logarithmize”
(i.e., apply logarithmic storage lower bounds to) various
parts of adjacency arrays such as vertex IDs or offset arrays.

• We illustrate how to implement Log(Graph) to ensure high
performance and portability using various bitwise oper-
ations available in state-of-the-art architectures and opti-
mized succinct and compact data structures.

• We enhance Log(Graph) with fixed-size gap encoding and
Integer Linear Programming (ILP).

• We extend Log(Graph) to distributed-memory settings.
• We evaluate Log(Graph) on various graphs (synthetic and

real-world) with a broad set of algorithms (BFS, PageRank,
Connected Components, Betweenness Centrality, Triangle
Counting, Single Source Shortest Paths). We show that
graphs compressed with Log(Graph) can be processed as
fast as uncompressed graphs with tuned graph processing
codes. We also illustrate significant speedups over state-of-
the-art compression systems such as WebGraph [12].

Finally, our work presents the first analysis of succinct data
structures in a parallel setting, which is of independent interest.

2 BACKGROUND, NOTATION, CONCEPTS
We first describe the used concepts and notation; the most
important symbols are gathered in Table 1 for clarity. To
design Log(Graph) we use multiple techniques and data
structures and we postpone describing some of the used
specific schemes to their related sections for better readability.

2.1 Used Models
We start with the used models of graphs and machines.

Graph Model We model an undirected graph G as a tuple
(V, E); V is a set of vertices and E ⊆ V ×V is a set of edges;
|V| = n, |E| = m. We assume that vertices have contiguous
IDs (≡ labels) from the set {0, ..., n− 1}. dv and Nv denote the
degree and the neighbors of a vertex v. The ith neighbor of v
(in the order of increasing labels) is denoted as Ni,v; N0,v ≡ v.
D is G’s diameter. Now, X

∧
and X indicate the maximum and

average value in a given set or sequence, for example N
∧

v is
the maximum ID among v’s neighbors, W

∧
is the maximal

edge weight in G, W
∧

v is the maximal weight among edges
originating at v, d

∧
and d are G’s maximal and average degree.

Representation Model We present a unified model for
graph representations. A representation is modeled as a tu-
ple (G, O , A , C[O ], C[A ]). O is an offset structure that keeps
the location of the adjacency structure Av of each vertex v.
A =

⋃
v∈V Av is the adjacency data. Both O and A may

be arbitrary data structures. C[O ] and C[A ] are compres-
sion schemes for O and A . The size of the representation is
|O |+ |A | [bits] (|O | and |A | denote the sizes of O and A ).

Machine and System Model For more storage reductions
on today’s hardware, we cover arbitrary hierarchical ma-
chines where, for example, cores reside on a socket, sockets
constitute a node, and nodes form a rack. N is the number of
hierarchy levels and Hi is the total number of elements from
level i. The first level corresponds to the whole machine; thus
H1 = 1. We also refer specifically to the number of compute
nodes as Hnode. Finally, the numbers of used threads per node
and processes are T and P. The memory word size is W.

2.2 Used Concepts
We next explain concepts related to the structures used in
Log(Graph) and their size; see also Figure 2 for an overview.

Succinctness Assume OPT is the optimal number of bits
to store some data. A representation of this data is compact
if it uses O(OPT) bits, succinct if it uses OPT + o(OPT) bits,
and implicit if it takes OPT + O(1) bits [29]. They all should
support a reasonable set of queries in (ideally) O(1) time [10].

Compression Traditional compression mechanisms such
as zlib [31] differ from succinct schemes as the latter can be
accessed without expensive decompression.

Condensing To avoid confusion, we use the term condens-
ing to refer in general to reducing the size of some data.

We also describe the concept of graph separability. Intu-
itively, G is vertex (or edge) separable (i.e., has good separators)
if we can divide V into two subsets of vertices of approxi-
mately the same size so that the size of a vertex (or edge) cut
between these two subsets is much smaller than |V|.

2.3 Used Data Structures
Finally, we describe structures used in Log(Graph): adjacency
array that is the Log(Graph) foundation and succinct as well
as compact bit vectors used to condense G.

Graph Adjacency Arrays Log(Graph) builds upon the tra-
ditional adjacency array (AA) representation. An AA consists
of a contiguous array with the adjacency data (A ) and an
array with offsets to the neighbors of each vertex (O). The
neighbors of each v form an array Av sorted by vertex IDs;
all such arrays form a contiguous array A . Ov is the offset to
v’s adjacency data. An example AA is in Figure 2 ( 1 ).

Bit Vectors and Rank/Select �eries The next data struc-
ture are simple bit vectors that we will use to enhance O
(§ 4.1, § 4.3). A bit vector S of length L takes only L bits, but
uses O(L) time to answer two important queries: rankS(x)
and selectS(x). For a given S, rankS(x) returns the number
of ones in S up to and including the xth bit. Conversely,
selectS(x) returns the position of the xth one in S. Now, many
designs with rank and select answering in o(L) time have
been proposed. An important family are succinct bit vectors.

Succinct Bit Vectors Succinct bit vectors of length L use
L + o(L) bits. The first term is the amount of space for stor-
ing the actual data. The second term is the space for an
additional structure that enables answering rank/select in
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Figure 2: (§ 2.4) The roadmap of incorporated schemes. The green areas indicate analyzes and themes shared by multiple logarithmization areas.

o(L) time. Many such designs exist [38, 44, 45, 66, 70] and
are widely used in space-efficient trees and other schemes
such as dictionaries [29, 66]. A common idea behind many of
these schemes is to precompute answers to some rank and
select queries so that neither space nor time exceeds o(L).
For example, to achieve rank answering in O(1) time, one
divides S into mini blocks of size log2 L bits. The rank of the
first bit of each mini block is precomputed and stored in an
auxiliary table; each such entry takes log L bits and there are
L/ log2 L entries, giving the total of L/ log L ∈ o(L) bits. Each
mini block is then divided into micro blocks of size 1

2 log L.
Again, the rank of the first bit is stored in another auxiliary
table. However, now only the differences from the rank of the
first bit in the containing mini block must be stored. Thus,
each entry takes log log2 L = 2 log log L bits and there are
L/ 1

2 log L such entries, giving the total of 4L log log L/ log L
bits of storage. Finally, a lookup table with o(n) bits stores an
answer to each possible rank on a bit vector of length log n/2.
Thus, all tables take o(L) bits: L/ log L (for mini blocks) +
4L log log L/ log L (for micro blocks) + o(L) (for the lookup
table). They answer rank [29] in O(1) time with three accesses
into: a mini block (to get the offset of a targeted micro block),
a micro block (to get the offset of the entry in the lookup
table), and a lookup table (to get the targeted data).

2.4 Motivation and Roadmap of Schemes
Log(Graph) uses a plethora of schemes for various graphs
and elements of AA. To enhance readability, we present a
motivation summary and roadmap in Figure 2. The numbers
in circles indicate the best order of viewing the figure. Section
numbers refer to the associated parts of the paper.

3 LOGARITHMIZING FINE ELEMENTS
We start by applying lower bounds to fine elements of a graph
representation: vertex IDs, vertex offsets, and edge weights.

3.1 Understanding Storage Lower-Bounds
A simple storage lower bound is the logarithm of the number
of possible instances of a given entity, which corresponds
to the number of bits required to distinguish between these
instances. Now, bounds derived for fine-grained graph ele-
ments are illustrated in Figure 2 ( 2 ) and in Table 2. First, a
storage lower bound for a single vertex ID is dlog ne bits as
there are n possible numbers to be used for a single vertex
ID. Second, a corresponding bound to store an offset into
the neighborhood of a single vertex is dlog 2me; this is be-
cause in a graph with m edges there are 2m cells. Third, a
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Table 2: Storage lower bounds for various parts of an A . The ceiling function
d·e surrounding each log · was omi�ed for aesthetic purposes.

storage lower bound of an edge weight from a discrete set{
0, ...,W
∧}

is
⌈

logW
∧⌉

(for continuous weights, we first scale them
appropriately to become elements of a discreet set).

3.2 Logarithmization of Vertex IDs
We first consider vertex IDs.

3.2.1 Vertex IDs (The Global Approach). The first and simplest
step in Log(Graph) is to use the storage lower bound of a
vertex ID in a graph with n vertices. Assume that a vertex ID
uses W bits of space. In various AA designs, W ∈ {32, 64} bits
and it thus corresponds to the size of 32- or 64-bit memory
word. Log(Graph) extends this approach and uses the lowest
applicable value: W = dlog ne bits, giving

|A | = 2mdlog ne (1)

3.2.2 Vertex IDs: The Local Approach. The advantage of the
global approach described above lies in simplicity. Yet, even
if it uses an optimal number or bits to store n vertex IDs, it
may be far from optimal when considering subsets of these
vertices. For example, consider a vertex v such that dv � n
and N

∧

v � n. Here, using dlog ne bits for a vertex ID in v’s
adjacency list results in unnecessary storage overheads as one
may need much fewer then dlog ne bits for a short adjacency
list. Here, we use

⌈
log N
∧

v

⌉
bits to store a vertex ID in Av. The

tradeoff is that one must also keep the information on the
number of bits required for each v. We use the fixed number
of bits; it is lower bounded by

⌈
log log N

∧

v

⌉
bits. Then

|A | = ∑
v∈V

(
dv

⌈
log N
∧

v

⌉
+
⌈

log log N
∧

v

⌉)
(2)

3.2.3 Vertex IDs in Distributed-Memories. We now extend ver-
tex logarithmization to the distributed-memory setting. We
divide a vertex ID into an intra part that ensures the unique-
ness of IDs within a given machine element (e.g., a compute
node), and an inter part that encodes the position of a vertex

3



in the distributed-memory structure. The intra part can be
encoded with either the local or the global approach.

We first only consider the level of compute nodes; each
node constitutes a cache-coherent domain and they are con-
nected with non-coherent network. The number of vertices in
one node is n

Hnode
. The intra ID part takes

⌈
log n

Hnode

⌉
; the inter

one takes dlog Hnodee. As the inter part is unique for a given
node, it is stored once per node. Thus

|A | = n
⌈

log
n

Hnode

⌉
+ Hnode dlog Hnodee (3)

Next, we consider the arbitrary number of memory hier-
archy levels. Here, the number of vertices in one element
from the bottom of the hierarchy (e.g., a die) is n

HN
. Thus,

the intra ID part requires
⌈

log n
HN

⌉
bits. The inter part needs

∑j∈{2..N−1}
⌈
log Hj

⌉
bits and has to be stored once per each ma-

chine element, thus

|A | = n
⌈

log
n

HN

⌉
+

N−1

∑
j=2

Hj
⌈
log Hj

⌉
(4)

3.3 Logarithmization of Edge Weights
We similarly condense edge weights. The storage lower bound
for storing a maximal edge weight is

⌈
logW
∧⌉

bits. Thus, if G
is weighted, we respectively have (for the global and local
approach applied to the weights)

|A | = 2m
(
dlog ne+

⌈
logW
∧⌉)

(5)

|A | = ∑
v∈V

(
dv

(⌈
log N
∧

v

⌉
+
⌈

logW
∧⌉)

+
⌈

log log N
∧

v

⌉
+
⌈

log logW
∧⌉)

(6)

3.4 Logarithmization of Single Offsets
Finally, one can also “logarithmize” other AA elements, in-
cluding offsets. Each offset must be able to address any posi-
tion in A that may reach 2m. Thus, the related lower bound
is dlog 2me, giving |O | = n dlog 2me.

3.5 Theoretical Storage Analysis
Next, we show how the above schemes reduce the size of
graphs generated using two synthetic graph models (random
uniform and power-law) for the global approach.

Erdős-Rényi (Uniform) Graphs We start with Erdős-Rényi
random uniform graphs. Here, every edge is present with
probability p. The expected degree of any vertex is pn, thus

E[|A |] =
(
dlog ne+

⌈
logW
∧⌉)

pn2 (7)

E[|O |] = n
⌈

log
(

2pn2
)⌉

= n dlog 2p + 2 log ne (8)

Power-Law Graphs We next analyze power-law graphs;
the full derivation is in the Appendix (§ 10.1). Here, the
probability that a vertex has degree d is f (d) = αd−β, and

E[|A |] ≈ α

2− β

( αn log n
β− 1

) 2−β
β−1
− 1

(dlog ne+
⌈

logW
∧⌉)

(9)

The results are in Figure 3. “32+8” indicates an AA with
32 bits for a vertex ID and 8 bits for a weight; the other target
is Log(Graph). Logarithmization consistently reduces storage.
Yet, it may offer suboptimal space and performance results
as it ignores the structure of the graph and the structure of the
memory with fixed-size words. We now address these issues
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Figure 3: (§ 3.5) The analysis of the size of random-uniform and power-law
graphs with Log(Graph) and traditional adjacency array.

with ILP and gap encoding (for less storage) and efficient
design (for more performance).

3.6 Incorporating Integer Linear Programming
Here, we reduce the size of vertex IDs by augmenting local
logarithmization (§ 3.2). Consider any Av. We observe that
a single neighbor in Av with a large ID may vastly increase
|Av|: we use

⌈
N
∧

v

⌉
bits to store each neighbor in Av but other

neighbors may have much lower IDs. Thus, we reorder vertex
IDs to preserve the graph structure but reduce maximal IDs in as
many neighborhoods as possible. We illustrate an ILP formulation
and then propose a heuristics. The new objective function is
presented in Eq. (15). It minimizes the weighted sum of N

∧

v
for all v ∈ V (Eq. 15). Each maximal ID is given a positive
weight which is the inverse of the neighborhood size (dv);
this intuitively decreases N

∧

v in smaller Av.

min ∑
v∈V

N
∧

v ·
1
dv

(10)

In Constraint (11), we set N
∧

v to be the maximum of the
new IDs assigned to the neighbors of v.

∀v,u∈V (u ∈ Nv) ⇒
[
P(u) ≤ N

∧

v

]
(11)

Listing 1 describes a greedy polynomial-time heuristic for
changing IDs. We sort vertices in non-decreasing order of
their degrees (Line 5). Next, we traverse vertices in the sorted
order, beginning with the smallest |Av| and assign a new
smallest ID possible (Line 6). The remaining vertices that are
not a part of any Nv are relabeled in Line 10. This scheme
acts similarly to the proposed ILP.

1 /* Input: G, Output: a new relabel ing P(v), ∀v ∈ V. */
2 void relabel(G) {
3 ID[0..n− 1] = [0..n− 1]; D[0..n− 1] = [d0 ..dn−1 ];
4 visit[0..n− 1] = [ f alse.. f alse]; nl = 1;
5 sort( ID); sort(D);
6 for(int i = 1; i < n; ++i)
7 for(int j = 0; j < D[i]; ++ j) {
8 int id = Nj,ID[i];

9 if(visit[id] == f alse) { P(id) = nl++; visit[id] = true; } }
10 for(int i = 1; i < n; ++i) if(visit[i] == f alse) P(id) = nl++; }

Listing 1: (§ 3.6) The greedy heuristics for vertex relabeling.

3.7 Incorporating Fixed-Size Gap Encoding
We next use the popular gap encoding technique to further
reduce |A |. Traditionally, in gap encoding one calculates the
difference between all consecutive neighbors in each Av. As
it may be arbitrary, it is then encoded with a variable-length
code such as Varint [19]. We observe that this may entail sig-
nificant decoding overheads. To alleviate this, we use fixed-size
gap encoding where the maximum difference within a given

4



domain determines the number of bits used to encode this
and other differences. In the global approach, the maximum
difference for the whole A is used to calculate the number
of bits used to encode any other difference. In the local ap-
proach, the maximum difference in each Av determines the
number of bits to encode any difference in the same Av.

3.8 High-Performance Implementation
We finally describe the high-performance implementation.
We focus on the global approach due to space constraints,
the local approach entails an almost identical design and is
presented fully in the technical report1.

Bitwise Operations We analyzed Intel bitwise operations
to ensure the fastest implementation. Table 3 presents the
used operations together with the number of CPU cycles that
each operation requires [39].

Name C++ syntax Description Cycles

BEXTR _bextr_u64 Extracts a contiguous number of bits. 2
SHR >> Shi�s the bits in the value to the right. 1
AND & Performs a bitwise AND operation. 1
ADD + Performs an addition between two values. 2

Table 3: (§ 3.8) The utilized Intel bitwise operations.

Accessing an Edge (Ni,v) We first describe how to access a
given edge in A that corresponds to a given neighbor of v
(Ni,v); see Listing 2 for details. The main issue is to access an
s-bit value from a byte-addressable memory with s = dlog ne.
In short, we fetch a 64-bit word that contains the required
s-bit edge. In more detail, we first load the offset O [v] of
v’s neighbors’ array (Line 3). This usually involves a cache
miss, taking Tcm. Second, we derive o = s · O [v] (the exact
bit position of Ni,v); it takes Tmul (Line 3). Third, we find
the closest byte alignment before o by right-shifting o by 3
bits, taking Tsh f (Line 4). Instead of byte alignment we also
considered any other alignment but it entailed negligible
(<1%) performance differences. Next, we derive the distance
d from this alignment with a bitwise and acting on o and
binary 111, taking Tand. We can then access the derived 64-bit
value; this involves another cache miss (Tcm). If we shift this
value by d bits and mask it, we obtain Ni(v). Here, we use
the x86 bextr instruction that combines these two operations
and takes Tbxr. In the local approach, we also maintain the
bit length for each neighborhood. It is stored next to the
associated offset to avoid another cache miss.
1 /* v_ID is an opaque type for IDs of vertices. */
2 v_ID Ni,v(v_ID v, int32_t i, int64_t* O, int64_t* A , int8_t s){
3 int64_t exactBitOffset = s * (O[v] + i);
4 int8_t* address = (int8_t*) A + (exactBitOffset >> 3);
5 int64_t distance = exactBitOffset & 7;
6 int64_t value = ((int64_t*) (address))[0];
7 return _bextr_u64(value , distance , s); }

Listing 2: (§ 3.8) Accessing an edge in Log(Graph) (Ni(v)).

Accessing Neighbors (Nv) Once we have calculated the
exact bit position of the first neighbor as described in Listing 2,
we simply add s = dlog ne to obtain the bit position of the
next neighbor. Thus, the multiplication that is used to get the
exact bit position is only needed for the first neighbour, while
others are obtained with additions instead.

Accessing a Degree (dv) dv is simply calculated as the dif-
ference between two offsets: O [v + 1]−O [v].
1To be released after the publication due to double-blindness.

Accessing an Edge Weight We store the weight of each
edge directly after the corresponding vertex ID in A . The
downside is that every weight is thus stored twice for undi-
rected graphs. However, it enables accessing the weight and
the vertex ID together. We model fetching the ID and the
weight as a single cache line miss overhead Tcm.

Performance Model We finally present the performance
model that we use to understand better the behavior of
Log(Graph). First, we model accessing an edge (Ni,v) as

Tedge = 2Tcm + Tmul + Tsh f + Tand + Tbxr

The model for accessing Nv looks similar with the differ-
ence that only one multiplication is used:

Tneigh(v) = Tedge + (dv − 1)(Tadd + Tsh f + Tand + Tbxr)

As A is contiguous we assume there are no more cache
misses from prefetching. Now, we model the latency of dv as

Tdegree = 2Tcm + Tsub

4 LOGARITHMIZING THE O STRUCTURES
We now logarithmize the whole offset structure O , treating it as
a single entity with its own associated storage lower bound;
see Figure 2 ( 3 ). For this, we use bit vectors instead of offset
arrays and then apply succinctness to approach the storage
lower bound, significantly reducing space for some graphs.

4.1 Offset Arrays vs. Bit Vectors
Usually, O is an array of n offsets and |O | is much smaller
than |A |. Still, in sparse graphs with low maximal degree d

∧

,
|O | ≈ |A | or even |O | > |A |. For example, for the USA road
network, if O contains 32-bit offsets, |O | ≈ 0.83|A |.

To reduce |O |, one can use a bit vector. For this, A is
divided into blocks (e.g., bytes or words) of a size B [bits].
Then, if ith bit of O is set (i.e., O [i] = 1) and if this is jth set
bit in O , then Aj starts at ith block. The key insight is that
getting the position of jth set bit and thus the offset of vector
j is equivalent to performing selectO(j) (cf. § 2.3).

Yet, select on a raw bit vector takes O(n) time. Thus, we
first incorporate two designs that enhance select: Plain (bvPL)
and Interleaved (bvIL) bit vectors [36]. They both trade some
space for faster select. bvPL uses up to 0.2|O | additional bits
in an auxiliary data structure to enable select in O(1) time.
In bvIL, the original bit vector data is interleaved (every L
bits) with 64-bit cumulative sums of set bits up to given
positions; select has O(log |O |) time [36]. Neither bvPL nor
bvIL achieve succinctness; we use them (1) as reference points
and (2) because they also enable a smaller yet simple O .

4.2 Understanding Storage Lower Bounds
A bit vector that serves as an O and corresponds to an offset
array of a G takes 2Wm

B bits. This is because it must be able
to address up to 2m ·W bits (there are 2m edges in A , each
stored using W bits) grouped in blocks of size B bits. Now,

there are exactly L =

( 2Wm
B
n

)
bit vectors of length 2Wm

B with n

ones and the storage lower bound is thus dL e bits.

4.3 Incorporating Succinctness
To condense O further, we propose to use succinct bit vectors.
Note that these are simply various forms of O and they do
not entail traditional compression. First, we use the entropy
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O ID Asymptotic size [bits] Exact size [bits] rank select Deriving Ov

Pointer array ptrW O(Wn) W(n + 1) - - O(1)
Plain [36] bvPL O

(Wm
B

) 2Wm
B O

(Wm
B

)
O(1) O(1)

Interleaved [36] bvIL O
(Wm

B + Wm
L

)
2Wm

( 1
B + 64

L

)
O(1) O

(
log Wm

B

)
O
(
log Wm

B

)
Entropy based [24, 66] bvEN O

(Wm
B log Wm

B

)
≈ log

( 2Wm
B
n

)
O(1) O

(
log Wm

B

)
O
(
log Wm

B

)
Sparse [64] bvSD O

(
n + n log Wm

Bn

)
≈ n

(
2 + log 2Wm

Bn

)
O
(
log Wm

Bn

)
O(1) O(1)

B-tree based [1] bvBT O
(Wm

B

)
≈ 1.1 · 2Wm

B O(log n) O(log n) O(log n)
Gap-compressed [1] bvGC O

(Wm
B log Wm

Bn

)
≈ 1.3 · 2Wm

B log 2Wm
Bn O(log n) O(log n) O(log n)

Table 4: (§ 4.3) Theoretical analysis of various types of O and time complexity of associated queries.

based bit vector (bvEN) [24, 66]. The key idea behind bvEN is
to use a dictionary data structure [16] that achieves the lower
bound for storing bit vectors of length 2Wm/B with n ones
that is presented in § 4.2. Second, we use sparse succinct bit
vectors (bvSD) [64]. Here, positions of ones are represented
as a sequence of integers, which is then encoded using the
Elias-Fano scheme for non-decreasing sequences. As bvSD
specifically targets sparse bit vectors, we expect it to be a
good match for various graphs where m = O(n). Third, we
investigate the B-tree based bit vector (bvBT) [1]. This data
structure supports inserts, making the bit vector dynamic.
It is implemented with B-trees where leaves contain the ac-
tual bit vector data while internal nodes contain meta data
for more performance. Finally, the gap-compressed (bvGC) dy-
namic variant is incorporated [1] that along with bvSD also
compresses sequences of zeros.

4.4 Theoretical Storage & Time Analysis
We now illustrate the storage/time complexity of the de-
scribed offset structures in Table 4. For completeness, we
present the asymptotic and the exact size as well the time
to derive Ov but also rank and select queries. Now, ptrW to-
gether with bvPL and bvSD feature the fastest Ov. Yet, we
show in the evaluation (§ 7) that the hidden constant factors
entail overheads for bit vectors. Simultaneously, their size
outperforms that of ptrW for various sparse graphs.

4.5 High-Performance Implementation
For high performance, we use the sdsl-lite library [37] that
provides fast codes of various succinct and compact bit vec-
tors. Yet, it is fully sequential and oblivious to the utilized
workload. Thus, we evaluate its performance tradeoffs (§ 7)
and identify the best designs for respective graph applications
and families, illustrating that the empirical results follow the
theoretical analysis from § 4.4.

5 LOGARITHMIZING THE A STRUCTURE
We now turn our attention to A , the second part of AA; see
Figure 2 ( 4 ). As A is more complex than O , we first develop
a formal model for logarithmizing A and show that various
past schemes are merely its special cases. We illustrate that
they all entail inherent performance or storage issues and we
then design novel schemes to overcome these problems.

5.1 A Model for Logarithmizing A
Log(Graph) comes with many logarithmization schemes C[A ]
for condensing A that target various classes of graphs. To
facilitate a unified reasoning about them, we can define any
such logarithmization scheme to be a tuple (P , T ). P is the
permuter: a function that relabels the vertices. We introduce
P to explicitly capture the notion that appropriate labeling
of vertices significantly reduces |A |. We have P : V → N

such that (the condition enforces the uniqueness of IDs)):

∀v,u∈V (v , u)⇒ [P(v) ,P(u)] (12)

Next, T = {Tx | x ∈N} is a set of transformers: functions
that map sequences of vertex labels into sequences of bits:

Tx :
x times︷ ︸︸ ︷

V × ...×V → {0, 1} × ...× {0, 1} (13)

We introduce T to enable arbitrary operations on sequences
of relabeled vertices, for example be the Varint encoding [28].

5.2 Understanding Storage Lower Bounds
A is determined by the corresponding G and thus a simple
storage lower bound is determined by the number of graphs

with n vertices and m edges and equals
⌈

log
(
(n

2)

m

)⌉
(Table 2).

Now, today’s graph codes already approach this bound. For
example, the Graph500 benchmark [61] requires ≈1,126 TB
for a graph with 242 vertices and 246 edges while the corre-
sponding lower bound is merely ≈350 TB. We thus propose
to assume more about G’s structure on top of the number of
vertices and edges. We now target separable graphs (§ 2.2).

5.3 Incorporating Compactness
We use compact graph representations that take O(n) bits to
encode graphs. The main technique that ensures compactness
that we incorporate is recursive bisectioning. We first describe
an existing recursive bisectioning scheme (§ 5.3.1) and then
enhance it for more performance (§ 5.3.2).

5.3.1 Recursive Bisectioning (RB). Here, we first illustrate a
representation introduced by Blandford et al. [10] (referred to
as the RB scheme) that requires O(n) bits to store a graph that
is separable (see § 2.2). Figure 4 contains an example. The basic
method is to relabel vertices of a given graph G to minimize
differences between the labels of consecutive neighbors of
each vertex v in each adjacency list. Then, the differences are
recorded with any variable-length gap encoding scheme such
as Varint [28]. Assuming that the new labels of v’s neighbors
do not differ significantly, the encoded gaps use less space
than the IDs [10]. Now, to reassign labels in such a way
that the storage is reduced, the graph (see 1 in Figure 4
for an example) is bisected recursively until the size of a
partition is one vertex (for edge cuts) or a pair of connected
vertices (for vertex cuts); in the example we focus on edge
cuts. Respective partitions form a binary separator tree with
the leaves being single vertices 2 . Then, the vertices are
relabeled as imposed by an inorder traversal over the leaves
of the separator tree 3 . The first leaf visited gets the lowest
label (e.g., 0); the label being assigned is incremented for each
new visited leaf. This minimizes the differences between the
labels of the neighboring vertices (the leaves corresponding
to the neighboring vertices are close to one another in the
separator tree), reducing AA’s size 4 , 5 .
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Figure 4: An example graph representation logarithmized with compact Recursive Bisectioning (RB [10], § 5.3.1), an example of Binary Recursive Bisectioning
(BRB, § 5.3.2) and an example of combining compactness and ILP (CMB, § 5.5).

Using Permuters and Transformers One can easily express
RB using P and T . First, P relabels the vertices according
to the order in which they appear as leaves in the inorder
traversal of the separator tree obtained after recursive graph
bipartitioning. Here, we partition graphs to make subgraphs
[almost] equal (<0.1% of difference) in size. Second, each
transformer T = {Tv(v, Nv)} takes as input v and Nv. It then
encodes the differences between consecutive vertex labels
using Varint. The respective differences are: |N1,v − N0,v|,
N2,v − N1,v, ..., and Ndv ,v − Ndv−1,v.

Problems RB suffers from very expensive preprocessing,
as we illustrate later in § 7 (Table 6). Generation of RB usually
takes more than 20x longer than that of AA.

5.3.2 Binary Recursive Bisectioning (BRB). The core idea is to
relabel vertices so that vertices in clusters have large common
prefixes (clusters are identified during partitioning). One
prefix is stored only once per each cluster.

What Does It Fix? BRB alleviates two issues inherent to
RB. First, there is no costly inorder traversal over the separa-
tor tree. More importantly, there is no expensive derivation
of the full separator tree. Instead, one sets the number of
partitioning levels upfront to control the preprocessing overhead.

Permuter (Relabeling Vertices) We present an example in
Figure 4. First, we recursively bipartition the input graph G
to identify common prefixes and uniquely relabel the vertices.
After the first partitioning, we label an arbitrarily selected
subgraph as 0 and the other as 1, we denote these subgraphs
as G0 and G1, respectively. We then apply this step recursively
to each subgraph for the specified number of steps or until
the size of each partition is one (i.e., each partition contains
only one vertex). G0 would be partitioned into subgraphs
G00, G01 with labels 00 and 01 (we refer to a partition with
label X as GX). Eventually, each vertex obtains a unique label
in the form of a binary string; each bit of this label identifies
each partition that the vertex belongs to.

Transformer (Encoding Edges) Here, the idea is to group
edges within each subgraph derived in the process of hier-
archical vertex labeling. Several leading bits are identical in
each label and are stripped off, decreasing |A |. To make such
a hierarchical adjacency list decodable, we store (for each v)
such labels of v’s neighbors from the same subgraph con-
tiguously in memory, together with the common associated
prefix and the neighbor count.

5.4 Incorporating Integer Linear Programming
We next logarithmize G with ILP to target generic graphs and
not just the ones that are separable. We first illustrate a simple

existing scheme that uses ILP for graph storage reductions
(§ 5.4.1) and then accelerate it (§ 5.4.2).

5.4.1 Optimal Di�erence-Based (ODB). There are several vari-
ants of ILP-based schemes [32] where the objective function
minimizes: the sum of differences between consecutive neigh-
bors in adjacency lists (minimum gap arrangement (MGapA)),
the sum of logarithms of differences from MGapA (minimum
logarithmic gap arrangement (MLogGapA)), the sum of dif-
ferences of each pair of neighbors (minimum linear arrange-
ment (MLinA)), and the sum of logarithms of differences
from MLinA (minimum logarithmic arrangement (MLogA)).

Using Permuters and Transformers Now, ODB’s T is iden-
tical to that of RB as it encodes ID differences while P de-
termines the relabeling obtained by solving a respective ILP
problem. Consider a vector v = (P(v1), ..., P(vn))T that
models new vertex labels (where v1, ..., vn ∈ V). For example,
the MGapA and MLogA objective functions are respectively

min
P(v),∀v∈V

∑
v∈V

|Nv |−1

∑
i=0
|P(Ni+1,v)−P(Ni,v)| (14)

min
P(v),∀v∈V

∑
v∈V

∑
u∈Nv

log |P(v)−P(u)| (15)

Both functions use the uniqueness Constraint (12).
Problems All of the above schemes except MLogGapA

were proved to be NP-hard [20] and do not scale with n.
MLogGapA is still an open problem.

5.4.2 Positive Optimal Di�erences (POD). We now enhance
the ODB MGapA (§ 5.4.1) by removing the absolute value
| · | from the objective function, which accelerates relabeling.
Yet, this requires additional constraints to enforce that the
neighbors of each vertex are sorted according to their IDs. We
present the constraints below; readers who are not interested
in the mathematical details may proceed to § 5.5.

∀v∈V∀i,j∈{1..dv}

[
P
(

N I
j,v

)
+ (xvij − 1) · n ≤ Ni,v

]
(16)

∀v∈V∀i,j∈{1..dv}

[
P
(

N I
j,v

)
+ (1− xvij) · n ≥ Ni,v

]
(17)

∀v∈V∀i∈{1..dv}

[
dv

∑
j=1

xvij = 1

]
(18)

∀v∈V∀i∈{1..dv} [Ni,v < Ni+1,v] (19)

N I
v is the initial labeling of Nv, xvij is a boolean variable

that determines if neighbor j ∈ N I
v must be ith neighbor in

Nv according to relabeling P . If xvij = 1, constraints (16), (17)
use Ni,v = P

(
N I

j,v

)
, otherwise they are trivially satisfied. Con-

straint (18) selects each neighbor once. Finally, constraint (19)
sorts Nv in the increasing label order.
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5.5 Combining Compactness and ILP (CMB)
Finally, we design combining (CMB) schemes that use the
compact recursive partitioning approach to enhance ODB
and others. The core idea is to first bisect the graph k times
(within the given time constraints), and then encode indepen-
dently each subgraph (cluster) with a selected ILP scheme.
We illustrate an example of this scheme in Figure 4.

What Does It Fix? First, the initial partitioning does not
dominate the total runtime. Second, the NP-hardness of ODB
is alleviated as it now runs on subgraphs that are k times
smaller than the initial graph. Finally, it is generic and one
can use an arbitrary scheme instead of ODB.

Using Permuters and Transformers The exact design of P
and T depend on the scheme used for condensing subgraphs.
For example, consider ODB. The most significant k bits are
now determined by G’s partitioning. The remaining bits are
derived from ODB independently for each subgraph. Their
combination gives each final label. T can be, e.g., Varint.

5.6 Incorporating Degree-Minimizing (DM)
The final step is to relabel vertices so that those with the
highest degrees (and thus occurring more often in A ) receive
the smallest labels. Then, in one scheme variant (DMf, pro-
posed in the past [3]), full labels are encoded using Varint (“f”
stands for full). In another variant (DMd, offered in this work),
labels are encoded as differences (“d” indicates differences),
similarly to RB. Thus, |A | is decreased as the edges that occur
most often are stored using fewer bits.

What Does It Fix? First, DM trades some space reductions
for faster accesses to A compared to BRB (BRB’s hierarchi-
cal encoding entails expensive queries). Second, it does not
require costly recursive partitioning. Finally, we later (§ 7.4,
§ 7.5) show that DMd significantly outperforms DMf and
matches the compression ratios of the WebGraph library [12].

Permuter/Transformer DM’s T is identical to that of RB.
DM’s P differs as the relabeling is now purely guided by
vertex degrees: higher dv enforces lower v’s label.

6 HIGH-PERFORMANCE LIBRARY
Past sections (§ 3–§ 5) illustrate a plethora of logarithmization
schemes and enhancements for various graph families and
scenarios. This large number poses design challenges. We
now present the Log(Graph) C++ library that ensures: (1)
a straightforward development, analysis, and comparison
of graph representations composed of any of the proposed
schemes, and (2) high-performance. Log(Graph) implements
the provided model (§ 2.1, § 5.1). The code is available online2.

Extensibility We achieve this by implementing the model
from § 2.1, § 5.1. Log(Graph) is divided into four modules (well-
separated parts of code) that group variants of O , C[O ], A ,
and C[A ]. The C[A ] module further manages submodules
for various types of P and T . This enables us to seamlessly
implement, analyze, and compare the described AA variants.

High Performance The combinations of the variants of O ,
C[O ], A , P , and T give many possible AA designs. For exam-
ple, O can be any succinct bit vector. Now, selecting a specific
variant takes place in a performance-critical code part such as
querying d

∧
. We identify four C++ mechanisms for such selec-

tions: #if pragmas, virtual functions, runtime branches, and

2To be released after the publication due to double-blindness.

templates. The first one results in unmanageably complex
code. The next two entail performance overheads. We thus use
templates to reduce code complexity while retaining high per-
formance. Listing 3 illustrates: the generic template class, the
constructor of a representation, and a function for resolving
Nv. A new representation GraphR only requires defining the
offset structure (O), the offset compression structure (C[O ]),
and the transformer (T ) types.

Note that the permuter P is an object, not type. As relabel-
ing is executed only during preprocessing, it does not impact
time-critical functions. Thus, selecting a given permutation
can be done with simple branches based on the value of P .

1 template <typename O, typename C[O], typename T >
2 class GraphR : public BaseGraphR { // Class template.
3 O* offsets; C[O]* compressor; T * transformer; };
4
5 template <typename O, typename C[O], typename T > // Constructor.
6 GraphR <O, C[O], T >::GraphR(Permutation P, AA* al) {
7 al->permute(P); // Note that P is not a type.
8 transformer = new T (); transformer ->transform (&al);
9 offsets = new O(al);

10 compressor = new C[O](); compressor ->compress (& offsets); }
11
12 template <typename O, typename C[O], typename T >
13 v_id* GraphR <O, C[O], T >:: getNeighbors(v_id v) { // Resolve Nv.
14 v_id offset = offsets ->getOffset(v);
15 v_id* neighbors = tr->decodeNeighbors(v, offset);
16 return neighbors; }

Listing 3: (§ 6) A graph representation from the Log(Graph) library.

7 EVALUATION
We now illustrate the advantages of Log(Graph).

7.1 Evaluation Scope and Methodology
We first describe the evaluation scope and methodology.

Considered Algorithms We consider the following algo-
rithms included in the GAP Benchmark Suite [8]: Breadth-
First Search (BFS), PageRank (PR), Single Source Shortest
Paths (SSSP), Betweenness Centrality (BC), Connected Com-
ponents (CC), and Triangle Counting (TC). BFS, SSSP, and
BC represent various types of traversals. PR is an iterative
scheme where all the vertices are accessed in each iteration.
CC represents protocols based on pointer-chasing. Finally, TC
stands for non-iterative compute-intensive tasks.
• BFS: A state-of-the-art variant with direction-optimization

and other enhancements that reduce data transfer [7, 8].
• SSSP: An optimized ∆-Stepping algorithm [8, 55, 59].
• CC: A variant of the Shiloach-Vishkin scheme [5, 67].
• BC: An enhanced Brandes’ scheme [8, 13, 56].
• PR: A variant without atomic operations [8].
• TC: An optimized algorithm that reduces the computa-

tional complexity by preprocessing the input graph [21].
Considered Graphs We analyze synthetic power-law (the

Kronecker model [52]), synthetic uniform (the Erdős-Rényi
model [33]), and real-world datasets (including SNAP [53],
KONECT [50], DIMACS [30], and WebGraph [12]); see Table 5
for details. Now, for Kronecker graphs, we denote them with
symbols sX_eY where s is the scale (i.e., log2 n) and e is the
average number of edges per vertex. Due to a large amount
of data we present and discuss in detail a small subset; the
remainder is in the Appendix or technical report2.

Experimental Setup and Architectures We use the follow-
ing systems to cover various types of machines:
• CSCS Piz Daint is a Cray with various XC* nodes. Each

XC50 compute node contains a 12-core HT-enabled Intel
8
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(c) BFS, sparse graphs.
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(d) BFS, dense graphs.
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(e) BC, sparse graphs.
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(f) BC, dense graphs.
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(g) SSSP, sparse graphs.
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(h) SSSP, dense graphs.
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(i) CC, sparse graphs.
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(j) CC, dense graphs.
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(k) Size, sparse graphs.
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(l) Size, dense graphs.
Figure 5: (§ 7.2.2) Log(Graph) performance analysis, logarithmizing fine elements, n = 222, T = 16 (full parallelism), Kronecker graphs.
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Figure 6: (§ 7.3.2) Illustration of the size di�erences of various O (both o�set arrays and bit vectors).

Type ID Name n m d̄

Web graphs

uku Union of .uk domain 133M 4.66B 34.9
uk .uk domain 110M 3.45B 31.3
sk .sk domain 50.6M 1.81B 35.75
gho Hosts of the gsh webgraph 68.6M 1.5B 21.9
wb WebBase 118M 855M 7.24
tpd Top private domain 30.8M 490M 15.9
wik Wikipedia links 12.1M 288M 23.72
tra Trackers 27.6M 140M 5.08

Others: tra, ber, gog, sta

A�iliation
graphs

orm Orkut Memberships 8.73M 327M 37.46
ljm LiveJournal Memberships 7.48M 112M 15

Social
networks

fr Friendster 65.6M 1.8B 27.53
tw Twi�er 49.2M 1.5B 30.5
ork Orkut 3.07M 117M 38.14

Others: ljn, pok, flc, gow, sl1, sl2, epi, you, dbl, amz

Road networks usrn USA road network 23.9M 28.8M 1.2

Others: rca, rtx, rpa

Various
Purchase networks (am1, am2, am3, am4),
communication graphs (ema, wik)

Table 5: The used real-world graphs (sorted by m). The details are provided
for n > 10M or m > 100M. The largest ones are bolded.

Xeon E5-2690 CPU with 64 GiB RAM. Each XC40 node
contains two 18-core HT-enabled Intel Xeons E5-2695 CPUs
with 64 GiB RAM. The interconnection is based on Cray’s
Aries and it implements the Dragonfly topology [48]. The
batch system is slurm 14.03.7. This machine represents
massively parallel HPC machines.

• Monte Leone is an HP DL 360 Gen 9 system. One node has:
two Intel E5-2667 v3 @ 3.2GHz Haswells (8 cores/socket), 2
hardware threads/core, 64 KB of L1 and 256 KB of L2 (per
core), and 20 MB of L3 and 700 GB of RAM (per node). It
represents machines with substantial amounts of memory.
Evaluation Methodology We use arithmetic mean for data

summaries. We treat the first 1% of any performance data
as warmup and we exclude it from the results. We gather
enough data to compute the median and the nonparametric
95% confidence intervals.

7.2 Logarithmizing Fine Elements
We start with logarithmizing fine graph elements.

7.2.1 Description of Preliminaries.
Main Goal We illustrate that logarithmizing fine graph

elements, especially vertex IDs, reduces the size of graphs
compared to the traditional adjacency arrays and incurs neg-
ligible performance overheads (in the worst case) or offers
speedups (in the best case). We predict that the former is
because of overheads from bitwise manipulations over the
input data. Simultaneously, less pressure on the memory sub-
system due to less data transferred to and from the CPU
should result in performance improvements.

Considered Log(Graph) Variants We consider four vari-
ants of Log(Graph): LG-g (the global approach), LG-g-gap (the
global approach with fixed-size gap encoding), LG-l (the local
approach), and LG-l-gap (the local approach with fixed-size
gap encoding). We also incorporate the ILP heuristics for
relabeling from § 3.6 that enhances the local approach.

Comparison Targets We compare Log(Graph) to the tradi-
tional adjacency array (Trad). We do not aim to outperforms
sophisticated compression schemes but rather illustrate a
straightforward logarithmization scheme that does not incur
additional overheads but still ensures storage reductions and
can be used in any graph processing library or engine.

7.2.2 Key Analyses.
Performance and Size The results can be found in Figure 5.
The collected data confirms our predictions. In many cases
Log(Graph) offers performance comparable or better than
that of the default adjacency array, for example for PR and
SSSP. Simultaneously, it reduces |A | compared to Trad; the
highest advantages are due to LG-l-gap (≈35% over LG-l);
LG-g-gap does not improve much upon LG-g.

Distributed-Memories and Scalability The advantages from
Log(Graph) directly extend to distributed-memories. Here,
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we measure the amount of communicated data and compare
it to Trad. For example, in a distributed BFS and for 1024
compute nodes, this amount is consistently reduced by ≈37%
across all the studied graphs. We also conducted scalability
analyses; the performance pattern is not surprising and all the
Log(Graph) variants finish faster as T increases. Full results
can be found in the Appendix (§ 10.2.1, § 10.2.2).

7.2.3 Further Analyses. We also investigate the impact from
ILP. It reduces the size of graphs and we obtain consistent
improvements or 1-3%, for example from 0.614 GB to 0.604 GB
for the ork graph. Yet, these improvements are significantly
lower that those from gap-encoding.

7.2.4 Key Insights and Answers. The most important insights
are as follows. First, logarithmizing fine elements does reduce
storage for graphs while ensuring high-performance and scal-
ability; both on shared- and distributed-memory machines.
Second, both ILP (§ 3.6) and fixed-size (§ 3.7) gap encoding
reduce |A |, with the latter being a definite winner.

7.3 Logarithmizing Offset Structures O
We next proceed to analyze logarithmizing O .

7.3.1 Description of Preliminaries.
Main Goal We illustrate that logarithmizing O with suc-

cinctness brings large storage reductions over simple bit vec-
tors and offset arrays, without compromising performance.

Considered Log(Graph) Variants We investigate all the de-
scribed O variants of offset arrays and bit vectors (§ 4.1, § 4.3).
We also incorporate a variant where we logarithmize each
offset treated as a fine-grained element, as described in § 3.4.

Investigated Parameters We vary the parameters related
to the design of various types of O : L, B, and W.

Comparison Targets We compare the above-mentioned O
designs to the traditional zlib compression.

7.3.2 Key Analyses.
Size: Which Bit Vector is the Smallest? We first compare

the size of all bit vectors for graphs of various sparsities d;
see Figure 7. Static succinct bit vectors consistently use the
least space. Interestingly, bvSD uses more space than bvEN for

graphs with lower d ≤ 15. This is because the term log
( 2Wm

B
n

)
grows faster with the number of edges than that of bvEN.

ork (d = 38) wik (d = 23) ljm (d = 15) tra (d = 5) usrn (d = 1.2)
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Figure 7: (§ 7.3.2) Analysis of the sizes of bit vectors (plots sorted by d).

Size: Bit Vectors or O�set Arrays? We next compare the
size of offset arrays (W ∈ {32, 64, dlog ne}) and selected bit
vectors in Figure 16. As expected, offset arrays are the largest
except for graphs with very high d. The sparser a graph,
the bigger the advantage of bit vectors. Although |O | grows
linearly with m for bit vectors, the rate of growth is low (bit
vector take only one bit for a single edge, assuming B is one
word size). Again, bvEN is the smallest in most cases.

Size: When To Condense |O |? For many graphs, |A | �
|O | and condensing |O | brings only little improvement. Thus,
we also investigate when to condense |O |. We analyze the

listed graphs and conclude that |O | ≈ |A | if the graph is
sparse enough: d ≤ 5. This is illustrated in Figure 8. In such
cases, condensing O is at least as crucial as A .
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(a) Graph am1; d̄ ≈ 5.
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(b) Graph rca; d̄ ≈ 1.5.
Figure 8: (§ 7.3.2) Illustration of storage required for both A and O for graphs
with various average degrees d̄ when varying the block size B.

Size: Succinctness or Compression? We finally analyze the
effect of traditional compression included in C[O ] on the
example of the well-known zlib [31]. We present the results
in Figure 9; (64-bit offset arrays represent all pointer schemes
that followed similar results). Compressed variants of ptr64
and bvPL are ptr64C and bvPLC. Once more, the results heavily
depend on d̄. For bit vectors, the sparser the graph, the more
compressible O is; for d̄ < 10, bvPLC is smaller than both
bvSD and bvEN. Interestingly, ptr64C is smaller than ptr64 by
an identical ratio regardless of d̄. We conclude that zlib offers
comparable or slightly (by up to ≈20%) better |O | reductions
than succinct designs. We now proceed to show that these
advantages are annihilated by performance penalties.
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(c) am1; d̄ ≈ 5.
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(d) rca; d̄ ≈ 1.5.
Figure 9: (§ 7.3.2) |O| for various d when varying the compression scheme.

Performance Finally, we analyze the performance of vari-
ous O designs queried by T threads in parallel. Each thread
fetches offsets of 1,000 random vertices. The results for twt
and rca (representing graphs with high and low d̄) are in Fig-
ure ??. First,bvEN is consistently slowest due to its complex
design; this dominates any advantages from its small size
and better cache reuse. Surprisingly, bvEN is followed by bvIL
that has the biggest |O | (cf. Figure 16); its time/space tradeoff
is thus not appealing for graph processing. Finally, bvPL and
bvSD offer highest performance, with bvSD being the fastest
for T ≤ 4 (the difference becomes diluted for T > 4 due to
more frequent cache line evictions). The results confirm the the-
ory: bvPL offers O(1) time accesses (while paying a high price
in storage, cf. Figure 16) and bvSD uses little storage and fits
well in cache. Next, we study offset arrays. ptr64 is the fastest
for T ≤ 4 due to least memory operations. Interestingly, the
smaller T, the lower the latency of ptr64. We conjecture this
is because fewer threads cause less traffic caused by the co-
herence protocol. As for zlib, it entails costly performance
overheads as it requires decompression. We tried a modified
blocked zlib variant without significant improvements.

7.3.3 Further Analyses. We vary the block size B that con-
trols the granularity of A to be an 8-bit byte or a 64-bit word;
see Figure 8. First, larger B reduces each |O | (as |O | is pro-
portional to B). Next, |A | grows with B. This phenomenon is
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similar to the internal fragmentation in memory allocation.
Here, each Av is aligned with respect to B. The larger B, the
more space may be wasted at the end of each array.

Other analyses are included in the Appendix (§ 10.3).
7.3.4 Key Insights and Answers. We conclude that succinct

bit vectors are a good match for O . First, they reduce |O |
more than any offset array and are comparable to traditional
compression methods such as zlib. Next, they closely match
the performance of offset arrays for higher thread counts and
are orders of magnitude faster than zlib. Finally, they consis-
tently retain their advantages when varying the multitude
of parameters, both related to input graphs (d) and to the
utilized AA (B and A ). They can enhance any system for
condensing static or slowly changing graphs that uses O .

7.4 Logarithmizing Adjacency Structures A
We also evaluate the logarithmization of A .

7.4.1 Description of Preliminaries.
Main Goal We investigate the advantages and tradeoffs of

the proposed schemes over the comparison targets.
Considered Log(Graph) Variants We evaluate the proposed

schemes, including BRB (§ 5.3.2), POD (§ 5.4.2), and the com-
bination of these two (§ 5.5); they are implemented using the
proposed Log(Graph) library (§ 6).

Comparison Targets We consider all the described schemes
expressed with permuters and transformers: RB (§ 5.3.1),
ODB (§ 5.4.1), and DMd as well as DMf (§ 5.6). We also
compare to the traditional adjacency array (Trad), and the
state-of-the-art WebGraph (WG) [12] compression system.

7.4.2 Key Analyses.
BRB: Alleviating RB’s Preprocessing We start with illustrat-
ing that BRB alleviates preprocessing overhead inherent to RB.
Table 6 shows the overhead from RB compared to a simple
AA. Now, BRB’s preprocessing takes equally long if we build
the full separator tree. The idea is to build a given limited
number of the separator tree levels. We illustrate this analysis
in Figure 10. Using fewer partitioning levels increases |A | but
also reduces the preprocessing time (it approximately doubles
for each new level). Interestingly, the storage overhead from
preserving the recursive graph structure begins to dominate
at a certain level, annihilating further |A | reductions.

Yet, BRB comes with overheads while resolving Nv because
one must construct vertex IDs from bit strings. This results in
a 2-2.5x slowdown of obtaining Nv, depending on the graph.
We conclude that whether to use RB or BRB should depend
on the targeted workload: for frequent accesses to Nv one
should use RB while to handle large or evolving graphs that
require continual preprocessing one should use BRB.
Graph uku gho orm tw usrn ema am1

Generation of RB [m] 981.5 458.9 101.6 572.3 47.7 0.33 0.41
Generation of AA [m] 19.5 5.9 1.1 5.8 0.3 0.02 0.02

Table 6: (§ 7.4.2) Illustration of preprocessing overheads of RB.

DMd: Approaching the Time/Space Sweetspot Next, we
illustrate that DMd significantly reduces |A |, resolves Nv
fast, outperforms WG, uses less storage than DMf, and can be
generated fast. The size analysis is shown in Figure 11. We use
relative sizes for clarity of presentation; the largest graphs use
over 60 GB in size (in Trad). DMf and DMd generate much
smaller A than Trad, with DMd outperforming DMf, being
comparable or in many cases better than either RB or BRB

(e.g., for ljm). Now, in various cases DMd closely matches
WebGraph, for example for tw, fr, ljm. For others, it gives
slightly larger A (e.g., for wik). Next, we also derive time
to obtain Nv; WG is consistently slower (>2x) than DMd;
more results are in Figure 12 and the Appendix (§ 10.4.4). We
conclude that DMd offers the storage/performance sweetspot:
it ensures high level of condensing, trades a little storage for
fast Nv, and finally takes significantly (>10x for RB) less time
to generate than any other scheme A .

7.4.3 Further Analyses. Other analyses include: investigat-
ing the ILP schemes, using various types of cuts while build-
ing the separator tree, and varying the maximum allowed
difference in the sizes of subgraphs derived while partition-
ing. These analyses are included in the Appendix (§ 10.4).
Here, we conclude that ILP does improve upon RB and DM
by reducing sums of differences between consecutive IDs.

7.4.4 Key Insights and Answers. We conclude that BRB allevi-
ates RB’s preprocessing overheads while DMd offers the best
space/performance tradeoff.

7.5 The Log(Graph) Library
We finally evaluate the Log(Graph) library and show that it
ensures high performance.

Performance: Graph Algorithms We use the Log(Graph)
library to implement graph algorithms. We present the results
for BFS, PR, and TC. We use succinct bit vectors (bvSD) as O
and various schemes for A . Our modular design based on the
established model enables quick and easy implementation
of A ; each variant requires at most 20 lines of code. The
results are shown in Figure 13. The BFS and PR analyses
for large graphs (gho, orm, tw, usrn) illustrate that DMd is
comparable to RB and DMf, merely up to 2x slower than
the uncompressed Trad, and significantly faster (e.g., >3x
for orm) than WebGraph. The relative differences for TC are
smaller because the high computational complexity of TC
makes decompression overheads less severe. Finally, we also
study the differences between DMd and RB as well as DMf in
more detail in Figure 13b) for a broader set of SNAP graphs.
We conclude that DMd offers performance comparable to
the state-of-the-art RB as well as DMf, while avoiding costly
overheads from recursive partitioning.

Performance: Graph Accesses We also evaluate obtaining
dv and Nv. This also enables understanding the performance
of succinct structures in a parallel setting, which is of inde-
pendent interest. Full results are in the Appendix (§ 10.4.4).
Trad is the fastest (no decoding). The difference is especially
visible for bvSD and fv due to the complex O design. DMd,
DMf, and RB differ only marginally (1-3%) due to decoding.

8 RELATED WORK
We now discuss how Log(Graph) differs from or complements
various aspects of graph processing.

8.1 Graph Frameworks, Standards, Languages
Log(Graph) aims to be a tool that enhances and complements any
graph processing engine that stores graphs as adjacency arrays.
Examples could be Pregel [57], Galois [49], GraphBLAS [58],
CombBLAS [18], PBGL [40], GAPS [8], and Green-Marl [43].
For example, one could use logarithmized vertex IDs and
use them within Galois to accelerate graph processing and
reduce the pressure on the memory subsystem.
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Figure 11: (§ 7.4.2) Illustration of the storage overhead of di�erent types of A .

1

2

3

2 4 6 8 10121416

Number of threads (T)

A
v
g

 q
u

e
ry

 t
im

e
 [

u
s
]

Scheme:
BRB
DMd
DMf
RB

Trad
WG

Figure 12: (§ 7.4.2) The
performance of Nv for
the orm graph.

0

2

4

6

gh
o

or
m tw

us
rn

R
e

la
ti
ve

 t
im

e

Scheme:
TAL
RB
DMd
DMf
WG

0.0

2.5

5.0

7.5

gh
o

or
m tw

us
rn

R
e

la
ti
ve

 t
im

e

Scheme:
TAL
RB
DMd
DMf
WG

0

1

2

3

4

as
k

rc
a lj2 po

k
pa

t
be

r

R
e

la
ti
ve

 t
im

e

Scheme:
Trad
RB
DMd
DMf
WG

BFS PageRank Triangle Counting

(a) BFS, PageRank, and Triangle Counting.

0.0

0.5

1.0

flc tw
t

po
k

sl
1

sl
2

be
r

am
4

st
a

ep
i

as
k

go
g

go
w

am
1

da
m pa

t
db

l
am

z
yo

u
w
ik

rp
a

R
e
la

ti
ve

 t
im

e

Scheme DMd DMf RB

(b) Comparison of DM and RB (for BFS) on SNAP graphs.
Figure 13: (§ 7.4.2) The analysis of the performance impact of various condensing schemes on parallel graph algorithms.

8.2 Reducing Size of Graphs
There exist numerous works on reducing the size of graphs.

Succinctness and Compactness Log(Graph) uses and improves
succinct and compact designs to enhance graph storage and pro-
cessing. A compact graph representation was proposed by
Blandford et al. [10]. It reduces |A | for several real-world
graphs. Yet, its preprocessing is costly. We alleviate this with
our BRB scheme. Next, various succinct graph representa-
tions [6, 11, 47] are all theoretical structures with large hid-
den constants and no practical implementations or analyses.
Third, there exist numerous succinct and compact bit vec-
tors [29, 37, 38, 44, 45, 66, 70]. There are also designs that
go below n + o(n) bits with o(n) time queries [24, 64]. Other
schemes such as tree representations also exist [46, 60]. Finally,
there are several libraries of succinct data structures [2, 27, 34–
36, 41]. Contrarily to our work, none of these designs enhances
graph processing and they do not address parallel settings.

Graph Compression A mature compression system for
graphs is WebGraph [12]. It compresses A with: difference
encoding, sharing parts of adjacency lists between vertices
with similar neighborhoods, and storing consecutive vertex
IDs as intervals. Besides WebGraph, there exists a large body
of works on compressing webgraphs [3, 4, 14, 15, 17, 22, 23,
25, 42, 51, 62, 65, 68]. Some mention encoding some vertex
IDs with the logarithmic number of bits; no details, analyses,
or enhancements such as the local approach are provided [3].
Others collapse specified subgraphs into supervertices and
merge edges between them into a superedge [17, 63, 65, 69].
Some of these works aim at generating a summary of input
graphs for more efficient graph processing [63, 69]. Finally,
several works use ILP to relabel vertices to reduce |A | [20, 32].
These systems often come with complex compression that
requires costly decompression. Now, Log(Graph) embraces
these schemes in its model and offers more flexibility. On one
hand, it enables simple and generic logarithmization of fine
elements that offers inexpensive storage reductions without
or with negligible performance overheads. Simultaneously, it
comes with more sophisticated schemes that can be used for
graphs with more specific properties such as separability.

9 CONCLUSION
Reducing graph storage overheads is one of the key chal-
lenges for large-scale computations. Yet, as various studies

show, traditional schemes such as zlib [31] or WebGraph [12]
incur costly performance penalties.

In this work, we illustrate a graph representation called
Log(Graph) that unifies various graph compression schemes
and applies logarithmic storage lower bounds to (aka “loga-
rithmize”): fine-grained graph elements such as vertex IDs,
offset structures, and adjacency structures.

First, logarithmizing fine-grained elements offers simplic-
ity and negligible performance overheads or even speedups
from reducing the pressure on the memory subsystem and
from incorporating the modern bitwise operations. It can be
applied to any graph and can enhance any graph process-
ing engine in shared- and distributed-memory settings. For
example, we accelerate SSSP in the GAP Benchmark [8] by
≈20% while reducing the required storage by 20-35%.

Second, for logarithmizing offset or adjacency data we
incorporate more sophisticated succinct and compact data
structures and techniques such as ILP. We investigate the
associated tradeoffs and identify as well as tackle the related
issues, enhancing the processing and storing of both specific
and general graphs. For example, Log(Graph) outperforms
WebGraph (>3x for the orm graph) while nearly matching its
compression ratio with various schemes. We provide a careful
and extensible implementation that ensures high performance
and will be available online upon publication.

Finally, to the best of our knowledge, our work is the first
performance analysis of succinct data structures in a parallel
environment. It illustrates surprising differences between
succinct bit vectors and offset arrays. We believe that our
insights can be used by both theoreticians and practitioners
to develop more efficient succinct schemes that would offer
higher speedups in parallel settings.
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10 APPENDIX
10.1 Theory: Additional Analyses
Here, we first provide the derivation of the expressions for O
and A for power-law graphs. We assume that the minimum
degree is 1 and also use the recent result that bounds the

maximum degree in a power-law graph with high
(

1− 1
log n

)
probability [9]: d̂ ≤

(
αn log n

β−1

) 1
β−1 . We now aim to derive an

expression for m as a function of α and β. Using the degree
distribution we have

m =
1
2

d̂

∑
x=1

x f (x) =
1
2

d̂

∑
x=1

αx1−β (20)

This can be approximated with an integral

m ≈ 1
2

∫ d̂

x=1
αx1−βdx =

α

2
1

(2− β)

(
d̂2−β − 1

)
(21)

Plugging this into the storage expression, we obtain

E[|A |] ≈ α

2− β

( αn log n
β− 1

) 2−β
β−1
− 1

(dlog ne+
⌈

logW
∧⌉)

(22)

E[|O |] ≈ n

log

 α

2− β

( αn log n
β− 1

) 2−β
β−1
− 1

 (23)

10.2 Logarithmizing Fine Elements:
Additional Analyses

We now analyze in more detail how logarithmizing fine ele-
ments impacts aspects such as scalability or communicated
data.

10.2.1 Investigating Scalability. We also provide the results
of scalability analyses. We vary the number of threads T for
various real-world graphs, see in Figure 14.

10.2.2 Investigating Distributed-Memory Se�ings. Finally, we
also present results that show how Log(Graph) reduces the
amount of communicated data in a distributed-memory envi-
ronment when logarithmizing fine-grained graph elements.
The results are illustrated in Figure 15.

10.3 Logarithmizing O : Additional Analyses
In the main body of the work, we have only analyzed the
influence of O’s properties on |O |. Yet, the scope of the inter-
play between AA’s parameters is much broader: |O | is also
impacted by A ’s design. Specifically, if A is encoded using a
scheme that shrinks adjacency arrays, such as Blandford’s RB
scheme, then the size of O based on pointer arrays should
remain the same (as W is fixed) while bvPL and bvIL should
shrink. Succinct designs are harder to predict due to more
complex dependencies; for example bvSD’s length also gets

smaller but as the ratio of ones to zeros gets higher, |O | may
as well increase; a similar argument applies to bvEN. We now
analyze these effects by comparing the original |O | to |O |
after relabeling of vertices according to the inorder traversal
of the separator tree as performed in the Blandford’s scheme;
see Figure 16. As expected, all offset arrays remain identical
because they only depend on fixed parameters. Contrarily,
all the bit vectors shrink (e.g., bvPL and bvSD are on average
≈25% and ≈12% smaller). This is because the relabelled A
uses less storage, requiring shorter bit vectors.

10.4 Logarithmizing A : Additional Analyses
We also illustrate more analyses related to logarithmizing A .

10.4.1 Using Vertex Cuts Instead of Edge Cuts. So far, we have
only considered edge cuts (ECs) in the considered recur-
sive partitioning schemes (RB and BRB). Yet, as explained
in § 5.3.1, vertex cuts (VCs) can also be incorporated to en-
hance RB. They seem especially attractive as it can be proven
that they are always smaller or equal than the corresponding
ECs [71]. In our setting, this relationship is more complicated
as we partition graphs recursively and the correspondence
between ECs and VCs is lost. Thus, we first compute the
total sums of sizes of ECs and VCs at various levels of re-
spective separator trees, see Figure 17. We ensure that the
respective partitions are of almost equal sizes. We did not
find strong correlation between cut sizes and sparsities d. We
group selected representative graphs into social networks
(SNs), purchase networks (PNs), and road graphs (RNs). For
most SNs, ECs start from numbers much larger than in the
corresponding VCs, and then steadily decrease. This is due
to vertices with very high degrees whose edges are cut early
during recursive partitioning. Contrarily, VCs in SNs start
from very small values and then grow. This is because it is
easy to partition initial input SNs using VCs as they are rich
in communities [72], but later on, as communities become
harder to find, cut sizes grow. Then, ECs and VCs in PNs
follow similar patterns; they increase together with levels of
separator trees. This suggests that in both cases it becomes
more difficult to find clusters after several initial partition-
ing rounds. Finally, ECs and VCs in RNs differ marginally
because these graphs are almost planar.

We conclude that, in most cases, VCs are significantly
smaller than ECs, being potentially a more appealing tool
in reducing |A | because less information crosses partitions
and has to be encoded as large differences in RB. Yet, A
based on VCs introduces redundancy as now some vertices
are present in graph separators as well as in graph partitions.
It requires additional lookup structures with shadow point-
ers [10] for mapping between such vertex clones (i.e., shadow
vertex trees [10]). We calculated the number of shadow point-
ers in such structures and the resulting storage overheads
in |A | based on VCs. All the graphs follow similar trends.
For example, twt requires 3.53M additional pointers, giving
4.81MB for |A | (VCs, ptrLogn), as opposed to 3.1MB (ECs).
Thus, the additional complexity from shadow vertex trees
removes advantages from smaller cuts, motivating us to focus
on ECs.

10.4.2 Relaxing Balancedness of Partitions. While bisecting G,
we now let the maximum relative imbalance between the
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Figure 14: (§ 10.2.1) The scalability analysis of Log(Graph), real-world graphs.
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partition sizes be at most D. We first analyze how changing
D influences sizes of ECs and VCs for each level of separa-
tor trees. We plot the findings for representative graphs in
Figure 18. As expected, cuts become smaller with growing

D: more imbalance more often prevents partitioning clusters.
Yet, these differences in sizes of both ECs and VCs are sur-
prisingly small. For example, the difference between ECs for
twt (level 1) is only around ≈2%; other cases follow similar
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Figure 17: (§ 10.4.1) An illustration of sums of edge and vertex cuts at various levels of separator trees in di�erent types of graphs.
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(a) Graph twt; d̄ ≈ 20.
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(b) Graph sl2; d̄ ≈ 10.
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(c) Graph am1; d̄ ≈ 5.
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(d) Graph rca; d̄ ≈ 1.5.
Figure 18: (§ 10.4.2) Illustration of vertex/edge cut sizes when varying the balancedness ratio D and levels of respective separator trees.
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(a) The analysis of obtaining dv ; pok graph.
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(b) The analysis of obtaining Nv ; pok graph.
Figure 19: (§ 10.4.4) Performance analysis of accessing a graph in a parallel se�ing.

patterns. They do not impact the final |A |, resulting in minor
(≈1%) differences.

10.4.3 Approaching the Optimal Labeling with POD/CMB. We
now use POD and HYB to approach optimal labeling and
outperform RB and DM. We use IBM CPLEX [26] to solve the
ILP problems formulated in § 5.4.1 and § 5.4.2. We use two
graphs g1 and g2, both consisting of two communities with
few (<0.2m) edges in-between. Here, we illustrate (Figure 20)
that POD/HYB do improve upon RB and DM by reducing
sums of differences between consecutive labels. Each scheme
is denoted as ODB-y-z: y indicates the variant of the objective
function (y=1 for Eq. (14) and y=2 for Eq. (15)) and z deter-
mines if we force the obtained labels to be contiguous (z=c)
or not (z=u). Each proposed scheme finds a better labeling
than RB (by 5-10%) and DM (by 30-40%).

10.4.4 Investigating Performance of Graph Accesses. Here, we
present the full results of the performance of obtaining dv
and Nv that we discussed briefly in § 7.4.
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Figure 20: (§ 10.4.3) Analysis of POD/CMB.
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