Implementing Locks in C

Recitation

How to implement atomics?

Two ways:

e Use intrinsics offered by your compiler
e Use inline assembly

Today we will take a look at both options.

We use the gcc compiler as an example. Other
compilers (Intel, XLC) have very similar
features.

GCC Atomic Builtins

type _ sync_fetch_and_add(*ptr, type val)
type __sync_add_and_fetch(*ptr, type val)

e Full memory Barrier
e Instead of "add" also available as "sub", "xor"
etc.

e Returns old value (FAA) or the new one (AAF)

GCC Atomic Builtins

bool _ sync_bool compare_and_swap(type *ptr, type
oldval, type newval)
type __sync_val compare_and_swap(type *ptr, type
oldval, type newval)

e Full memory Barrier

e Set *ptr to newval if *ptr is equal to oldval

e Return oldval (_val) or truth-value of the
comparison (_bool)

GCC Atomic Builtins

void _ sync_synchronize()

e Full memory barrier (mfence)

type __sync_lock _test_and_set(type *ptr, type
value)

e Full memory barrier
e \Write value into *ptr, return the previous value

GCC Inline Assembly

e GCC inline Assembly uses AT&T Syntax: The
first operand is the source, second operand the
destination

e Intel Syntax: destination is first operand

Register names are prefixed with %

e Constants are prefixed with $ ($0x for Hex)

Example: mov $42, %eax

GCC Inline Assembly

e The size of the operands is part of the
mnemonic (optional! - assembler will guess)

o movqg $0x42, %reax 64 Bit
o movl $0x42, %eax 32 Bit
o movw $0x42, %ax 16 Bit
o movb $0x42, %al 8 Bit

GCC Inline Assembly

e Memory accesses are specified as
$disp(%base, %offset , $muliply) this refers to
*(base + disp + offset * multiply)

e Everything except base is optional

e Common Case:
o movl -4(%ebp), %eax
o movl (%ecx), %edx

GCC Inline Assembly

e C compiler does not "understand” inline
assembly - it simply copies it into the output
stream

e \We need to tell the compiler
o Which registers we overwrite in assembly
o Which values we access

GCC Inline Assembly

int a=10, b;
asm ("movl %1, %%eax;\n"
"movl %%eax, %0;\n"

:"=r"(b) /* output */
:"r"(a) /* input */
:"%eax" /* clobbered register */);

Input/Output Values are referenced by %0, %1,

etc.
Constraints tell the compiler where to put values:
"r'" -> any register (a -> eax, b->ebx, etc)
"=r" -> reqister is used write-only

"m" -> memory location

Compare and Swap in Assembler

unsigned long cas(volatile unsigned long* ptr,
unsigned long old, unsigned long new) {
unsigned long prev;
asm volatile("lock; cmpxchgqg %1, %2;"
: "=a"(prev)
: "r"(new), "m"(*ptr), "a"(old) :);
return prev;

}

cmpxch: if (eax == dest) {ZF=1; dest=src}
else {ZF=0; eax=dest}

Fetch and Add in Assembler

int fetch_and_add(int* ptr, int val){
asm volatile(
"lock; xaddl %%eax, %2;"
:"=a" (val)
: "a" (val), "m" (*ptr) :);
return val;

xadd: src = dest; dest += src;
Always use volatile to prevent the compiler from
reordering!

Let's take a look at the Code

Test & set lock: consider coherence traffic

Processor 1

- BusRdX Tes:

Update line in cache (setto 1)

Invalidate line |

[P1is holding holding lock...]

BusRdX |
Update line in cache (set to 0)

Invalidate line

BusRdX 185
Update line in cache (set to 1)
Invalidate line

BusRdX TS
Update line in cache (setto 1)
Invalidate line

BusRdX Tés!

Update line in cache (setto 1)

Processor 2

Invalidate line

Processor 3

Invalidate line

BusRdX 14
Update line in cache (setto 1)
Invalidate line

‘BusRdX S T&s

Update line in cache (setto 1)

Invalidate line

Test & test & set lock: coherence traffic

Processor 1 Processor 2 Processor 3
BusRdX T&S: Invalidate line Invalidate line
Updateline in cache (setto1) -
| BusRd BusRd

[P1 is holding holding lock...] [Many reads from local cache] [Many reads from local cache]
Update line in cache (setto0) Invalidate line ~Invalidate line
Invalidate line BusRdX j

Update line in cache (setto 1)

Invalidate line BusRdX T8s

§Update line in cache (setto 1)

