Parallel Programming
Message Passing & Parallel Sorting (A taste of parallel algorithms!)
Last week

- **Transactional memory**
 - Motivation (locks are bad, wait-/lock-free is hard)
 - Concepts (Atomicity, Consistency, Isolation – ACI(D))
 - Implementation options (keep track of read and write sets)
 - Example: dining philosophers

- **Distributed memory**
 - Isolation of state – big simplification
 - Event-driven messaging/Actors (example: Erlang)
 - CSP-style (example: Go)
Learning goals for today

- Finish Go

- Message Passing Interface
 - Standard library for high-performance parallel programming
 - Processes, communicators, collectives – concepts of distributed memory programming
 - Matching, deadlocks – potential pitfalls

- A primer on parallel algorithms
 - Parallel sorting
 - Sorting with fixed structures – sorting networks
Example: Concurrent prime sieve

Each station removes multiples of the first element received and passes on the remaining elements to the next station.

G ... 9 8 7 6 5 4 3 2
 F_2 9 7 5 3
 F_3 ... 7 5
 F_5 ... 7
Concurrent prime sieve

```go
func Generate(ch chan<- int) {
    for i := 2; ; i++ {
        ch <- i
    }
}

func Filter(in <-chan int, out chan<- int, prime int) {
    for {
        i := <-in // Receive value from 'in'.
        if i%prime != 0 {
            out <- i // Send 'i' to 'out'.
        }
    }
}

func main() {
    ch := make(chan int)
    go Generate(ch)
    for i := 0; i < 10; i++ {
        prime := <-ch
        fmt.Println(prime)
        ch1 := make(chan int)
        go Filter(ch, ch1, prime)
        ch = ch1
    }
}
```

source code from golang.org
Message Passing Interface (MPI)

PARALLEL PROCESSING LETTERS
© World Scientific Publishing Company

MPI ON MILLIONS OF CORES

PAVAN BALAK|1|, DARRIS BUNTINAS,1| DAVID GODDELL,1| WILLIAM GROPP,3| TORSTEN HOEFFLER,2| SAMER KUMAR,3| EWING LUSK,1| RAJEEV THAKUR,1| JESPER LARSSON TRAF|1|
1|Argonne National Laboratory, Argonne, IL 60439, USA
2|University of Illinois, Urbana, IL 61801, USA
3|IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
4|Dept. of Scientific Computing, Univ. of Vienna, Austria

Received December 2009 Revised August 2010 Communicated by J. Dongarra

ABSTRACT

Petascale parallel computers with more than a million processing cores are expected to be available in a couple of years. Although MPI is the dominant programming interface today for large-scale systems that at the highest end already have close to 300,000 processors, a challenging question to both researchers and users is whether MPI will scale to petascale and core counts in the millions. In this paper, we examine the issue of scalability of MPI in very large systems. We first examine the MPI specification hosti and discuss areas with scalability concerns and how they can be overcome. We then investigate issues that an MPI implementation must address in order to be scalable. To illustrate the issues, we ran a number of simple experiments to measure MPI memory consumption at scale up to 139,072 processes, or 89%, of the IBM Blue Gene/P system at Argonne National Laboratory. Based on the results, we identified insurmountable aspects of the MPI implementation and found ways to tune it to reduce its memory footprint. We also briefly discuss issues in application scalability to large process counts and fac-
Message Passing Interface (MPI)

Message passing libraries:
- PVM (Parallel Virtual Machines) 1980s
- MPI (Message Passing Interface) 1990s

MPI = Standard API
- Hides Software/Hardware details
- Portable, flexible
- Implemented as a library
Process Identification

- **MPI processes can be collected into groups**
 - Each group can have multiple colors (some times called context)
 - *Group + color == communicator (it is like a name for the group)*
 - When an MPI application starts, the group of all processes is initially given a predefined name called **MPI_COMM_WORLD**
 - *The same group can have many names, but simple programs do not have to worry about multiple names*

- **A process is identified by a unique number within each communicator**, called **rank**
 - For two different communicators, the same process can have two different ranks: so the meaning of a “rank” is only defined when you specify the communicator
MPI Communicators

- Defines the communication domain of a communication operation: set of processes that are allowed to communicate with each other.

- Initially all processes are in the communicator MPI_COMM_WORLD.

- The rank of processes are associated with (and unique within) a communicator, numbered from 0 to n-1
Communicators

When you start an MPI program, there is one predefined communicator MPI_COMM_WORLD. Can make copies of this communicator (same group of processes, same ranks, but different “aliases”). Every process in a communicator has an ID called as “rank.” The same process might have different ranks in different communicators.

Communicators do not need to contain all processes in the system.

Communicators can be created “by hand” or using tools.

Simple programs typically only use the predefined communicator MPI_COMM_WORLD (which is sometimes considered bad practice because of modularity issues).

mpiexec -np 16 ./test

When you start an MPI program, there is one predefined communicator MPI_COMM_WORLD.

Can make copies of this communicator (same group of processes, same ranks, but different “aliases”).

Communicators do not need to contain all processes in the system.
Processes are identified by nonnegative integers, called ranks

p processes are numbered $0, 1, 2, .., p-1$

```java
public static void main(String[] args) throws Exception {
    MPI.Init(args);
    // Get total number of processes (p)
    int size = MPI.COMM_WORLD.Size();
    // Get rank of current process (in [0..p-1])
    int rank = MPI.COMM_WORLD.Rank();
    MPI.Finalize();
}
```
SPMD

Single Program

Multiple Data
(Multiple Instances)

we compile one program

the if-else makes it SPMD

```
if (rank == 0)
  do this
else
  do that
```

```
if (rank == 0)
  do this
else
  do that
```

```
if (rank == 0)
  do this
else
  do that
```

```
if (rank == 0)
  do this
else
  do that
```

```
Communication

void Comm.Send(
    Object buf,
    int offset,
    int count,
    Datatype datatype,
    int dest,
    int tag
)

- communicator
- pointer to data to be sent
- number of items to be sent
- data type of items, must be explicitly specified
- destination process id
- data id tag

(buf array)

- offset
- count * sizeof(int)
Parallel Sort using MPI Send/Recv

**Rank 0**

| 8 | 23 | 19 | 67 | 45 | 35 | 1 | 24 | 13 | 30 | 3 | 5 |

sort in parallel
~2*(N/2 log N/2)

**Rank 1**

| 1 | 3 | 5 | 13 | 24 | 30 |

send in O(N)

**Rank 0**

| 8 | 19 | 23 | 35 | 45 | 67 |

send in O(N)

**Rank 0**

| 8 | 19 | 23 | 35 | 45 | 67 | 1 | 3 | 5 | 13 | 24 | 30 |

merge in O(N)

| 1 | 3 | 5 | 8 | 13 | 19 | 23 | 24 | 30 | 35 | 45 | 67 |
Message tags

- Communicating processes may need to send several messages between each other.
- Message tag: differentiate between different messages being sent.
Message matching

Send

- sender communicator
- sender tag
- dest = r

Receive

- receiver communicator
- receiver tag
- source = q
Receiving messages

void Comm.Recv(
    communicator
    Object buf,          communicator
    int offset,          pointer to the buffer to receive to
    int count,           number of items to be received
    Datatype datatype,   data type of items, must be explicitly specified
    int src,             source process id or MPI_ANY_SOURCE
    int tag              data id tag or MPI_ANY_TAG
)
Synchronous Message Passing

Synchronous send (Ssend)
• waits until complete message can be accepted by the receiving process before completing the send

Synchronous receive (Recv)
• waits until expected message arrives

Synchronous routines can perform two actions
• transfer data
• synchronize processes
Asynchronous Message Passing

Send does not wait for actions to complete before returning

- requires local storage for messages
  - sometimes explicit (programmer needs to care)
  - sometimes implicit (transparent to the programmer)

In general

- no synchronisation
- allows local progress
Blocking / nonblocking

Blocking: return after *local actions* are complete, though the message transfer may not have been completed

Non-blocking: return immediately

- assumes that data storage to be used for transfer is not modified by subsequent statements until transfer complete
A nonblocking communication example

Compute data

P0

Compute data

P1

(Full) Blocking Communication

(Partial) Non-blocking Communication

P0

P1
Synchronous / asynchronous vs. blocking / nonblocking

Synchronous / Asynchronous
- about communication between sender and receiver

Blocking / Nonblocking
- about local handling of data to be sent / received
MPI Send and receive defaults

Send
• blocking,
• synchrony implementation dependent
  ▪ depends on existence of buffering, performance considerations etc

Recv
• blocking

Danger of Deadlocks.
Don’t make any assumptions!

There are a lot of different variations of this in MPI.
Sources of deadlocks

- Send a large message from process 0 to process 1
  - If there is insufficient storage at the destination, the send must wait for the user to provide the memory space (through a receive)
- What happens with this code?

<table>
<thead>
<tr>
<th>Process 0</th>
<th>Process 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send (1)</td>
<td>Send (0)</td>
</tr>
<tr>
<td>Recv (1)</td>
<td>Recv (0)</td>
</tr>
</tbody>
</table>

- This is called “unsafe” because it depends on the availability of system buffers in which to store the data sent until it can be received
Some Solutions to the “unsafe” Problem

- Order the operations more carefully:

<table>
<thead>
<tr>
<th>Process 0</th>
<th>Process 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send(1)</td>
<td>Recv(0)</td>
</tr>
<tr>
<td>Recv(1)</td>
<td>Send(0)</td>
</tr>
</tbody>
</table>

- Supply receive buffer at same time as send:

<table>
<thead>
<tr>
<th>Process 0</th>
<th>Process 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sendrecv(1)</td>
<td>Sendrecv(0)</td>
</tr>
</tbody>
</table>
More Solutions to the “unsafe” Problem

- Supply own space as buffer for send

<table>
<thead>
<tr>
<th>Process 0</th>
<th>Process 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bsend(1)</td>
<td>Bsend(0)</td>
</tr>
<tr>
<td>Recv(1)</td>
<td>Recv(0)</td>
</tr>
</tbody>
</table>

- Use non-blocking operations:

<table>
<thead>
<tr>
<th>Process 0</th>
<th>Process 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isend(1)</td>
<td>Isend(0)</td>
</tr>
<tr>
<td>Irecv(1)</td>
<td>Irecv(0)</td>
</tr>
<tr>
<td>Waitall</td>
<td>Waitall</td>
</tr>
</tbody>
</table>
Many parallel programs can be written using just these six functions, only two of which are non-trivial:

- **MPI_INIT** – initialize the MPI library (must be the first routine called)
- **MPI_COMM_SIZE** - get the size of a communicator
- **MPI_COMM_RANK** – get the rank of the calling process in the communicator
- **MPI_SEND** – send a message to another process
- **MPI_RECV** – send a message to another process
- **MPI_FINALIZE** – clean up all MPI state (must be the last MPI function called by a process)

For performance, however, you need to use other MPI features.
Example: compute Pi

- The irrational number Pi has many digits
  - And it’s not clear if they’re randomly distributed!
- But they can be computed

\[ \pi \approx h \sum_{i=0}^{N-1} \frac{4}{1 + (h(i + \frac{1}{2}))^2} \]

```java
for(int i=0; i<numSteps; i++) {
 double x=(i + 0.5) * h;
 sum += 4.0/(1.0 + x*x);
}
double pi=h * sum ;
```

Pi record smashed as team finds two-quadrillionth digit

By Jason Palmar
Science and technology reporter, BBC News

A researcher has calculated the 2,000,000,000,000,000th digit of the mathematical constant pi - and a few digits either side of it.

Nicholas Sze, of tech firm Yahoo, said that when pi is expressed in binary, the two quadrillionth "bit" is 0.

Mr Sze used Yahoo's Hadoop cloud computing technology to more than double the previous record.

It took 23 days on 1,000 of Yahoo's computers - on a standard PC, the calculation would have taken 500 years.
Pi’s parallel version

MPI.Init(args);
… // declare and initialize variables (sum=0 etc.)
int size = MPI.COMM_WORLD.Size();
int rank = MPI.COMM_WORLD.Rank();

for(int i=rank; i<numSteps; i=i+size) {
    double x=(i + 0.5) * h;
    sum += 4.0/(1.0 + x*x);
}

if (rank != 0) {
    double [] sendBuf = new double []{sum};
    // 1-element array containing sum
    MPI.COMM_WORLD.Send(sendBuf, 0, 1, MPI.DOUBLE, 0, 10);
} else { // rank == 0
    double [] recvBuf = new double [1] ;
    for (int src=1 ; src<P; src++) {
        MPI.COMM_WORLD.Recv(recvBuf, 0, 1, MPI.DOUBLE, src, 10);
        sum += recvBuf[0];
    }
}

double pi = h * sum; // output pi at rank 0 only!
MPI.Finalize();
COLLECTIVE COMMUNICATION
Group Communication

Up to here: point-to-point communication

MPI also supports communications among groups of processors
  • not absolutely necessary for programming (but very nice!)
  • but essential for performance

Examples: broadcast, gather, scatter, reduce, barrier, ...
Collective Computation - Reduce

public void Reduce(java.lang.Object sendbuf, int sendoffset, java.lang.Object recvbuf, int recvoffset, int count, Datatype datatype, Op op, int root)

root = rank 0
Reduce implementation: a tree-structured global sum

1. In the first phase:
   (a) Process 1 sends to 0, 3 sends to 2, 5 sends to 4, and 7 sends to 6.
   (b) Processes 0, 2, 4, and 6 add in the received values.

2. Second phase:
   (c) Processes 2 and 6 send their new values to processes 0 and 4, respectively.
   (d) Processes 0 and 4 add the received values into their new values.

3. Finally:
   (a) Process 4 sends its newest value to process 0.
   (b) Process 0 adds the received value to its newest value.
Collective Data Movement - Broadcast

P0
P1
P2
P3

A
A
A
A

Broadcast

Processes
0 1 2 3 4 5 6 7
Collective Computation - Allreduce

Useful in a situation in which all of the processes need the result of a global sum in order to complete some larger computation.

```
public void Allreduce(java.lang.Object sendbuf,
 int sendoffset,
 java.lang.Object recvbuf,
 int recvoffset,
 int count,
 Datatype datatype,
 Op op)
```
Allreduce = Reduce + Broadcast?

A global sum followed by distribution of the result.

Q: What is the number of steps needed?
Allreduce ≠ Reduce + Broadcast

A butterfly-structured global sum.

Q: What is the number of steps needed?
Baidu’s ‘Ring Allreduce’ Library Increases Machine Learning Efficiency Across Many GPU Nodes

Baidu’s ‘Ring Allreduce’ Library Increases Machine Learning Efficiency Across Many GPU Nodes

Meet Horovod: Uber’s Open Source Distributed Deep Learning Framework for TensorFlow

By Alex Sergeev and Mike Del Balso
October 17, 2017

Introducing Horovod

The realization that a ring-allreduce approach can improve both usability and performance motivated us to work on our own implementation to address Uber’s TensorFlow needs. We adopted Baidu’s draft implementation of the TensorFlow ring-allreduce algorithm and built upon it. We outline our process below:

1. We converted the code into a stand-alone Python package called Horovod, named after a traditional Russian folk dance in which performers dance with linked arms in a circle, much like how distributed TensorFlow processes use Horovod to communicate with each other. At any point in time, various teams at Uber may be using different releases of TensorFlow. We wanted all teams to be able to leverage the ring-allreduce algorithm without needing to upgrade to the latest version of TensorFlow. Please check with those releases, or even spend more time building our framework. Having a stand-alone package allowed us to cut the time required to install Horovod from about an hour to a few minutes, depending on the hardware.

2. We replaced the Baidu ring-allreduce implementation with NCCL NCCL is NVIDIA’s library for collective communication that provides a highly optimized version of ring-allreduce. NCCL 2 introduced the ability to run ring-allreduce across multiple machines, enabling us to take advantage of its many performance boosting optimizations.

Need For Efficient Parallel Training

As neural networks have grown to include hundreds of millions or even over a billion parameters, the number of GPU nodes needed to do the training has also increased. However, the higher the number of nodes grows, the less efficient the system becomes in terms of how much computation is done by each node. Therefore, the need for algorithms that maximize the performance across the highly parallel system has also increased.
Collective Data Movement – Scatter/Gather

- Scatter can be used in a function that reads in an entire vector on process 0 but only sends the needed components to each of the other processes.

- Gather collects all of the components of the vector onto destination process, then destination process can process all of the components.
More Collective Data Movement – some more (16 functions total!)

- **Allgather**: P0 → P1 → P2 → P3
  - P0: A, B, C, D
  - P1: A, B, C, D
  - P2: A, B, C, D
  - P3: A, B, C, D

- **Alltoall**: P0 → P1 → P2 → P3
  - P0: A0, A1, A2, A3
  - P1: B0, B1, B2, B3
  - P2: C0, C1, C2, C3
  - P3: D0, D1, D2, D3
Matrix-Vector-Multiply

Compute $y = A \cdot x$, e.g.,

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, \quad x = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix}, \quad y = \begin{bmatrix} A_1 \cdot x \\ A_2 \cdot x \\ A_3 \cdot x \end{bmatrix}$$

Assume $A$ and $x$ are available only at rank 0!

1. Broadcast $x$
Matrix-Vector-Multiply

Compute $y = A \cdot x$, e.g., $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$, $x = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix}$, $y = \begin{bmatrix} A_1 \cdot x \\ A_2 \cdot x \\ A_3 \cdot x \end{bmatrix}$

Assume A and x are available only at rank 0!

2. Scatter A
Matrix-Vector-Multiply

Compute \( y = A \cdot x \), e.g.,

\[
A = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}
\]

\[
x = \begin{bmatrix}
10 \\
20 \\
30
\end{bmatrix}
\]

\[
y = \begin{bmatrix}
A_1 \cdot x \\
A_2 \cdot x \\
A_3 \cdot x
\end{bmatrix}
\]

3. Compute locally

<table>
<thead>
<tr>
<th>P0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>=</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>=</td>
<td>320</td>
</tr>
<tr>
<td>P2</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>=</td>
<td>500</td>
</tr>
</tbody>
</table>
Matrix-Vector-Multiply

Compute $y = A \cdot x$, e.g.,

\[
A = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}, \\
x = \begin{bmatrix}
10 \\
20 \\
30
\end{bmatrix}, \\
y = \begin{bmatrix}
A_1 \cdot x \\
A_2 \cdot x \\
A_3 \cdot x
\end{bmatrix}
\]

4. Gather result $y$
Assume we want to apply the matrix-vector product iteratively

\[ y_n = A \, y_{n-1} \]

Example Application:
Eigenvalue Problem for Probability Matrix, as used in Google's Pagerank algorithm.

Then each process needs the results of other processes after one step.
→ Need for Gather + Broadcast in one go.
→ If you’re clever, you find out how to use reduce_scatter for this 😊!
Visualizing Program Behavior
MPI conclusion

- The de-facto interface for distributed parallel computing (nearly 100% market share in HPC)
- Elegant and simple interface
  - Definitely simpler than shared memory (no races, limited conflicts, avoid deadlocks with nonblocking communication)
- We only covered the basics here, MPI-3.1 (2015) has 600+ functions
  - More concepts:
    - Derived datatypes
    - Process topologies
    - Nonblocking and neighborhood collectives
    - One-sided accesses (getting the fun of shared memory back ...)
    - Profiling interfaces
    ...
Sorting
(one of the most fun problems in CS)
Literature


```
"chapter 27 sorting networks"
```
How Fast can we Sort?

Heapsort & Mergesort have $O(n \log n)$ worst-case run time

Quicksort has $O(n \log n)$ average-case run time

These bounds are all tight, actually $\Theta(n \log n)$

So maybe we can dream up another algorithm with a lower asymptotic complexity, such as $O(n)$ or $O(n \log \log n)$

This is unfortunately \textit{IMPOSSIBLE}!

But why?
Permutations

Assume we have $n$ elements to sort

For simplicity, also assume none are equal (i.e., no duplicates)

How many permutations of the elements (possible orderings)?

Example, $n=3$

- $a[0]<a[1]<a[2]$
- $a[0]<a[2]<a[1]$
- $a[1]<a[0]<a[2]$
- $a[1]<a[2]<a[0]$
- $a[2]<a[0]<a[1]$
- $a[2]<a[1]<a[0]$

In general, $n$ choices for first, $n-1$ for next, $n-2$ for next, etc. $\Rightarrow n(n-1)(n-2)...(1) = n!$ possible orderings
Representing Every Comparison Sort

Algorithm must “find” the right answer among $n!$ possible answers

Starts “knowing nothing” and gains information with each comparison
Intuition is that each comparison can, at best, eliminate half of the remaining possibilities

Can represent this process as a decision tree
- Nodes contain “remaining possibilities”
- Edges are “answers from a comparison”
- This is not a data structure but what our proof uses to represent “the most any algorithm could know”
Decision Tree for \( n = 3 \)

The leaves contain all possible orderings of \( a, b, c \)
What the decision tree tells us

**Binary** tree because

- Each comparison has binary outcome
- Assumes algorithm does not ask redundant questions

Because any data is possible, any algorithm needs to ask enough questions to decide among all $n!$ answers

- Every answer is a leaf (no more questions to ask)
- So the tree must be big enough to have $n!$ leaves
- Running any algorithm on any input will at best correspond to one root-to-leaf path in the decision tree

So no algorithm can have worst-case running time better than the height of the decision tree
Where are we

Proven: No comparison sort can have worst-case better than the height of a binary tree with \( n! \) leaves

- Turns out average-case is same asymptotically
- So how tall is a binary tree with \( n! \) leaves?

Now: Show a binary tree with \( n! \) leaves has height \( \Omega(n \log n) \)

- \( n \log n \) is the lower bound, the height must be at least this
- It could be more (in other words, a comparison sorting algorithm could take longer but can not be faster)

Conclude that: (Comparison) Sorting is \( \Omega(n \log n) \)
Lower Bound on Height

The height of a binary tree with $L$ leaves is at least $\log_2 L$

So the height of our decision tree, $h$:

\[
h \geq \log_2 (n!)
\]

= $\log_2 (n*(n-1)*(n-2)...(2)(1))$

= $\log_2 n + \log_2 (n-1) + ... + \log_2 1$

\[
\geq \log_2 n + \log_2 (n-1) + ... + \log_2 (n/2)
\]

\[
\geq (n/2) \log_2 (n/2)
\]

\[
\geq (n/2)(\log_2 n - \log_2 2)
\]

\[
\geq (1/2)n \log_2 n - (1/2)n
\]

"=“ $\Omega (n \log n)$

property of binary trees
definition of factorial
property of logarithms
keep first $n/2$ terms
each of the $n/2$ terms left is $\geq \log_2 (n/2)$
property of logarithms
arithmetic
Breaking the lower bound on sorting

Simple algorithms:
- $O(n^2)$
  - Insertion sort
  - Selection sort
  - Bubble Sort
  - Shell sort
  - ... 

Fancier algorithms:
- $O(n \log n)$
  - Heap sort
  - Merge sort
  - Quick sort (avg)
  - ... 

Specialized algorithms:
- $O(n)$
  - Radix sort

Horrible algorithms:
- $\Omega(n^2)$
  - Bogo Sort ($n!$)
  - Stooge Sort ($n^{2.7}$)

Fancier algorithms:
- $O(n \log n)$
  - Heap sort
  - Merge sort
  - Quick sort (avg)
  - ... 

Comparison lower bound:
- $\Omega(n \log n)$

Assume 32/64-bit Integer:
- $2^{32} = 4294967296$
- $13! = 6227020800$
- $2^{64} = 18446744073709551616$
- $21! = 51090942171709440000$

Nothing is ever straightforward in computer science...
SORTING NETWORKS
Comparator

\[ x \xrightarrow{<} y \xrightarrow{\min(x,y)} \]

shorter notation:

\[ x \xrightarrow{\min(x,y)} \xrightarrow{\max(x,y)} y \]
void compare(int[] a, int i, int j, boolean dir) {
    if (dir==(a[i]>a[j])){
        int t=a[i];
        a[i]=a[j];
        a[j]=t;
    }
}
Sorting Networks
Sorting networks are data-oblivious (and redundant)

Data-oblivious comparison tree

no swap

swap

redundant cases
Recursive Construction : Insertion

\[ x_1 \]
\[ x_2 \]
\[ x_3 \]

\[ \cdots \]
\[ x_{n-1} \]
\[ x_n \]
\[ x_{n+1} \]

sorting network
Recursive Construction: Selection

\[ x_1 \quad x_2 \quad x_3 \quad \cdots \quad x_{n-1} \quad x_n \quad x_{n+1} \]

\[ \begin{array}{c}
\text{sorting} \\
\text{network}
\end{array} \]
Applied recursively..

insertion sort

bubble sort

with parallelism: insertion sort = bubble sort !
Question

How many steps does a computer with infinite number of processors (comparators) require in order to sort using parallel bubble sort?

Answer: $2n - 3$

Can this be improved?

How many comparisons?

Answer: $(n-1) \frac{n}{2}$

How many comparators are required (at a time)?

Answer: $n/2$

Reusable comparators: $n-1$
## Improving parallel Bubble Sort

### Odd-Even Transposition Sort:

<table>
<thead>
<tr>
<th>Step</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>9</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
void oddEvenTranspositionSort(int[] a, boolean dir) {
    int n = a.length;
    for (int i = 0; i < n; ++i) {
        for (int j = i % 2; j + 1 < n; j += 2)
            compare(a, j, j + 1, dir);
    }
}
Improvement?

Same number of comparators (at a time)
Same number of comparisons
But less parallel steps (depth): n

In a massively parallel setup, bubble sort is thus not too bad.

But it can go better...
How to get to a sorting network?

- It’s complicated 😊
  - In fact, some structures are clear but there is a lot still to be discovered!
- For example:
  - what is the minimum number of comparators?
  - What is the minimum size?
  - Tradeoffs between these two?

### Optimal sorting networks

For small, fixed numbers of inputs \( n \), optimal sorting networks can be constructed, with either minimal depth (for maximally parallel execution) or minimal size (number of comparators). These networks can be used to increase the performance of larger sorting networks resulting from the recursive constructions of, e.g., Batcher, by halting the recursion early and inserting optimal nets as base cases. The following table summarizes the known optimality results:

| \( n \) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
|-------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| Depth | 0 | 1 | 3 | 3 | 5 | 5 | 6 | 6 | 7 | 8 | 8 | 8 | 9 | 9 | 9 | 10 |
| Size, upper bound | 0 | 1 | 3 | 5 | 9 | 12 | 16 | 19 | 25 | 29 | 35 | 39 | 45 | 51 | 56 | 60 | 71 |
| Size, lower bound (if different) | | | | | | | | | | | | | | | | | |

The first sixteen depth-optimal networks are listed in Knuth's *Art of Computer Programming*, and have been since the 1973 edition; however, while the optimality of the first eight was established by Floyd and Knuth in the 1960s, this property wasn't proven for the final six until 2014 (the cases nine and ten having been decided in 1991).

For one to ten inputs, minimal (i.e. size-optimal) sorting networks are known, and for higher values, lower bounds on their sizes \( S(n) \) can be derived inductively using a lemma due to Van Voorhis. \( S(n+1) \geq S(n) + \lceil \log_2(n) \rceil \). All ten optimal networks have been known since 1900, with the first eight again being known as optimal since the work of Floyd and Knuth, but optimality of the cases \( n = 9 \) and \( n = 10 \) took until 2014 to be resolved.
Interlude: Machine Models

RAM: Random Access Machine

- Unbounded local memory
- Each memory has unbounded capacity
- Simple operations: data, comparison, branches
- All operations take unit time

Time complexity: number of steps executed
Space complexity: (maximum) number of memory cells used
Machine Models

PRAM: Parallel Random Access Machine

- Abstract machine for designing algorithms applicable for parallel computers
- Unbounded collection of RAM processors $P_0, P_1, ...$
- Each processor has unbounded registers
- Unbounded shared memory
- All processors can access all memory in unit time
- All communication via shared memory
Shared Memory Access Model

**ER:** processors can simultaneously read from distinct memory locations

**EW:** processors can simultaneously write to distinct memory locations

**CR:** processors can simultaneously read from any memory location

**CW:** processors can simultaneously write to any memory location

Specification of the machine model as one of EREW, CREW, CRCW
Example: Why the machine model can be important

Find maximum of $n$ elements in an array $A$
Assume $O(n^2)$ processors and the CRCW model
For all $i \in \{0, 1, \ldots, n - 1\}$ in parallel do

$$P_{i0}: m_i \leftarrow \text{true}$$

For all $i, j \in \{0, 1, \ldots, n - 1\}, i \neq j$ in parallel do

$$P_{ij}: \text{if } A_i < A_j \text{ then } m_i \leftarrow \text{false}$$

For all $i \in \{0, 1, \ldots, n - 1\}$ in parallel do

$$P_{i0}: \text{if } m_i = \text{true} \text{ then } \max \leftarrow A_i$$

O(1) time complexity!
Illustration

1. Init

```
P_00 P_10 P_20 P_30
```

```
t t t t
```

```
concurrent writes!
```

```
P_01 P_02 P_03
```

```
P_10 P_20 P_30
```

```
P_12 P_13
```

```
P_21 P_31
```

```
P_23 P_32
```

```
P_00 P_10 P_20 P_30
```

```
f f f t
```
CREW

Q: How many steps does max-find require with CREW?
Using CREW only two values can be merged into a single value by one processor at a time step: number of values that need to be merged can be halved at each step → Requires $\Omega(\log n)$ steps

There are a lot of interesting theoretical results for PRAM machine models (e.g., CRCW simulatable with EREW) and for PRAM based algorithms (e.g., cost optimality / time optimality proofs etc). We will not go into more details here.

In the following we assume a CREW PRAM model -- and receive in retrospect a justification for the results stated above on parallel bubble sorting.
Parallel sorting

Prove that the two networks above sort four numbers. Easy?
Zero-one-principle

Theorem: If a network with \( n \) input lines sorts all \( 2^n \) sequences of 0s and 1s into non-decreasing order, it will sort any arbitrary sequence of \( n \) numbers in nondecreasing order.
Assume a monotonic function \( f(x) \) with \( f(x) \leq f(y) \) whenever \( x \leq y \) and a network \( N \) that sorts. Let \( N \) transform \((x_1, x_2, \ldots, x_n)\) into \((y_1, y_2, \ldots, y_n)\), then it also transforms \((f(x_1), f(x_2), \ldots, f(x_n))\) into \((f(y_1), f(y_2), \ldots, f(y_n))\).

Assume \( y_i > y_{i+1} \) for some \( i \), then consider the monotonic function \( f(x) = \begin{cases} 0, & \text{if } x < y_i \\ 1, & \text{if } x \geq y_i \end{cases} \).

Proof

Argue: If \( x \) is sorted by a network \( N \) then also any monotonic function of \( x \).

E.g., floor(x/2)

Show: If \( x \) is not sorted by the network, then there is a monotonic function \( f \) that maps \( x \) to 0s and 1s and \( f(x) \) is not sorted by the network.

\[ x \text{ not sorted by } N \Rightarrow \exists \ f(x) \in \{0,1\}^n \text{ not sorted by } N \]

\[ \Leftrightarrow \]

\[ f \text{ sorted by } N \text{ for all } f \in \{0,1\}^n \Rightarrow x \text{ sorted by } N \text{ for all } x \]
Proof

Assume a monotonic function $f(x)$ with $f(x) \leq f(y)$ whenever $x \leq y$ and a network $N$ that sorts. Let $N$ transform $(x_1, x_2, \ldots, x_n)$ into $(y_1, y_2, \ldots, y_n)$, then it also transforms $(f(x_1), f(x_2), \ldots, f(x_n))$ into $(f(y_1), f(y_2), \ldots, f(y_n))$.

Assume $y_i > y_{i+1}$ for some $i$, then consider the monotonic function

$$f(x) = \begin{cases} 0, & \text{if } x < y_i \\ 1, & \text{if } x \geq y_i \end{cases}$$

$\Rightarrow$ $N$ converts

$(f(x_1), f(x_2), \ldots, f(x_n))$ into $(f(y_1), f(y_2), \ldots, f(y_i), f(y_{i+1}), \ldots, f(y_n))$
Bitonic Sort

Bitonic (Merge) Sort is a parallel algorithm for sorting
If enough processors are available, bitonic sort breaks the lower bound on sorting for comparison sort algorithm
Time complexity of $O(n \log^2 n)$ (sequential execution)
Time complexity of $O(\log^2 n)$ (parallel time)
Worst = Average = Best case
What is a Bitonic Sequence?

Monotonic ascending sequence

Monotonic descending sequence
A \textit{bitonic set} is defined as a set in which the sign of the gradient changes once at most.

So that \( x_0 \leq \cdots \leq x_k \geq \cdots \geq x_{n-1} \), for some \( k, 0 \leq k < n \)
A **bitonic sequence** is defined as a list with no more than one **Local maximum** and no more than one **Local minimum**.
Bitonic (again)

Sequence \((x_1, x_2, \ldots, x_n)\) is bitonic, if it can be circularly shifted such that it is first monotonically increasing and then monotonically decreasing.

\[(1, 2, 3, 4, 5, 3, 1, 0) \quad \quad (4, 3, 2, 1, 2, 4, 6, 5)\]
Bitonic 0-1 Sequences

0^i 1^j 0^k

1^i 0^j 1^k
Properties

If \((x_1, x_2, ..., x_n)\) is monotonically increasing (decreasing) and then monotonically decreasing (increasing), then it is bitonic

If \((x_1, x_2, ..., x_n)\) is bitonic, then \((x_1, x_2, ..., x_n)^R := (x_n, x_{n-1}, ..., x_1)\) is also bitonic
The Half-Cleaner
The Half-Cleaner

bitonic

0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0

bitonic clean

bitonic
void halfClean(int[] a, int lo, int m, boolean dir)
{
    for (int i=lo; i<lo+m; i++)
        compare(a, i, i+m, dir);
}
Binary Split: Application of the Half-Cleaner

1. Divide the bitonic list into two equal halves.
2. Compare-Exchange each item on the first half with the corresponding item in the second half.
Binary splits - Result

Two *bitonic* sequences where the numbers in one sequence are all less than the numbers in the other sequence.

Because the original sequence was *bitonic*, every element in the lower half of new sequence is less than or equal to the elements in its upper half.
Bitonic Split Example
Lemma

Input bitonic sequence of 0s and 1s, then for the output of the half-cleaner it holds that

- Upper and lower half is bitonic
- One of the two halves is bitonic clean
- Every number in upper half $\leq$ every number in the lower half
Proof: All cases
The four remaining cases (010 → 101)
Construction of a Bitonic Sorting Network
Recursive Construction

bitonic sorter (n)

\[ \text{def} \]

half cleaner

bitonic sorter (n/2)

bitonic sorter (n/2)
void bitonicMerge(int[] a, int lo, int n, boolean dir)
{
    if (n>1){
        int m=n/2;
        halfClean(a, lo, m, dir);
        bitonicMerge(a, lo, m, dir);
        bitonicMerge(a, lo+m, m, dir);
    }
}
Bitonic Merge

- Compare-and-exchange moves smaller numbers of each pair to left and larger numbers of pair to right.
- Given a *bitonic* sequence, recursively performing ‘*binary split*’ will sort the list.
Bi-Merger on two sorted sequences acts like a half-cleaner on a bitonic sequence (when one of the sequences is reversed)
Merger

sorted

sorted

bi merger

half cleaner

half cleaner

half cleaner

sorted

half cleaner

half cleaner

half cleaner
Recursive Construction of a Sorter

\[
\text{Sorter (n)} \quad \text{def} \quad \begin{cases} 
\text{Sorter(n/2)} \\
\text{Merger (n)} 
\end{cases}
\]
private void bitonicSort(int a[], int lo, int n, boolean dir) {
    if (n>1){
        int m=n/2;
        bitonicSort(a, lo, m, ASCENDING);
        bitonicSort(a, lo+m, n, DESCENDING);
        bitonicMerge(a, lo, n, dir);
    }
}
Example

Merger (2)

Merger (4)

Merger (8)
Example
Bitonic Merge Sort

How many steps?

\[
\sum_{i=1}^{\log n} \log 2^i = \sum_{i=1}^{\log n} i \log 2 = \frac{\log n \cdot (\log n + 1)}{2} = O(\log^2 n)
\]