
Parallel Programming
Exercise Session 10

Outline

2

1. Feedback: Assignment 9
2. Assignment 10

Feedback: Assignment 9

3

Task 1 - Dining Philosophers

4

• Example deadlock
Each philosopher picks up the left fork first

• Makes deadlocks impossible
Any solution that breaks the cyclic dependency

• More than one parallel eating philosopher is possible
Bundle the forks in one place such that they are
always picked up together.

Task 2 – Better than Dijkstra

5

C0: b(i) := false;
C1: if k != i then begin
C2: if !b(j) then go to C2;
 else k := i; go to C1; end;
 else CS;
 b(i) := true

Task 2 – Better than Dijkstra

6

Lets add some indention

C0: b(i) := false;
C1: if k != i then
 begin
C2: if !b(j) then go to C2;
 else k := i; go to C1;
 end;
 else CS;
 b(i) := true

Task 2 – Better than Dijkstra

7

Lets translate gotos into loops

S1: b(i) = false;
S2: while (k != i) {
S3: while (!b(j)) {};
S4: k = i;
 }
S5: // CS
S6: b(i) = true

Now we need to decide what initial values k and b
have. Lets assume k=0, b = [true, true]

Task 2 – Better than Dijkstra

8

For both threads to be in the CS, the following must happen (assume wlog. the process
with i=0, j=1 enters the CS first):

P0:W(b[0]=false) > P0:R(k=0) > P0:CR
P1:W(b[1]=false) > P1:R(k=0) > P1:R(b[0]=true) > P1:W(k=1) > P1:R(k=1) > P1:CR

It is simple to construct a valid interleaving of these actions:

P1:W(b[1]=false) > P1:R(k=0) > P1:R(b[0]=true) > P0:W(b[0]=false) > P0:R(k=0) >
P0:CR > P1:W(k=1) > P1:R(k=1) > P1:CR

Thus the lock does not work correctly.

Task 3 – Transitive Closure

9

Relation: “can fly from A to B directly”

Transitive closure: If we can fly from A to B and from B to C then A and C are
in the transitive closure

→ Transitive closure tells us which places are reachable.

Task 4 – Synchronization Actions

10

Synchronization actions are:

 - A volatile read of a variable.

 - A volatile write of a variable.

 - Lock

 - Unlock

 - The (synthetic) first and last action of a thread.

 - Actions that start a thread or detect that a thread has terminated

Assignment 10

11

Lecture Recap: Semaphores

12

Used to restrict the number of threads that can access a specific resource.

• acquire() gets a permit, if no permit available block
• release() gives up permit, releases a blocking acquirer

Lecture Recap: Semaphores

13

Semaphore

N Threads have permit to a semaphore,
others will wait (blocked) until someone leaves the semaphore

14

2

Semaphore

Thread 1

Thread 2

Thread 3

15

1

Thread 1

Thread 2

Thread 3

acquire
CS

Semaphore

16

0

Thread 1

Thread 2

Thread 3

acquire
CS

acquire
CS

Semaphore

17

0

Thread 1

Thread 2

Thread 3

Semaphore

acquire

acquire
CS

acquire
CS

18

0

Thread 1

Thread 2

Thread 3

Semaphore

acquire

acquire
CS
release

acquire
CS
release

19

2

Thread 1

Thread 2

Thread 3

Semaphore

acquire

20

1

Thread 1

Thread 2

Thread 3

Semaphore

acquire
CS

Think of semaphores as bike rentals

Semaphores: Implementation

21

Semaphore: integer-valued abstract data type S with some initial value s≥0 and the
following atomic operations:

acquire(S) {
wait until S > 0
dec(S)

}

release(S) {
inc(S)

}

Semaphores: Implementation

22

Semaphore: integer-valued abstract data type S with some initial value s≥0 and the
following atomic operations:

acquire(S) {
wait until S > 0
dec(S)

}

release(S) {
inc(S)

}

What is the difference between a Lock and a Semaphore?

Semaphores: Implementation

23

Semaphore: integer-valued abstract data type S with some initial value s≥0 and the
following atomic operations:

acquire(S) {
wait until S > 0
dec(S)

}

release(S) {
inc(S)

}

When would you use a semaphore?

Semaphores: Usage example

24

Semaphores: Usage example

25

Lecture Recap: Monitors

26

Monitors provide two kinds of thread synchronization: mutual exclusion and
cooperation using a lock

• higher level mechanism than
semaphores and more powerful

• instance of a class that can be used
safely by several threads

• all methods of a monitor are executed
with mutual exclusion

Lecture Recap: Monitors

27

Monitors provide two kinds of thread synchronization: mutual exclusion and
cooperation using a lock

When thread is sent to wait we release the lock !
Can a monitor induce a deadlock?

• the possibility to make a thread
waiting for a condition

• signal one or more threads that
a condition has been met

Monitors in Java

28

Uses intrinsic lock (synchronized) of an object

wait() – the current thread waits until it is signaled
notify() – wakes up one waiting thread
notifyAll() – wakes up all waiting threads

Monitors in Java

29

Uses intrinsic lock (synchronized) of an object

wait() – the current thread waits until it is signaled
notify() – wakes up one waiting thread
notifyAll() – wakes up all waiting threads

When do you use notify, when notifyAll?

Monitors in Java: Signal & Continue

30

• signalling process continues running
• signalling process moves signalled

process to entry queue

More theory:
• Signal & Continue (SC) : The process

who signal keep the mutual exclusion and
the signaled will be awaken but need to
acquire the mutual exclusion before
going. (Java’s option)

• Signal & Wait (SW) : The signaler is
blocked and must wait for mutual
exclusion to continue and the signaled
thread is directly awaken and can start
continue its operations.

• Signal & Urgent Wait (SU) : Like SW but
the signaler thread has the guarantee
than it would go just after the signaled
thread

• Signal & Exit (SX) : The signaler exits
from the method directly after the signal
and the signaled thread can start directly.

Monitors in Java: Signal & Continue

31

• signalling process continues running
• signalling process moves signalled

process to entry queue

More abstractly there are 4 options:
• Signal & Continue (SC) : The process

who signal keep the mutual exclusion and
the signaled will be awaken but need to
acquire the mutual exclusion before
going. (Java’s option)

• Signal & Wait (SW) : The signaler is
blocked and must wait for mutual
exclusion to continue and the signaled
thread is directly awaken and can start
continue its operations.

• Signal & Urgent Wait (SU) : Like SW but
the signaler thread has the guarantee
than it would go just after the signaled
thread

• Signal & Exit (SX) : The signaler exits
from the method directly after the signal
and the signaled thread can start directly.

Monitors in Java: Example P/C Queue

32

Monitors in Java: Example P/C Queue

33

synchronized long dequeue() {
long x;
if (isEmpty()){
 try {
 wait();
 }
 catch (InterruptedException e) {}
 x = doDequeue();
 notifyAll();
 return x;
}

synchronized void enqueue(long x)
{
if (isFull()){
 try {
 wait();
 }
 catch (InterruptedException e)
{}
 doEnqueue(x);
 notifyAll();
}

Monitors in Java: Example P/C Queue

34

1. Queue is full
2. Process Q enters enqueue(), sees isFull(),

and goes to the waiting list.
3. Process P enters dequeue()
4. In this moment process R wants to enter

enqueue() and blocks
5. P signals Q and thus moves it into the ready

queue, P then exits dequeue()
6. R enters the monitor before Q and sees !

isFull(), fills the queue, and exits the monitor
7. Q resumes execution assuming isFull() is

false

=> Inconsistency!

synchronized void enqueue(long x)
{
if (isFull()){
 try {
 wait();
 }
 catch (InterruptedException e)
{}
 doEnqueue(x);
 notifyAll();
}

Monitors in Java: Example P/C Queue

35

synchronized void enqueue(long x)
{
while(isFull()){
 try {
 wait();
 }
 catch (InterruptedException e)
{}
 doEnqueue(x);
 notifyAll();
}

synchronized long dequeue() {
long x;
while(isEmpty()){
 try {
 wait();
 }
 catch (InterruptedException e) {}
 x = doDequeue();
 notifyAll();
 return x;
}

Lecture Recap: Lock Conditions

36

Can be used to implement monitors!

Java Locks provide conditions that can be instantiated Condition
notFull = lock.newCondition();

Java conditions offer
.await() – the current thread waits until condition is signaled
.signal() – wakes up one thread waiting on this condition
.signalAll() – wakes up all threads waiting on this condition

What is the difference to a Monitor?

Lock Conditions

37

AwaitCondition 1

Condition 2

Condition 3

Lock Conditions: Example P/C Queue

38

Lock Conditions: Example P/C Queue

39

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

