
Parallel Programming
Assignment 12: Consensus

Spring Semester 2020

Assigned on: 11.05.2020 Due by: 18.05.2020

Overview

Distributed consensus is a fundamental problem in computer science. It is defined as follows: There are
N agents, each agent provides an input, i.e., an integer number. At the end of the consensus protocol, all
agents need to agree on a single value out of the inputs provided by any agent. Some of the agents may
fail or progress arbitrarily slow, yet we still require the protocol to terminate in a finite number of steps
(wait-free consensus).

Exercise 1 – Wait-free implies lock free

Explain why a valid wait-free consensus protocol cannot use locks.

Exercise 2 – Valence states

Assume N = 2 and inputs are either 0 or 1 for each agent. Thus, in the initial state of any consensus, we
are in a bivalent state (bivalent = the output can be 0 or 1). However, at termination, all agents have agreed
on a single value, thus we are in a univalent state. Explain why there is a finite number of bivalent states in
any wait-free consensus protocol.

Exercise 3 – Consensus among prisoners

Imagine there are 100 people in a prison. Each day the warden picks a prisoner (each prisoner with the
probability 1/100). The prisoner is led to a room with a light that he can turn on or off. Initially the light is
turned off. After the prisoner was in the room he can state ”by now every prisoner was in the room at least
once”. If this statement is made and it is true, all prisoners are released. If the statement is made and it is
false, all prisoners are shot. Devise a strategy that the prisoners can follow to make sure they get released
some day in the future with absolute certainty (no other communication is allowed).



Exercise 4 – Implementing two thread consensus

Assume you have a machine with atomic registers and an atomic test-and-set operation with the following
semantics (X is initialized to 1):

int TAS() {
res = X;
if (res = 1) {

X = 0
}
return(res)

}

Implement a two-process consensus protocol using TAS() and atomic registers.

Exercise 5 – Linearizability

Which of the following scenarios are linearizable, assuming s is a stack? Either mark the point of lin-
earization, or explain why the history is not linearizable.

a) A : s.push(1)
B : s.push(2)
A : s.pop()
B : s.pop()
A : void
B : void
A : 2
B : 1

b) A : s.push(1)
B : s.push(2)
A : void
B : void
A : s.pop()
A : 2
B : s.pop()
B : 1

c) A : s.push(1)
B : s.push(2)
A : void
B : void
B : s.pop()
B : 1
A : s.pop()
A : 2

Submission

In order to receive feedback for your exercises, you need to submit your code to the Git repository. You
will find detailed instructions on how to install and set-up Eclipse for use with Git in Exercise 1.

2



Once you have completed the skeleton, commit it to Git by following the steps described below. For the
questions that require written answers, please write them on paper and bring them to the next exercise
session where the solutions will be discussed.

• Check-in your project for the first time

– Right click your created project called assignment12.

– In the menu go to Team, then click Share Project.
– You should see a dialog ”Configure Git Repository”. Here, next to the Repository input field

click on Create...
– Select a root git directory or your projects that you have created in Execise 1. Note for all your

assignments you should use the same directory.

– click Finish.

• Commit changes in your project

– Now that your project is connected to your git repository, you need to make sure that every
time you change your code or your report, at the end you commit your changes and send (push)
them to the git server.

– Right click your project called assignment12.

– In the menu go to Team, then click Commit...
– In the Comment field, enter a comment that summarizes your changes.

– In the Files list, select all the files that you changed and want them to be committed. This
typically includes all the Java files but not necessarily all the files (e.g., you dont have to commit
setting files of our eclipse installation).

– Then, click on Commit to store the changes locally or Commit and Push to also upload them
to the server. Note that in order to submit your solution you need to both commit and push
your changes to the server.

• Push changes to the git server

– Right click your project called assignment12.

– In the menu go to Team, then click Push Branch ’master’. Note if this is not your fist push
you can also use Push to Upstream to speed up the process.

– A new dialog appears, now fill in for the URL field:
https://gitlab.inf.ethz.ch/COURSE-PPROG20/<nethz-username>.git

– Click Next
– Keep the default values and click Next
– An authentication dialog should appear. Fill in your nethz username and password and click

OK.

– Click Finish to confirm your changes. Note that eclipse might ask for authentication again.

• Browse your repository online

– you can access and browse the files in your repository online on GitLab at:
https://gitlab.inf.ethz.ch/COURSE-PPROG20/<nethz-username>

3


