ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Parallel Programming
Assignment 6: Task Parallelism
Spring Semester 2020

Assigned on: 25.03.2020 Due by: (Wednesday Exercise) 30.03.2020
(Friday Exercise) 1.04.2020

Overview

This week’s assignment is about Task Parallelism. Task parallelism emphasizes the distributed (paral-
lelized) nature of the processing (i.e., threads), as opposed to the data (data parallelism). We will use the
fork/join framework to implement task parallelism. The fork/join framework helps to take advantage of
multiple processors. It is designed for work that can be broken into smaller pieces recursively. The goal is
to use all the available processing power to enhance the performance of your application.

Getting Prepared

e Download the ZIP file named assignment 6. zip on the course website.

e Import the project in Eclipse: Click on File in the top-menu, then select Import. In the dialog,
select Existing Projects into Workspace under the General directory, then click on Next. In the
new dialog, select the radiobox in front of Select archive file to import a ZIP file. Then, click
Browse on the right side of the text-box to select the ZIP file you just downloaded from the website
(assignment6.zip). After that, you should see assignment6 as a project under Projects. Click
Finish.

e If you have done everything correctly, you should now have a project named assignment6 in your
Package Explorer.



1 Sorting

In this exercise you are asked to implement merge-sort algorithm using task parallelism. The merge-sort
algorithm sorts an array by partitioning it in smaller arrays. Once the size of the arrays becomes 1 or 2,
they are trivially sorted. Sorted sub-arrays are combined by merging them.

The simplest task in merge-sort is the trivial sort of small arrays. This is the following:

if (array.length == 1) {

// An array of size 1 is implicitly sorted
return array;

} else if (array.length == 2) {

// Re—arrange elements if they are not in proper order

if (array[0] > arrayl[l]) {
temp = arrayl[0];
array[0] = arrayl[l];
array([l] = temp;

}

return array;

Merging two sorted arrays into a bigger sorted array is also a simple procedure. Consider the following
two sorted arrays:

arrayl: [5, 11, 12, 18, 20]
array2: [2, 4, 7, 11, 16, 23, 28]

The resulting merged array is computed by comparing the head of the two arrays. The smallest one is
removed and it is appended at the end of the output. In this case, the merged output is:

result: [2, 4, 5, 7, 11, 11, 12, 16, 18, 20, 23, 28]

The code to merge two ordered arrays is already provided to you in ethz.ch.pp.util.ArrayUtils.
Futher, we also provide an sequential merge-sort in ethz.ch.pp.mergeSort .MergeSortSingle.

Your task is to implement the task-parallel version of merge-sort.



Task A: The code you downloaded and imported contains relevant parts in MergeSortMulti that you
are expected to implement. For merge-sort with task parallelism, the following is one of the possible
strategies to divide the work:

sort (input) {
if (input.length <= 2) {

// Execute the simple task locally
return simpleSort (input);

} else {
// Split the input in two parts by forking to two tasks

fork (firstPart);
fork (secondPart) ;

waitForResults () ;

// Join results
return merge (firstPartResults, secondPartResults);

Implement the strategy outlined above using the ForkJoinPool and RecursiveAction Java APIs.

Task B: Verify that the multi-threaded merge-sort computes the correct results by running the provided
set of test-cases.



2 Longest Sequence

In this exercise our goal is to find the longest sequence of the same consecutive number in an input sequence
of numbers. For example, we show the longest sequences for a given input below:

longest sequence
%

[139747373a8a7777 77 0} [7’ 7’ 7]§?adrt86

Where the longest sequence is formed by three consecutive numbers 7 that start at index 6 and end at
index 8. For all non-empty inputs the longest sequence always contains atleast one element. In case of
multiple sequences having the same length we always return the one with smaller starting index. We
illustrate both of these cases with following two examples:

[0,1,2,3,4,5,6,7, 8, ]~ s, grend:0

1 N .
[1,1,0,0] =2 1, 1)9k

We provide a sequential version that returns the longest sequence of the same consecutive number in
LongestCommonSequence class. You may assume that the input array has always atleast one element.

Task A: Implement a task parallel version that computes longest sequence using the fork/join frame-
work in LongestCommonSequenceMulti class. Start with a cutoff set to value 2. Note that in this task
we cannot simply split the input array into two partitions whose results can be computed independently
and combined afterwards. For example, if we would split input [1, 3, 3, 2] into two parts [1, 3] and [3, 2]
we would miss the longest sequence [3, 3] as it is on the boundary. However, for many inputs (such as
[3, 3,1, 2]) we can safely split them and compute the results independently. Make sure you implementation
handles this case and successfully parallelizes the computation without producing incorrect results. Use
the provided set of test cases to verify your implementation.

Task B: Improve the performance of the implementation from Task 1 by choosing more appropriate
cutoff value. Compare the performance to the sequential version. Note that the computation performed in
the base case (e.g., comparing that two array values are the same) is very simple and fast. To make the task
more compute-intensive, use more expensive comparison (e.g., Math.exp (i) == Math.exp (j) instead
of i == 7).



Submission

In order to receive feedback for your exercises, you need to submit your code to the Git repository. You
will find detailed instructions on how to install and set-up Eclipse for use with Git in Exercise 1.

Once you have completed the skeleton, commit it to Git by following the steps described below. For the
questions that require written answers, please write them on paper and bring them to the next exercise
session where the solutions will be discussed.

e Check-in your project for the first time

Right click your created project called assignment6.
In the menu go to Team, then click Share Project.

You should see a dialog Configure Git Repository. Here, next to the Repository input field click
on Create...

Select a root git directory or your projects that you have created in Execise 1. Note for all your
assignments you should use the same directory.

click Finish.

o Commit changes in your project

Now that your project is connected to your git repository, you need to make sure that every
time you change your code or your report, at the end you commit your changes and send (push)
them to the git server.

Right click your project called assignment6.
In the menu go to Team, then click Commit...
In the Comment field, enter a comment that summarizes your changes.

In the Files list, select all the files that you changed and want them to be committed. This
typically includes all the Java files but not necessarily all the files (e.g., you dont have to commit
setting files of our eclipse installation).

Then, click on Commit to store the changes locally or Commit and Push to also upload them
to the server. Note that in order to submit your solution you need to both commit and push
your changes to the server.

e Push changes to the git server

Right click your project called assignment6.

In the menu go to Team, then click Push Branch master’. Note if this is not your fist push
you can also use Push to Upstream to speed up the process.

A new dialog appears, now fill in for the URL field:
https://gitlab.inf.ethz.ch/COURSE-PPROG20/<nethz-username>.git

Click Next
Keep the default values and click Next

An authentication dialog should appear. Fill in your nethz username and password and click
OK.

Click Finish to confirm your changes. Note that eclipse might ask for authentication again.

e Browse your repository online

you can access and browse the files in your repository online on GitLab at:
https://gitlab.inf.ethz.ch/COURSE-PPROG20/<nethz-username>



	Task Graph
	Sorting
	Longest Sequence

