
Parallel Programming
Assignment 7: Synchronization And Resource Sharing

Spring Semester 2020

Assigned on: 1.04.2020 Due by: (Wednesday Exercise) 6.04.2020
(Friday Exercise) 6.04.2020

Overview

In this exercise, we look at one of the major problems that arise in writing parallel programs: Accessing
state that is shared between multiple threads.

Getting Prepared

• Download the ZIP file named assignment7.zip on the course website.

• Import the project in Eclipse: Click on File in the top-menu, then select Import. In the dialog,
select Existing Projects into Workspace under the General directory, then click on Next. In the
new dialog, select the radiobox in front of Select archive file to import a ZIP file. Then, click
Browse on the right side of the text-box to select the ZIP file you just downloaded from the website
(assignment7.zip). After that, you should see assignment7 as a project under Projects. Click
Finish.

• If you have done everything correctly, you should now have a project named assignment7 in your
Package Explorer.

Banking System

The CEO of the bank you are working for has recently bought some expensive multi-core machines. The
vendor ensured the CEO that their four core machines will quadruple the number of transactions per second
the bank can handle. After they installed the new machines, the CTO realized that their code base was not
able to exploit the parallelism offered by their new servers. In order to keep their job, they called you for
help.

The code skeleton you downloaded and imported contains the relevant parts of the KBS code base. There
are two classes, Account and BankingSystem. Account represents the bank account of a client, while
BankingSystem provides the essential functionality of the bank such as transferMoney, to transfer
money between two accounts, and totalMoneyInBank, used by them to figure out how much money
they currently maintain.

In the following tasks, we will first try to make Account and BankingSystem thread-safe, after that we
will continue to increase the transaction performance of the system.



Task 1 - Problem identification: When the CTO installed the codebase on their new machines, they
wanted to test the performance of the system. They wrote two simple tests (see BankingThroughputTest)
that spawn a few threads and run a fixed number of transactions on random accounts. On one thread, ev-
erything worked fine (testTransactionThroughputSingle). However as soon as they started using
multiple threads (testTransactionThroughputParallel), sometimes the test failed by triggering the
following assertion on:

assertThat("Did not lose any money.", bs.totalMoneyInBank(), is(sum));

Try to reproduce the behavior on your machine. Understand what the test does by looking at the provided
classes in src and test, then explain what went wrong and why (by providing an exact set of steps that
can lead to such a scenario).

Task 2 - Synchronized: Having heard that the synchronized keyword is something to use in combination
with threads, the CTO changed the signature of transferMoney in the BankingSystem class by adding
synchronized:

public synchronized boolean transferMoney(Account from, Account to, int amount)

Now, the test did no longer fail, but, unfortunately, the performance reported by the parallel test-case was
much worse than the sequential version:

Sequential using 1 Threads:
Completed 80000000 transaction in 1.920 sec: 4.1662e+07 transactions/sec
Parallel using 8 Threads:
Completed 80000000 Transaction in 13.443 sec: 5.9510e+06 transactions/sec

Because the CTO could not figure out what the problem is, you should explain them why the parallel
version is slower than the sequential version, what the problem with the current code is and propose a way
to fix it.

Task 3 - Locking: Impressed with your explanations in the previous task, the CTO thinks you should
go ahead and implement your proposed changes to the BankingSystem and Account class such that it
continues to be thread-safe but the transaction performance improves considerably with more threads on a
multi-core machine. You are free to change and add code in any way, but be sure to keep the interface of
BankingSystem the same for unit testing. Also, make sure that the implementation still corresponds to
the one described in the Javadoc headers.

Try to answer the following questions:

Question 1: What if a transaction happens from and to the same account ?

transferMoney(a, a, X);

If this is a problem in your implementation, try to correct your code such that this is no longer an issue.

Question 2: Explain what measures you took in order to ensure that your code does not suffer from
deadlocks.

Task 4 - Summing up: The method sumAccounts in the BankingSystem class is supposed to return
the sum of money of all the accounts provided in the argument. However, at some point the CTO noticed
that this function sometimes returns incorrect results, especially when a lot of transactions are happening
concurrently. The CTO promises you a huge bonus if you can fix the function, such that it returns the
correct amount of money at any point in time (i.e., while transactions are happening concurrently).

2



Question 3: Find out what is wrong with the current implementation by describing a scenario that can
lead to an incorrect summation of the accounts.

Question 4: Change the implementation such that it now works for an arbitrary number of accounts.

Question 5: Are there ways to parallelize the summation? If so, describe how you could do it.

Submission

In order to receive feedback for your exercises, you need to submit your code to the Git repository. You
will find detailed instructions on how to install and set-up Eclipse for use with Git in Exercise 1.

Once you have completed the skeleton, commit it to Git by following the steps described below. For the
questions that require written answers, please write them on paper and bring them to the next exercise
session where the solutions will be discussed.

• Check-in your project for the first time

– Right click your created project called assignment7.

– In the menu go to Team, then click Share Project.
– You should see a dialog Configure Git Repository. Here, next to the Repository input field click

on Create...
– Select a root git directory or your projects that you have created in Execise 1. Note for all your

assignments you should use the same directory.

– click Finish.

• Commit changes in your project

– Now that your project is connected to your git repository, you need to make sure that every
time you change your code or your report, at the end you commit your changes and send (push)
them to the git server.

– Right click your project called assignment7.

– In the menu go to Team, then click Commit...
– In the Comment field, enter a comment that summarizes your changes.

– In the Files list, select all the files that you changed and want them to be committed. This
typically includes all the Java files but not necessarily all the files (e.g., you dont have to commit
setting files of our eclipse installation).

– Then, click on Commit to store the changes locally or Commit and Push to also upload them
to the server. Note that in order to submit your solution you need to both commit and push
your changes to the server.

• Push changes to the git server

– Right click your project called assignment7.

– In the menu go to Team, then click Push Branch ’master’. Note if this is not your fist push
you can also use Push to Upstream to speed up the process.

– A new dialog appears, now fill in for the URL field:
https://gitlab.inf.ethz.ch/COURSE-PPROG20/<nethz-username>.git

– Click Next

3



– Keep the default values and click Next
– An authentication dialog should appear. Fill in your nethz username and password and click

OK.

– Click Finish to confirm your changes. Note that eclipse might ask for authentication again.

• Browse your repository online

– you can access and browse the files in your repository online on GitLab at:
https://gitlab.inf.ethz.ch/COURSE-PPROG20/<nethz-username>

4


