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Task 1 - Dining Philosophers
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• Example deadlock
Each philosopher picks up the left fork first

• Makes deadlocks impossible
Any solution that breaks the cyclic dependency

• More than one parallel eating philosopher is possible
Bundle the forks in one place such that they are 
always picked up together.



Task 2 – Better than Dijkstra
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C0: b(i) := false;
C1: if k != i then begin
C2: if !b(j) then go to C2;
      else k := i; go to C1; end;
      else CS;
      b(i) := true



Task 2 – Better than Dijkstra
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Lets add some indention

C0: b(i) := false;
C1: if k != i then 
       begin
C2:     if !b(j) then go to C2;
          else k := i; go to C1; 
       end;
       else CS;
       b(i) := true



Task 2 – Better than Dijkstra
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Lets translate gotos into loops

S1:    b(i) = false;
S2:    while (k != i) { 
S3:        while (!b(j)) {};
S4:        k = i; 
         }
S5:   // CS
S6:   b(i) = true

Now we need to decide what initial values k and b 
have. Lets assume k=0, b = [true, true]



Task 2 – Better than Dijkstra
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For both threads to be in the CS, the following must happen (assume wlog. the process 
with i=0, j=1 enters the CS first):

P0:W(b[0]=false) > P0:R(k=0) > P0:CR 
P1:W(b[1]=false) > P1:R(k=0) > P1:R(b[0]=true) > P1:W(k=1) > P1:R(k=1) > P1:CR

It is simple to construct a valid interleaving of these actions:

P1:W(b[1]=false) > P1:R(k=0) > P1:R(b[0]=true) > P0:W(b[0]=false) > P0:R(k=0) > 
P0:CR > P1:W(k=1) > P1:R(k=1) > P1:CR

Thus the lock does not work correctly.



Task 3 – Transitive Closure
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Relation: “can fly from A to B directly”

Transitive closure: If we can fly from A to B and from B to C then A and C are 
in the transitive closure 

→ Transitive closure tells us which places are reachable. 



Task 4 – Synchronization Actions
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Synchronization actions are:

    - A volatile read of a variable.

    - A volatile write of a variable.

    - Lock

    - Unlock

    - The (synthetic) first and last action of a thread.

    - Actions that start a thread or detect that a thread has terminated



Assignment 10
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Lecture Recap: Semaphores
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Used to restrict the number of threads that can access a specific resource.

• acquire() gets a permit, if no permit available block
• release() gives up permit, releases a blocking acquirer



Lecture Recap: Semaphores
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Semaphore

N Threads have permit to a semaphore,
others will wait (blocked) until someone leaves the semaphore
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Semaphores: Implementation
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Semaphore: integer-valued abstract data type S with some initial value s≥0 and the 
following atomic operations:

acquire(S) {
wait until S > 0
dec(S)

}

release(S) {
inc(S)

} 



Semaphores: Implementation
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Semaphore: integer-valued abstract data type S with some initial value s≥0 and the 
following atomic operations:

acquire(S) {
wait until S > 0
dec(S)

}

release(S) {
inc(S)

} 

What is the difference between a Lock and a Semaphore?



Semaphores: Implementation
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Semaphore: integer-valued abstract data type S with some initial value s≥0 and the 
following atomic operations:

acquire(S) {
wait until S > 0
dec(S)

}

release(S) {
inc(S)

} 

When would you use a semaphore?



Semaphores: Usage example
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Lecture Recap: Monitors
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Monitors provide two kinds of thread synchronization: mutual exclusion and 
cooperation using a lock

• higher level mechanism than 
semaphores and more powerful

• instance of a class that can be used 
safely by several threads

• all methods of a monitor are executed 
with mutual exclusion



Lecture Recap: Monitors
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Monitors provide two kinds of thread synchronization: mutual exclusion and 
cooperation using a lock

When thread is sent to wait we release the lock !
Can a monitor induce a deadlock?

• the possibility to make a thread 
waiting for a condition

• signal one or more threads that 
a condition has been met



Monitors in Java
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Uses intrinsic lock (synchronized) of an object

wait() – the current thread waits until it is signaled
notify() – wakes up one waiting thread
notifyAll() – wakes up all waiting threads 



Monitors in Java
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Uses intrinsic lock (synchronized) of an object

wait() – the current thread waits until it is signaled
notify() – wakes up one waiting thread
notifyAll() – wakes up all waiting threads 

When do you use notify, when notifyAll?



Monitors in Java: Signal & Continue
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• signalling process continues running
• signalling process moves signalled 

process to entry queue

More theory:
• Signal & Continue (SC) : The process 

who signal keep the mutual exclusion and 
the signaled will be awaken but need to 
acquire the mutual exclusion before 
going. (Java’s option)

• Signal & Wait (SW) : The signaler is 
blocked and must wait for mutual 
exclusion to continue and the signaled 
thread is directly awaken and can start 
continue its operations.

• Signal & Urgent Wait (SU) : Like SW but 
the signaler thread has the guarantee 
than it would go just after the signaled 
thread

• Signal & Exit (SX) : The signaler exits 
from the method directly after the signal 
and the signaled thread can start directly.



Monitors in Java: Signal & Continue
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• signalling process continues running
• signalling process moves signalled 

process to entry queue

More abstractly there are 4 options:
• Signal & Continue (SC) : The process 

who signal keep the mutual exclusion and 
the signaled will be awaken but need to 
acquire the mutual exclusion before 
going. (Java’s option)

• Signal & Wait (SW) : The signaler is 
blocked and must wait for mutual 
exclusion to continue and the signaled 
thread is directly awaken and can start 
continue its operations.

• Signal & Urgent Wait (SU) : Like SW but 
the signaler thread has the guarantee 
than it would go just after the signaled 
thread

• Signal & Exit (SX) : The signaler exits 
from the method directly after the signal 
and the signaled thread can start directly.



Monitors in Java: Example P/C Queue
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Monitors in Java: Example P/C Queue
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synchronized long dequeue() {
long x;
if (isEmpty()){
  try {
    wait();
  }
  catch (InterruptedException e) {}
    x = doDequeue();
    notifyAll();
    return x;
}

synchronized void enqueue(long x) 
{
if (isFull()){
  try {
    wait();
  }
  catch (InterruptedException e) 
{}
  doEnqueue(x); 
  notifyAll();
} 



Monitors in Java: Example P/C Queue
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1. Queue is full
2. Process Q enters enqueue(), sees isFull(), 

and goes to the waiting list.
3. Process P enters dequeue()
4. In this moment process R wants to enter 

enqueue() and blocks
5. P signals Q and thus moves it into the ready 

queue, P then exits dequeue()
6. R enters the monitor before Q and sees !

isFull(), fills the queue, and exits the monitor
7. Q resumes execution assuming isFull() is 

false

=> Inconsistency!

synchronized void enqueue(long x) 
{
if (isFull()){
  try {
    wait();
  }
  catch (InterruptedException e) 
{}
  doEnqueue(x); 
  notifyAll();
} 



Monitors in Java: Example P/C Queue
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synchronized void enqueue(long x) 
{
while(isFull()){
  try {
    wait();
  }
  catch (InterruptedException e) 
{}
  doEnqueue(x); 
  notifyAll();
} 

synchronized long dequeue() {
long x;
while(isEmpty()){
  try {
    wait();
  }
  catch (InterruptedException e) {}
    x = doDequeue();
    notifyAll();
    return x;
}



Lecture Recap: Lock Conditions
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Can be used to implement monitors!

Java Locks provide conditions that can be instantiated Condition
notFull = lock.newCondition();

Java conditions offer
.await() – the current thread waits until condition is signaled
.signal() – wakes up one thread waiting on this condition
.signalAll() – wakes up all threads waiting on this condition

What is the difference to a Monitor?



Lock Conditions
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AwaitCondition 1

Condition 2

Condition 3



Lock Conditions: Example P/C Queue
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Lock Conditions: Example P/C Queue
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