ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Parallel Programming
Assignment 8: More on synchronization
Spring Semester 2020

Assigned on: 06.04.2020 Due by: 13.04.2020

Overview

In this exercise, we go over lock implementations and the usage of atomic operations for locking. This is to
have a better understanding on when and why they are an interesting option over other locking mechanisms.

First, we will look at a theoretical exercise for locking to acquire a deeper understanding of the problems
that might arise.

Then, we review the usage of atomic operations for synchronizing the access to shared data to multiple
threads while they are executing concurrently.

And finally, some questions must be answered regarding the usage of optimistic concurrency control and
the usage of locking (pessimistic concurrency control).

Getting Prepared

e Download the ZIP file named assignment8. zip on the course website.

e Import the project in Eclipse: Click on File in the top-menu, then select Import. In the dialog,
select Existing Projects into Workspace under the General directory, then click on Next. In the
new dialog, select the radiobox in front of Select archive file to import a ZIP file. Then, click
Browse on the right side of the text-box to select the ZIP file you just downloaded from the website
(assignment8.zip). After that, you should see assignment8 as a project under Projects. Click
Finish.

e If you have done everything correctly, you should now have a project named assignment8 in your
Package Explorer.



Analyzing locks

The code in assignment8.1livelock package mimicks the behavior of a couple that are having dinner
together, but they only have a single spoon. As they are so much in love, they want their significant one to
start eating before if they are hungry. The current implementation “offers” mutual exclusion over the shared
resource (the spoon). In this section, we need you to analyze the code within assignment8.livelock
package and answer the following questions in your report:

a) Prove or disprove that the current implementation provides mutual exclusion. HINT: Similarly to
what has been done in the lecture, you should first identify the important instructions of code, and
then do the state space diagram for finding out if the current implementation provides mutual exclu-
sion or not.

b) What is the problem with the current implementation? Argue how it can be improved.



Atomic (Read Modify Write) Operations

In this section, we will analyze how we can use atomic operations to perform concurrency control (often
referred to as optimistic concurrency control) and the cost of using them when having high data contention.
The sample code for generating pseudorandom numbers is based on a linear congruential generation which
is explained below.

A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized num-
bers calculated by using a recurrence to generate a series of integer values based on an initial seed value.
The method represents one of the oldest and best-known pseudorandom number generator algorithms
(java.util.Random works this way).

Thus, whenever a caller wants to obtain the next value of the sequence, the pseudorandom generator must:

a) Get the current state.
b) Generate the next state using the recurrence equation.
¢) Save the updated state value.

d) Return the value derived from the computed next state value.

The first three steps have to be done atomically because if different threads try to get the next number of
the sequence concurrently, these threads must not get the same number. There are different options for
ensuring atomicity. One option is to use a lock, but if many threads are using the pseudorandom generator
at the same time, this could result in thread contention and therefore in low performance.

The sample code is simple and it is only for showing the cost of using atomic operations. In the code,
we create several threads(RandomiWorker.class) in which every thread computes the summation of a
million random numbers. The purpose of this is to show data contention and cost of atomic operations
when generating pseudonumbers with a LCG algorithm.

This task has two parts. In the first part you must complete the lock based implementation of the pseudo-
random generator i.e. completing the class LockedrRandom with the appropriate locking mechanism. In
the second part, you have to answer the following questions on your report:

a) Given the code in the AtomicRandom. java class, analyze it and argue why or why not a single
atomic operation for storing the state is enough in this case. (HINT: The compareAndSet method
tries to set a new value if stored value is the same as the one we read).

b) Execute the main program for different number of threads. Describe and explain the behavior of
the results. For example, explain why do atomic operations become more expensive every time?
Propose a possible solution if needed.

¢) Describe in which cases optimistic concurrency control (usage of atomic operations) is a viable
solution.

d) (Optional) Try to improve the performance of the setup using atomic operations.

Submission

In order to receive feedback for your exercises, you need to submit your code to the Git repository. You
will find detailed instructions on how to install and set-up Eclipse for use with Git in Exercise 1.

Once you have completed the skeleton, commit it to Git by following the steps described below. For the
questions that require written answers, please write them on paper and bring them to the next exercise
session where the solutions will be discussed.



e Check-in your project for the first time

Right click your created project called assignment8.
In the menu go to Team, then click Share Project.

You should see a dialog "Configure Git Repository”. Here, next to the Repository input field
click on Create...

Select a root git directory or your projects that you have created in Execise 1. Note for all your
assignments you should use the same directory.

click Finish.

o Commit changes in your project

Now that your project is connected to your git repository, you need to make sure that every
time you change your code or your report, at the end you commit your changes and send (push)
them to the git server.

Right click your project called assignment8.
In the menu go to Team, then click Commit...
In the Comment field, enter a comment that summarizes your changes.

In the Files list, select all the files that you changed and want them to be committed. This
typically includes all the Java files but not necessarily all the files (e.g., you dont have to commit
setting files of our eclipse installation).

Then, click on Commit to store the changes locally or Commit and Push to also upload them
to the server. Note that in order to submit your solution you need to both commit and push
your changes to the server.

e Push changes to the git server

Right click your project called assignment8.

In the menu go to Team, then click Push Branch *master’. Note if this is not your fist push
you can also use Push to Upstream to speed up the process.

A new dialog appears, now fill in for the URL field:
https://gitlab.inf.ethz.ch/COURSE-PPROG20/<nethz-username>.git

Click Next
Keep the default values and click Next

An authentication dialog should appear. Fill in your nethz username and password and click
OK.

Click Finish to confirm your changes. Note that eclipse might ask for authentication again.

e Browse your repository online

you can access and browse the files in your repository online on GitLab at:
https://gitlab.inf.ethz.ch/COURSE-PPROG20/<nethz-username>



