Implementing Locks in C

Recitation



How to implement atomics?

Two ways:

e Use intrinsics offered by your compiler
e Use inline assembly

Today we will take a look at both options.

We use the gcc compiler as an example. Other
compilers (Intel, XLC) have very similar
features.



GCC Atomic Builtins

type _ sync_fetch_and_add(*ptr, type val)
type __sync_add_and_fetch(*ptr, type val)

e Full memory Barrier
e Instead of "add" also available as "sub", "xor"
etc.

e Returns old value (FAA) or the new one (AAF)



GCC Atomic Builtins

bool _ sync_bool compare_and_swap(type *ptr, type
oldval, type newval)
type __sync_val compare_and_swap(type *ptr, type
oldval, type newval)

e Full memory Barrier

e Set *ptr to newval if *ptr is equal to oldval

e Return oldval (_val ) or truth-value of the
comparison (_bool )



GCC Atomic Builtins

void _ sync_synchronize()

e Full memory barrier (mfence)

type __sync_lock _test_and_set(type *ptr, type
value)

e Full memory barrier
e \Write value into *ptr, return the previous value



GCC Inline Assembly

e GCC inline Assembly uses AT&T Syntax: The
first operand is the source, second operand the
destination

e Intel Syntax: destination is first operand

Register names are prefixed with %

e Constants are prefixed with $ ($0x for Hex)

Example: mov $42, %eax



GCC Inline Assembly

e The size of the operands is part of the
mnemonic (optional! - assembler will guess)

o movqg $0x42, %reax 64 Bit
o movl $0x42, %eax 32 Bit
o movw $0x42, %ax 16 Bit
o movb $0x42, %al 8 Bit



GCC Inline Assembly

e Memory accesses are specified as
$disp(%base, %offset , $muliply) this refers to
*(base + disp + offset * multiply)

e Everything except base is optional

e Common Case:
o movl -4(%ebp), %eax
o movl (%ecx), %edx



GCC Inline Assembly

e C compiler does not "understand” inline
assembly - it simply copies it into the output
stream

e \We need to tell the compiler
o Which registers we overwrite in assembly
o Which values we access



GCC Inline Assembly

int a=10, b;
asm ("movl %1, %%eax;\n"
"movl %%eax, %0;\n"

:"=r"(b) /* output */
:"r"(a) /* input */
:"%eax" /* clobbered register */);

Input/Output Values are referenced by %0, %1,

etc.
Constraints tell the compiler where to put values:
"r'" -> any register (a -> eax, b->ebx, etc)
"=r" -> reqister is used write-only

"m" -> memory location



Compare and Swap in Assembler

unsigned long cas(volatile unsigned long* ptr,
unsigned long old, unsigned long new) {
unsigned long prev;
asm volatile("lock; cmpxchgqg %1, %2;"
: "=a"(prev)
: "r"(new), "m"(*ptr), "a"(old) : );
return prev;

}

cmpxch: if (eax == dest) {ZF=1; dest=src}
else {ZF=0; eax=dest}



Fetch and Add in Assembler

int fetch_and_add(int* ptr, int val){
asm volatile(
"lock; xaddl %%eax, %2;"
:"=a" (val)
: "a" (val), "m" (*ptr) : );
return val;

xadd: src = dest; dest += src;
Always use volatile to prevent the compiler from
reordering!



Let's take a look at the Code



Test & set lock: consider coherence traffic
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Test & test & set lock: coherence traffic
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